1
|
Ali MS, Kang HS, Moon BY, Heo YE, Kim MY, Choi JH, Hwang YJ, Kim JI, Lee YH, Kim JM, Lim SK. Prevalence and characterization of ciprofloxacin-resistant Salmonella enterica spp. isolated from food animals during 2010-2023 in South Korea. Vet Q 2025; 45:1-11. [PMID: 40091866 PMCID: PMC11915734 DOI: 10.1080/01652176.2025.2473733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
We isolated 6,561 Salmonella strains from food animals, cattle (n = 217), pigs (n = 1526), chickens (n = 3942), and ducks (n = 876). Isolates were evaluated for antimicrobial sensitivity, mutations in quinolone resistance determination regions (QRDRs), and plasmid-mediated quinolone resistance (PMQR) genes. Clonal relationship and genetic diversity were assessed by multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Overall, 3.1% of isolates exhibited resistance to ciprofloxacin. Commonly identified mutations in QRDRs were S83F, D87N, and D87G in gyrA; T57S and S80I in parC; and L416F in parE. Furthermore, mutations differed by serotypes. In S. Albany, S83F mutation in gyrA and T57S in parC were prevalent, while in S. Kentucky, S83F and D87N in gyrA, T57S and S80I in parC; and in S. Indiana, S83F and D87G in gyrA, T57S and S80R in parC, and L416F in parE were common. Amongst PMQRs, qnrS was mainly observed in S. Albany, aac(6')-Ib-cr in S. Indiana, and qnrB1 in S. Albany. Among STs, ST198 S. Kentucky was predominant, followed by ST292 S. Albany and ST17 S. Indiana. Of 26 pulsotypes, KX1KA1 was mainly identified in S. Kentucky, AX1AA1 in S. Albany, and IX1IA1 in S. Indiana. Taken together, ciprofloxacin-resistant Salmonella can pose health hazards to humans and other animals.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hee-Seung Kang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ye-Eun Heo
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Min Young Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ji-Hyun Choi
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yu-Jeong Hwang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ji-In Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yeon-Hee Lee
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Jae-Myung Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
2
|
Caro-Castro J, Quino W, Flores-León D, Guzmán F, Garcia-de-la-Guarda R, Gavilan RG. Comparative genomic analysis provides new insights into non-typhoidal Salmonella population structure in Peru. Sci Rep 2024; 14:27316. [PMID: 39516510 PMCID: PMC11549418 DOI: 10.1038/s41598-024-78331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Non-typhoidal Salmonella (NTS) is one of the leading causes of foodborne outbreaks worldwide, especially in low- and middle-income countries such as Peru. To understand the dynamics of NTS serotypes circulating in the country, the whole genomes of 1122 NTS strains from 1998 to 2018 were analyzed using phylogenomic and comparative genomics tools. A total of 40 different Sequences Type (STs) were identified, the five most frequent being ST-32 (S. Infantis, 37.25%), ST-11 (S. Enteritidis, 23.8%), ST-19 (S. Typhimurium, 14.17%), ST-31 (S. Newport, 6.77%), and ST-413 (S. Mbandaka, 4.72%). Furthermore, the maximum likelihood phylogeny showed high clonality between strains from the same ST recovered from different isolation sources, as well as a variable recombination rate, when comparing each ST individually. Moreover, several virulence factors involved in adherence and invasion, as well as plasmids and prophages, are strongly associated with the most frequent STs, while multidrug resistance markers are mostly linked to ST-32. This work provides an overview of the main genomic characteristics linked to the high-frequency ST, which have undergone few genetic modifications over time, suggesting a high adaptation of these NTS circulating clones in Peru.
Collapse
Affiliation(s)
- Junior Caro-Castro
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
- Grupo de Investigación Genómica Funcional de Microorganismos y Biorremediación, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Willi Quino
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
| | - Diana Flores-León
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Frank Guzmán
- Grupo de Investigación en Epidemiología y Diseminación de la Resistencia a Antimicrobianos-"One Health", Universidad Científica del Sur, Lima, Peru
| | - Ruth Garcia-de-la-Guarda
- Grupo de Investigación Genómica Funcional de Microorganismos y Biorremediación, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ronnie G Gavilan
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru.
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| |
Collapse
|
3
|
Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, Drigo B, Wyrsch ER, Reid CJ, Donner E, Howden BP. Genomic surveillance for antimicrobial resistance - a One Health perspective. Nat Rev Genet 2024; 25:142-157. [PMID: 37749210 DOI: 10.1038/s41576-023-00649-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.
Collapse
Affiliation(s)
- Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia.
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia.
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Torsten Seemann
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Anne E Watt
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Barbara Drigo
- UniSA STEM, University of South Australia, Adelaide, South Australia, Australia
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Cameron J Reid
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Adelaide, South Australia, Australia
| | - Benjamin P Howden
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Sherry NL, Horan KA, Ballard SA, Gonҫalves da Silva A, Gorrie CL, Schultz MB, Stevens K, Valcanis M, Sait ML, Stinear TP, Howden BP, Seemann T. An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance. Nat Commun 2023; 14:60. [PMID: 36599823 DOI: 10.1038/s41467-022-35713-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Realising the promise of genomics to revolutionise identification and surveillance of antimicrobial resistance (AMR) has been a long-standing challenge in clinical and public health microbiology. Here, we report the creation and validation of abritAMR, an ISO-certified bioinformatics platform for genomics-based bacterial AMR gene detection. The abritAMR platform utilises NCBI's AMRFinderPlus, as well as additional features that classify AMR determinants into antibiotic classes and provide customised reports. We validate abritAMR by comparing with PCR or reference genomes, representing 1500 different bacteria and 415 resistance alleles. In these analyses, abritAMR displays 99.9% accuracy, 97.9% sensitivity and 100% specificity. We also compared genomic predictions of phenotype for 864 Salmonella spp. against agar dilution results, showing 98.9% accuracy. The implementation of abritAMR in our institution has resulted in streamlined bioinformatics and reporting pathways, and has been readily updated and re-verified. The abritAMR tool and validation datasets are publicly available to assist laboratories everywhere harness the power of AMR genomics in professional practice.
Collapse
Affiliation(s)
- Norelle L Sherry
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Kristy A Horan
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Anders Gonҫalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Claire L Gorrie
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Mark B Schultz
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Michelle L Sait
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia.
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia.
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory (MDU-PHL), Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| |
Collapse
|
5
|
Saraiva MDMS, Benevides VP, da Silva NMV, Varani ADM, de Freitas Neto OC, Berchieri Â, Delgado-Suárez EJ, Rocha ADDL, Eguale T, Munyalo JA, Kariuki S, Gebreyes WA, de Oliveira CJB. Genomic and Evolutionary Analysis of Salmonella enterica Serovar Kentucky Sequence Type 198 Isolated From Livestock In East Africa. Front Cell Infect Microbiol 2022; 12:772829. [PMID: 35795189 PMCID: PMC9251186 DOI: 10.3389/fcimb.2022.772829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Since its emergence in the beginning of the 90’s, multidrug-resistant (MDR) Salmonella enterica subsp. enterica serovar Kentucky has become a significant public health problem, especially in East Africa. This study aimed to investigate the antimicrobial resistance profile and the genotypic relatedness of Salmonella Kentucky isolated from animal sources in Ethiopia and Kenya (n=19). We also investigated population evolutionary dynamics through phylogenetic and pangenome analyses with additional publicly available Salmonella Kentucky ST198 genomes (n=229). All the 19 sequenced Salmonella Kentucky isolates were identified as ST198. Among these isolates, the predominant genotypic antimicrobial resistance profile observed in ten (59.7%) isolates included the aac(3)-Id, aadA7, strA-strB, blaTEM-1B, sul1, and tet(A) genes, which mediated resistance to gentamicin, streptomycin/spectinomycin, streptomycin, ampicillin, sulfamethoxazole and tetracycline, respectively; and gyrA and parC mutations associated to ciprofloxacin resistance. Four isolates harbored plasmid types Incl1 and/or Col8282; two of them carried both plasmids. Salmonella Pathogenicity islands (SPI-1 to SPI-5) were highly conserved in the 19 sequenced Salmonella Kentucky isolates. Moreover, at least one Pathogenicity Island (SPI 1–4, SPI 9 or C63PI) was identified among the 229 public Salmonella Kentucky genomes. The phylogenetic analysis revealed that almost all Salmonella Kentucky ST198 isolates (17/19) stemmed from a single strain that has accumulated ciprofloxacin resistance-mediating mutations. A total of 8,104 different genes were identified in a heterogenic and still open Salmonella Kentucky ST198 pangenome. Considering the virulence factors and antimicrobial resistance genes detected in Salmonella Kentucky, the implications of this pathogen to public health and the epidemiological drivers for its dissemination must be investigated.
Collapse
Affiliation(s)
- Mauro de Mesquita Sousa Saraiva
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Valdinete Pereira Benevides
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | | | | | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ângelo Berchieri
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - Enrique Jesús Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Alan Douglas de Lima Rocha
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, Brazil
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Janet Agnes Munyalo
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Wondwossen Abebe Gebreyes
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, United States
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, Brazil
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, United States
- *Correspondence: Celso José Bruno de Oliveira,
| |
Collapse
|