1
|
Roodsant TJ, van der Putten B, Brizuela J, Coolen JPM, Baltussen TJH, Schipper K, Pannekoek Y, van der Ark KCH, Schultsz C. The streptococcal phase-variable type I restriction modification system SsuCC20p dictates the methylome of Streptococcus suis impacting the transcriptome and virulence in a zebrafish larvae infection model. mBio 2024; 15:e0225923. [PMID: 38063379 PMCID: PMC10790761 DOI: 10.1128/mbio.02259-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Phase variation allows a single strain to produce phenotypic diverse subpopulations. Phase-variable restriction modification (RM) systems are systems that allow for such phase variation via epigenetic regulation of gene expression levels. The phase-variable RM system SsuCC20p was found in multiple streptococcal species and was acquired by an emerging zoonotic lineage of Streptococcus suis. We show that the phase variability of SsuCC20p is dependent on a recombinase encoded within the SsuCC20p locus. We characterized the genome methylation profiles of the different phases of SsuCC20p and demonstrated the consequential impact on the transcriptome and virulence in a zebrafish infection model. Acquiring mobile genetic elements containing epigenetic regulatory systems, like phase-variable RM systems, enables bacterial pathogens to produce diverse phenotypic subpopulations that are better adapted to specific (host) environments encountered during infection.
Collapse
Affiliation(s)
- Thomas J. Roodsant
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Boas van der Putten
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jaime Brizuela
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Tim J. H. Baltussen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Kim Schipper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kees C. H. van der Ark
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Constance Schultsz
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|