1
|
Kompaniiets D, He L, Wang D, Zhou W, Yang Y, Hu Y, Liu B. Structural basis for transcription activation by the nitrate-responsive regulator NarL. Nucleic Acids Res 2024; 52:1471-1482. [PMID: 38197271 PMCID: PMC10853779 DOI: 10.1093/nar/gkad1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription activation is a crucial step of regulation during transcription initiation and a classic check point in response to different stimuli and stress factors. The Escherichia coli NarL is a nitrate-responsive global transcription factor that controls the expression of nearly 100 genes. However, the molecular mechanism of NarL-mediated transcription activation is not well defined. Here we present a cryo-EM structure of NarL-dependent transcription activation complex (TAC) assembled on the yeaR promoter at 3.2 Å resolution. Our structure shows that the NarL dimer binds at the -43.5 site of the promoter DNA with its C-terminal domain (CTD) not only binding to the DNA but also making interactions with RNA polymerase subunit alpha CTD (αCTD). The key role of these NarL-mediated interactions in transcription activation was further confirmed by in vivo and in vitro transcription assays. Additionally, the NarL dimer binds DNA in a different plane from that observed in the structure of class II TACs. Unlike the canonical class II activation mechanism, NarL does not interact with σ4, while RNAP αCTD is bound to DNA on the opposite side of NarL. Our findings provide a structural basis for detailed mechanistic understanding of NarL-dependent transcription activation on yeaR promoter and reveal a potentially novel mechanism of transcription activation.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lina He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei JiangXia Laboratory, Wuhan 430071, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
2
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
3
|
Ruanto P, Chismon DL, Hothersall J, Godfrey RE, Lee DJ, Busby SJW, Browning DF. Activation by NarL at the Escherichia coli ogt promoter. Biochem J 2020; 477:2807-2820. [PMID: 32662815 PMCID: PMC7419079 DOI: 10.1042/bcj20200408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
The Escherichia coli NarX/NarL two-component response-regulator system regulates gene expression in response to nitrate ions and the NarL protein is a global transcription factor, which activates transcript initiation at many target promoters. One such target, the E. coli ogt promoter, which controls the expression of an O6-alkylguanine-DNA-alkyltransferase, is dependent on NarL binding to two DNA targets centred at positions -44.5 and -77.5 upstream from the transcript start. Here, we describe ogt promoter derivatives that can be activated solely by NarL binding either at position -44.5 or position -77.5. We show that NarL can also activate the ogt promoter when located at position -67.5. We present data to argue that NarL-dependent activation of transcript initiation at the ogt promoter results from a direct interaction between NarL and a determinant in the C-terminal domain of the RNA polymerase α subunit. Footprinting experiments show that, at the -44.5 promoter, NarL and the C-terminal domain of the RNA polymerase α subunit bind to opposite faces of promoter DNA, suggesting an unusual mechanism of transcription activation. Our work suggests new organisations for activator-dependent transcription at promoters and future applications for biotechnology.
Collapse
Affiliation(s)
- Patcharawarin Ruanto
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - David L Chismon
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Joanne Hothersall
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Rita E Godfrey
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - David J Lee
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham B15 3TN, U.K
| | - Stephen J W Busby
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Douglas F Browning
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
4
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
5
|
Lowry RC, Milner DS, Al-Bayati AMS, Lambert C, Francis VI, Porter SL, Sockett RE. Evolutionary diversification of the RomR protein of the invasive deltaproteobacterium, Bdellovibrio bacteriovorus. Sci Rep 2019; 9:5007. [PMID: 30899045 PMCID: PMC6428892 DOI: 10.1038/s41598-019-41263-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 01/19/2023] Open
Abstract
Bdellovibrio bacteriovorus is a predatory deltaproteobacterium that encounters individual Gram-negative prey bacteria with gliding or swimming motility, and then is able to invade such prey cells via type IVa pilus-dependent mechanisms. Movement control (pili or gliding) in other deltaproteobacteria, such as the pack hunting Myxococcus xanthus, uses a response regulator protein, RomRMx (which dynamically relocalises between the cell poles) and a GTPase, MglAMx, previously postulated as an interface between the FrzMx chemosensory system and gliding or pilus-motility apparatus, to produce regulated bidirectional motility. In contrast, B. bacteriovorus predation is a more singular encounter between a lone predator and prey; contact is always via the piliated, non-flagellar pole of the predator, involving MglABd, but no Frz system. In this new study, tracking fluorescent RomRBd microscopically during predatory growth shows that it does not dynamically relocalise, in contrast to the M. xanthus protein; instead having possible roles in growth events. Furthermore, transcriptional start analysis, site-directed mutagenesis and bacterial two-hybrid interaction studies, indicate an evolutionary loss of RomRBd activation (via receiver domain phosphorylation) in this lone hunting bacterium, demonstrating divergence from its bipolar role in motility in pack-hunting M. xanthus and further evolution that may differentiate lone from pack predators.
Collapse
Affiliation(s)
- Rebecca C Lowry
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - David S Milner
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.,Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Asmaa M S Al-Bayati
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.,Northern Technical University, Mosul, Iraq
| | - Carey Lambert
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| | - R E Sockett
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.
| |
Collapse
|
6
|
Blain-Hartung M, Rockwell NC, Moreno MV, Martin SS, Gan F, Bryant DA, Lagarias JC. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. J Biol Chem 2018; 293:8473-8483. [PMID: 29632072 DOI: 10.1074/jbc.ra118.002258] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C Rockwell
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Marcus V Moreno
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Shelley S Martin
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Fei Gan
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Donald A Bryant
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and.,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - J Clark Lagarias
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616,
| |
Collapse
|
7
|
Bhagirath AY, Pydi SP, Li Y, Lin C, Kong W, Chelikani P, Duan K. Characterization of the Direct Interaction between Hybrid Sensor Kinases PA1611 and RetS That Controls Biofilm Formation and the Type III Secretion System in Pseudomonas aeruginosa. ACS Infect Dis 2017; 3:162-175. [PMID: 27957853 DOI: 10.1021/acsinfecdis.6b00153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the leading causes of morbidity and mortality in cystic fibrosis (CF) patients is pulmonary infection with Pseudomonas aeruginosa, and the pathophysiology of pulmonary infection in CF is affected by the lifestyle of this micro-organism. RetS-GacS/A-RsmA is a key regulatory pathway in P. aeruginosa that determines the bacterium's lifestyle choice. Previously, we identified PA1611, a hybrid sensor kinase, as a new player in this pathway that interacts with RetS and influences biofilm formation and type III secretion system. In this study, we explored the structural and mechanistic basis of the interaction between PA1611 and RetS. We identified the amino acid residues critical for PA1611-RetS interactions by molecular modeling. These residues were then targeted for site-directed mutagenesis. Amino acid substitutions were carried out at seven key positions in PA1611 and at six corresponding key positions in RetS. The influence of such substitutions in PA1611 on the interaction was analyzed by bacterial two-hybrid assays. We carried out functional analysis of these mutants in P. aeruginosa for their effect on specific phenotypes. Two residues, F269 and E276, located within the histidine kinase A and histidine kinase-like ATPase domains of PA1611 were found to play crucial roles in the PA1611-RetS interaction and had profound effects on phenotypes. Corresponding mutations in RetS demonstrated similar results. We further confirmed that these mutations in PA1611 function through the GacS/GacA-RsmY/Z signaling pathway. Collectively, our findings provide a noncognate sensor kinase direct interaction model for a signaling pathway, key for lifestyle selection in P. aeruginosa, and targeting such interaction may serve as a novel way of controlling infections with P. aeruginosa.
Collapse
Affiliation(s)
- Anjali Y. Bhagirath
- Department of Oral
Biology and Manitoba Chemosensory Biology Research Group, College
of Dentistry, Rady Faculty of Health Sciences, 780 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0W2, Canada
- Biology of Breathing
Group, Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada
| | - Sai P. Pydi
- Department of Oral
Biology and Manitoba Chemosensory Biology Research Group, College
of Dentistry, Rady Faculty of Health Sciences, 780 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0W2, Canada
| | - Yanqi Li
- Department of Oral
Biology and Manitoba Chemosensory Biology Research Group, College
of Dentistry, Rady Faculty of Health Sciences, 780 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0W2, Canada
- Biology of Breathing
Group, Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada
| | - Chen Lin
- Department of Oral
Biology and Manitoba Chemosensory Biology Research Group, College
of Dentistry, Rady Faculty of Health Sciences, 780 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0W2, Canada
| | - Weina Kong
- Department of Oral
Biology and Manitoba Chemosensory Biology Research Group, College
of Dentistry, Rady Faculty of Health Sciences, 780 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0W2, Canada
| | - Prashen Chelikani
- Department of Oral
Biology and Manitoba Chemosensory Biology Research Group, College
of Dentistry, Rady Faculty of Health Sciences, 780 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0W2, Canada
- Biology of Breathing
Group, Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada
| | - Kangmin Duan
- Department of Oral
Biology and Manitoba Chemosensory Biology Research Group, College
of Dentistry, Rady Faculty of Health Sciences, 780 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0W2, Canada
- Department of Medical
Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
- Biology of Breathing
Group, Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
8
|
Agrawal R, Sahoo BK, Saini DK. Cross-talk and specificity in two-component signal transduction pathways. Future Microbiol 2016; 11:685-97. [PMID: 27159035 DOI: 10.2217/fmb-2016-0001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Bikash Kumar Sahoo
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Black WP, Wang L, Davis MY, Yang Z. The orphan response regulator EpsW is a substrate of the DifE kinase and it regulates exopolysaccharide in Myxococcus xanthus. Sci Rep 2015; 5:17831. [PMID: 26639551 PMCID: PMC4671073 DOI: 10.1038/srep17831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022] Open
Abstract
Here we attempted to identify the downstream target of the DifE histidine kinase in the regulation of exopolysaccharide (EPS) production in the Gram-negative bacterium Myxococcus xanthus. This bacterium is an important model system for the studies of Type IV pilus (T4P) because it is motile by social (S) motility which is powered by T4P retraction. EPS is critical for S motility because it is the preferred anchor for T4P retraction in this bacterium. Previous studies identified the Dif chemosensory pathway as crucial for the regulation of EPS production. However, the downstream target of the DifE kinase in this pathway was unknown. In this study, EpsW, an orphan and single-domain response regulator (RR), was identified as a potential DifE target first by bioinformatics. Subsequent experiments demonstrated that epsW is essential for EPS biosynthesis in vivo and that EpsW is directly phosphorylated by DifE in vitro. Targted mutagenesis of epsW suggests that EpsW is unlikely the terminal RR of the Dif pathway. We propose instead that EpsW is an intermediary in a multistep phosphorelay that regulates EPS in M. xanthus.
Collapse
Affiliation(s)
- Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lingling Wang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Manli Y Davis
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Cross Talk Inhibition Nullified by a Receiver Domain Missense Substitution. J Bacteriol 2015; 197:3294-306. [PMID: 26260457 DOI: 10.1128/jb.00436-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In two-component signal transduction, a sensor protein transmitter module controls cognate receiver domain phosphorylation. Most receiver domain sequences contain a small residue (Gly or Ala) at position T + 1 just distal to the essential Thr or Ser residue that forms part of the active site. However, some members of the NarL receiver subfamily have a large hydrophobic residue at position T + 1. Our laboratory previously isolated a NarL mutant in which the T + 1 residue Val-88 was replaced with an orthodox small Ala. This NarL V88A mutant confers a striking phenotype in which high-level target operon expression is both signal (nitrate) and sensor (NarX and NarQ) independent. This suggests that the NarL V88A protein is phosphorylated by cross talk from noncognate sources. Although cross talk was enhanced in ackA null strains that accumulate acetyl phosphate, it persisted in pta ackA double null strains that cannot synthesize this compound and was observed also in narL(+) strains. This indicates that acetate metabolism has complex roles in mediating NarL cross talk. Contrariwise, cross talk was sharply diminished in an arcB barA double null strain, suggesting that the encoded sensors contribute substantially to NarL V88A cross talk. Separately, the V88A substitution altered the in vitro rates of NarL autodephosphorylation and transmitter-stimulated dephosphorylation and decreased affinity for the cognate sensor, NarX. Together, these experiments show that the residue at position T + 1 can strongly influence two distinct aspects of receiver domain function, the autodephosphorylation rate and cross talk inhibition. IMPORTANCE Many bacterial species contain a dozen or more discrete sensor-response regulator two-component systems that convert a specific input into a distinct output pattern. Cross talk, the unwanted transfer of signals between circuits, occurs when a response regulator is phosphorylated inappropriately from a noncognate source. Cross talk is inhibited in part by the high interaction specificity between cognate sensor-response regulator pairs. This study shows that a relatively subtle missense change from Val to Ala nullifies cross talk inhibition, enabling at least two noncognate sensors to enforce an inappropriate output independently of the relevant input.
Collapse
|