1
|
Sawant AM, Navale VD, Vamkudoth KR. Genome sequencing and analysis of penicillin V producing Penicillium rubens strain BIONCL P45 isolated from India. Int Microbiol 2024; 27:1473-1484. [PMID: 38388812 DOI: 10.1007/s10123-024-00491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND A filamentous fungus Penicillium rubens is widely recognized for producing industrially important antibiotic, penicillin at industrial scale. OBJECTIVE To better comprehend, the genetic blueprint of the wild-type P. rubens was isolated from India to identify the genetic/biosynthetic pathways for phenoxymethylpenicillin (penicillin V, PenV) and other secondary metabolites. METHOD Genomic DNA (gDNA) was isolated, and library was prepared as per Illumina platform. Whole genome sequencing (WGS) was performed according to Illumina NovoSeq platform. Further, SOAPdenovo was used to assemble the short reads validated by Bowtie-2 and SAMtools packages. Glimmer and GeneMark were used to dig out total genes in genome. Functional annotation of predicted proteins was performed by NCBI non-redundant (NR), UniProt, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases. Moreover, secretome analysis was performed by SignalP 4.1 and TargetP v1.1 and carbohydrate-active enzymes (CAZymes) and protease families by CAZy database. Comparative genome analysis was performed by Mauve 2.4.0. software to find genomic correlation between P. rubens BIONCL P45 and Penicillium chrysogenum Wisconsin 54-1255; also phylogeny was prepared with known penicillin producing strains by ParSNP tool. RESULTS Penicillium rubens BIONCL P45 strain was isolated from India and is producing excess PenV. The 31.09 Mb genome was assembled with 95.6% coverage of the reference genome P. chrysogenum Wis 54-1255 with 10687 protein coding genes, 3502 genes had homologs in NR, UniProt, KEGG, and GO databases. Additionally, 358 CAZymes and 911 transporter coding genes were found in genome. Genome contains complete pathways for penicillin, homogentisate pathway of phenyl acetic acid (PAA) catabolism, Andrastin A, Sorbicillin, Roquefortine C, and Meleagrin. Comparative genome analysis of BIONCL P45 and Wis 54-1255 revealed 99.89% coverage with 2952 common KEGG orthologous protein-coding genes. Phylogenetic analysis revealed that BIONCL P45 was clustered with Fleming's original isolate P. rubens IMI 15378. CONCLUSION This genome can be a helpful resource for further research in developing fermentation processes and strain engineering approaches for high titer penicillin production.
Collapse
Affiliation(s)
- Amol M Sawant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishwambar D Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Lee H, Lee DG, Jo H, Heo YM, Baek C, Kim HB, Park G, Kang S, Lee W, Mun S, Han K. Comparative whole genome analysis of face-derived Streptococcus infantis CX-4 unravels the functions related to skin barrier. Genes Genomics 2024; 46:499-510. [PMID: 38453815 DOI: 10.1007/s13258-024-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/21/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The skin microbiome is essential in guarding against harmful pathogens and responding to environmental changes by generating substances useful in the cosmetic and pharmaceutical industries. Among these microorganisms, Streptococcus is a bacterial species identified in various isolation sources. In 2021, a strain of Streptococcus infantis, CX-4, was identified from facial skin and found to be linked to skin structure and elasticity. As the skin-derived strain differs from other S. infantis strains, which are usually of oral origin, it emphasizes the significance of bacterial variation by the environment. OBJECTIVE This study aims to explore the unique characteristics of the CX-4 compared to seven oral-derived Streptococcus strains based on the Whole-Genome Sequencing data, focusing on its potential role in skin health and its possible application in cosmetic strategies. METHODS The genome of the CX-4 strain was constructed using PacBio Sequencing, with the assembly performed using the SMRT protocol. Comparative whole-genome analysis was then performed with seven closely related strains, utilizing web-based tools like PATRIC, OrthoVenn3, and EggNOG-mapper, for various analyses, including protein association analysis using STRING. RESULTS Our analysis unveiled a substantial number of Clusters of Orthologous Groups in diverse functional categories in CX-4, among which sphingosine kinase (SphK) emerged as a unique product, exclusively present in the CX-4 strain. SphK is a critical enzyme in the sphingolipid metabolic pathway, generating sphingosine-1-phosphate. The study also brought potential associations with isoprene formation and retinoic acid synthesis, the latter being a metabolite of vitamin A, renowned for its crucial function in promoting skin cell growth, differentiation, and maintaining of skin barrier integrity. These findings collectively suggest the potential of the CX-4 strain in enhancing of skin barrier functionality. CONCLUSION Our research underscores the potential of the skin-derived S. infantis CX-4 strain by revealing unique bacterial compounds and their potential roles on human skin.
Collapse
Affiliation(s)
- Haeun Lee
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Dong-Geol Lee
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - HyungWoo Jo
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Young Mok Heo
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Chaeyun Baek
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Hye-Been Kim
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Geunhwa Park
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Seunghyun Kang
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam, 13486, Republic of Korea
| | - Wooseok Lee
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Cosmedical and Materials, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
3
|
Wang Z, Li Y, Gao X, Xing J, Wang R, Zhu D, Shen G. Comparative genomic analysis of Halomonas campaniensis wild-type and ultraviolet radiation-mutated strains reveal genomic differences associated with increased ectoine production. Int Microbiol 2023; 26:1009-1020. [PMID: 37067733 PMCID: PMC10622362 DOI: 10.1007/s10123-023-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Ectoine is a natural amino acid derivative and one of the most widely used compatible solutes produced by Halomonas species that affects both cellular growth and osmotic equilibrium. The positive effects of UV mutagenesis on both biomass and ectoine content production in ectoine-producing strains have yet to be reported. In this study, the wild-type H. campaniensis strain XH26 (CCTCCM2019776) was subjected to UV mutagenesis to increase ectoine production. Eight rounds of mutagenesis were used to generate mutated XH26 strains with different UV-irradiation exposure times. Ectoine extract concentrations were then evaluated among all strains using high-performance liquid chromatography analysis, alongside whole genome sequencing with the PacBio RS II platform and comparison of the wild-type strain XH26 and the mutant strain G8-52 genomes. The mutant strain G8-52 (CCTCCM2019777) exhibited the highest cell growth rate and ectoine yields among mutated strains in comparison with strain XH26. Further, ectoine levels in the aforementioned strain significantly increased to 1.51 ± 0.01 g L-1 (0.65 g g-1 of cell dry weight), representing a twofold increase compared to wild-type cells (0.51 ± 0.01 g L-1) when grown in culture medium for ectoine accumulation. Concomitantly, electron microscopy revealed that mutated strain G8-52 cells were obviously shorter than wild-type strain XH26 cells. Moreover, strain G8-52 produced a relatively stable ectoine yield (1.50 g L-1) after 40 days of continuous subculture. Comparative genomics analysis suggested that strain XH26 harbored 24 mutations, including 10 nucleotide insertions, 10 nucleotide deletions, and unique single nucleotide polymorphisms. Notably, the genes orf00723 and orf02403 (lipA) of the wild-type strain mutated to davT and gabD in strain G8-52 that encoded for 4-aminobutyrate-2-oxoglutarate transaminase and NAD-dependent succinate-semialdehyde dehydrogenase, respectively. Consequently, these genes may be involved in increased ectoine yields. These results suggest that continuous multiple rounds of UV mutation represent a successful strategy for increasing ectoine production, and that the mutant strain G8-52 is suitable for large-scale fermentation applications.
Collapse
Affiliation(s)
- Zhibo Wang
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Yongzhen Li
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Xiang Gao
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Jiangwa Xing
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Rong Wang
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Derui Zhu
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China
| | - Guoping Shen
- Research Center of Basic Medical Science, Medical College of Qinghai University, Xining, 810016, China.
| |
Collapse
|