1
|
Xu XJ, Cui R, Liu YY, Liu WR, Wang ZL, Li CM, Ju YX. Regulation of alkyl hydroperoxidase D by AhpdR in the antioxidant enzyme system of Pseudomonas aeruginosa. Biochem Biophys Res Commun 2025; 763:151797. [PMID: 40222331 DOI: 10.1016/j.bbrc.2025.151797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
An overabundance of reactive oxygen species (ROS) can disrupt the initial redox equilibrium within cells, resulting in metabolic issues, cellular harm, and potentially death. Pseudomonas aeruginosa is a widespread gram-negative environmental pathogen that causes serious infectious diseases in humans. P. aeruginosa has developed various antioxidant defense systems. In this study, we analyzed the transcription factor AhpdR, encoded by PA0268, which regulates the alkyl hydroperoxide D (AhpD, encoded by PA0269) and is involved in the antioxidant enzyme system of P. aeruginosa. Our experimental results demonstrated that the deletion of PA0268 significantly increase the mRNA transcription levels of various genes of the operon ahpD-PA0270-PA0271 in P. aeruginosa. Moreover, the absence of PA0268 increased AhpD protein expression. Sensitivity assays showed that AhpD was likely to play a role in resisting hydrogen peroxide at low concentrations of hydrogen peroxide, whereas P. aeruginosa seemed to use other more efficient antioxidant strategies to resist higher concentrations of hydrogen peroxide. These findings indicate that P. aeruginosa possesses the transcription factor PA0268, which is involved in alkyl hydroperoxide reductase systems and two-tiered defense pathways against hydrogen peroxide, involving AhpD and KatA. Furthermore, ahpD and PA0270-PA0271 genes may play novel roles in cellular activities against ROS.
Collapse
Affiliation(s)
- Xue-Jie Xu
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China.
| | - Rui Cui
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Yuan-Yuan Liu
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Wei-Rong Liu
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Zan-Li Wang
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Chao-Meng Li
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Ye-Xuan Ju
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| |
Collapse
|
2
|
Si M, Hu M, Yang M, Peng Z, Li D, Zhao Y. Characterization of oxidative stress-induced cgahp, a gene coding for alkyl hydroperoxide reductase, from industrial importance Corynebacterium glutamicum. Biotechnol Lett 2023; 45:1309-1326. [PMID: 37606753 PMCID: PMC10460364 DOI: 10.1007/s10529-023-03421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Alkyl hydroperoxide reductase (Ahp), comprised of four different subunits AhpC, AhpD, AhpE, and AhpF, is a thiol-based antioxidative enzyme with the ability to protect bacteria against oxidative stress. Functionally, AhpC and AhpE considered as peroxidases directly detoxify peroxides, while AhpD and AhpF as oxidoreductases restore oxidized peroxidases to their reduced form. Corynebacterium glutamicum ncgl0877 encodes a putative Ahp with a unique Cys-Pro-Phe-Cys (C-P-G-C) active-site motif, similar with those of the thiol-disulfide oxidoreductases such as thioredoxin (Trx), mycoredoxin-1 (Mrx1) and AhpD. However, its physiological and biochemical functions remain unknown in C. glutamicum. Here, we report that NCgl0877, designated CgAhp, is involved in the protection against organic peroxide (OP) stress. The cgahp-deleted strain is notably more sensitive to OP stress. The cgahp expression is controlled by a MarR-type transcriptional repressor OasR (organic peroxide- and antibiotic-sensing regulator). The physiological role of CgAhp in resistance to OP stresses is corroborated by its induced expression under stresses. Although CgAhp has a weak peroxidase activity toward OP, it mainly supports the OP-scavenging activity of the thiol-dependent peroxidase preferentially linked to the dihydrolipoamide dehydrogenase (Lpd)/dihydrolipoamide succinyltransferase (SucB)/NADH system. The C-P-G-C motif of CgAhp is essential to maintain the reductase activity. In conclusion, our study identifies CgAhp, behaving like AhpD, as a key disulfide oxidoreductase involved in the oxidative stress tolerance and the functional electron donor for peroxidase.
Collapse
Affiliation(s)
- Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Mengdie Hu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Mingfei Yang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Zhaoxin Peng
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Donghan Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Yuying Zhao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China.
| |
Collapse
|
3
|
Gasser M, Keller J, Fournier P, Pujic P, Normand P, Boubakri H. Identification and evolution of nsLTPs in the root nodule nitrogen fixation clade and molecular response of Frankia to AgLTP24. Sci Rep 2023; 13:16020. [PMID: 37749152 PMCID: PMC10520049 DOI: 10.1038/s41598-023-41117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are antimicrobial peptides, involved in several plant biological processes including root nodule nitrogen fixation (RNF). Nodulating plants belonging to the RNF clade establish symbiosis with the nitrogen-fixing bacteria rhizobia (legumes symbiosis model) and Frankia (actinorhizal symbiosis model) leading to root nodule formation. nsLTPs are involved in processes active in early step of symbiosis and functional nodule in both models. In legumes, nsLTPs have been shown to regulate symbiont entry, promote root cortex infection, membrane biosynthesis, and improve symbiosis efficiency. More recently, a nsLTP, AgLTP24 has been described in the context of actinorhizal symbiosis between Alnus glutinosa and Frankia alni ACN14a. AgLTP24 is secreted at an early step of symbiosis on the deformed root hairs and targets the symbiont in the nitrogen-fixing vesicles in functional nodules. nsLTPs are involved in RNF, but their functions and evolutionary history are still largely unknown. Numerous putative nsLTPs were found up-regulated in functional nodules compared to non-infected roots in different lineages within the RNF clade. Here, results highlight that nodulating plants that are co-evolving with their nitrogen-fixing symbionts appear to have independently specialized nsLTPs for this interaction, suggesting a possible convergence of function, which opens perspectives to investigate nsLTPs functions in RNF.
Collapse
Affiliation(s)
- Mélanie Gasser
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pascale Fournier
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Petar Pujic
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Philippe Normand
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Hasna Boubakri
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France.
| |
Collapse
|
4
|
Zong G, Cao G, Fu J, Zhang P, Chen X, Yan W, Xin L, Wang Z, Xu Y, Zhang R. Novel mechanism of hydrogen peroxide for promoting efficient natamycin synthesis in Streptomyces. Microbiol Spectr 2023; 11:e0087923. [PMID: 37695060 PMCID: PMC10580950 DOI: 10.1128/spectrum.00879-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/21/2023] [Indexed: 09/12/2023] Open
Abstract
The mechanism of regulation of natamycin biosynthesis by Streptomyces in response to oxidative stress is unclear. Here, we first show cholesterol oxidase SgnE, which catalyzes the formation of H2O2 from sterols, triggered a series of redox-dependent interactions to stimulate natamycin production in S. gilvosporeus. In response to reactive oxygen species, residues Cys212 and Cys221 of the H2O2-sensing consensus sequence of OxyR were oxidized, resulting in conformational changes in the protein: OxyR extended its DNA-binding domain to interact with four motifs of promoter p sgnM . This acted as a redox-dependent switch to turn on/off gene transcription of sgnM, which encodes a cluster-situated regulator, by controlling the affinity between OxyR and p sgnM , thus regulating the expression of 12 genes in the natamycin biosynthesis gene cluster. OxyR cooperates with SgnR, another cluster-situated regulator and an upstream regulatory factor of SgnM, synergistically modulated natamycin biosynthesis by masking/unmasking the -35 region of p sgnM depending on the redox state of OxyR in response to the intracellular H2O2 concentration. IMPORTANCE Cholesterol oxidase SgnE is an indispensable factor, with an unclear mechanism, for natamycin biosynthesis in Streptomyces. Oxidative stress has been attributed to the natamycin biosynthesis. Here, we show that SgnE catalyzes the formation of H2O2 from sterols and triggers a series of redox-dependent interactions to stimulate natamycin production in S. gilvosporeus. OxyR, which cooperates with SgnR, acted as a redox-dependent switch to turn on/off gene transcription of sgnM, which encodes a cluster-situated regulator, by masking/unmasking its -35 region, to control the natamycin biosynthesis gene cluster. This work provides a novel perspective on the crosstalk between intracellular ROS homeostasis and natamycin biosynthesis. Application of these findings will improve antibiotic yields via control of the intracellular redox pressure in Streptomyces.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Xi Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Wenxiu Yan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Lulu Xin
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Zhongxue Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Zhang Y, Pan L, Zhang Y, Wang K, Wang L, Zhang H, Zhang J, Chen X. Understanding the Streptomyces albulus response to low-pH stress at the interface of physiology and transcriptomics. Appl Microbiol Biotechnol 2023; 107:2611-2626. [PMID: 36882645 DOI: 10.1007/s00253-023-12449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Streptomyces albulus is a well-established cell factory for ε-poly-L-lysine (ε-PL) production. It has been reported that ε-PL biosynthesis is strictly regulated by pH and that ε-PL can accumulate at approximately pH 4.0, which is outside of the general pH range for natural product production by Streptomyces species. However, how S. albulus responds to low pH is not clear. In this study, we attempted to explore the response of S. albulus to low-pH stress at the physiological and global gene transcription levels. At the physiological level, S. albulus maintained intracellular pH homeostasis at ~pH 7.5, increased the unsaturated fatty acid ratio, extended the fatty acid chain length, enhanced ATP accumulation, increased H+-ATPase activity, and accumulated the basic amino acids L-lysine and L-arginine. At the global gene transcription level, carbohydrate metabolism, oxidative phosphorylation, macromolecule protection and repair, and the acid tolerance system were found to be involved in combating low-pH stress. Finally, we preliminarily evaluated the effect of the acid tolerance system and cell membrane fatty acid synthesis on low-pH tolerance via gene manipulation. This work provides new insight into the adaptation mechanism of Streptomyces to low-pH stress and a new opportunity for constructing robust S. albulus strains for ε-PL production. KEY POINTS: • S. albulus consistently remained pH i at ~7.4 regardless of the environmental pH. • S. albulus combats low-pH stress by modulating lipid composition of cell membrane. • Overexpression of cfa in S. albulus could improve low-pH tolerance and ɛ-PL titer.
Collapse
Affiliation(s)
- Yulin Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Long Pan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yue Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Kaifang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Liang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Hongjian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Jianhua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China.
| |
Collapse
|
6
|
M S, N RP, Rajendrasozhan S. Bacterial redox response factors in the management of environmental oxidative stress. World J Microbiol Biotechnol 2022; 39:11. [PMID: 36369499 DOI: 10.1007/s11274-022-03456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bacteria evolved to survive in the available environmental chemosphere via several cellular mechanisms. A rich pool of antioxidants and stress regulators plays a significant role in the survival of bacteria in unfavorable environmental conditions. Most of the microbes exhibit resistant phenomena in toxic environment niches. Naturally, bacteria possess efficient thioredoxin reductase, glutaredoxin, and peroxiredoxin redox systems to handle environmental oxidative stress. Further, an array of transcriptional regulators senses the oxidative stress conditions. Transcription regulators, such as OxyR, SoxRS, PerR, UspA, SsrB, MarA, OhrR, SarZ, etc., sense and transduce bacterial oxidative stress responses. The redox-sensitive transcription regulators continuously recycle the utilized antioxidant enzymes during oxidative stress. These regulators promote the expression of antioxidant enzymes such as superoxide dismutase, catalase, and peroxides that overcome oxidative insults. Therefore, the transcriptional regulations maintain steady-state activities of antioxidant enzymes representing the resistance against host cell/environmental oxidative insults. Further, the redox system provides reducing equivalents to synthesize biomolecules, thereby contributing to cellular repair mechanisms. The inactive transcriptional regulators in the undisturbed cells are activated by oxidative stress. The oxidized transcriptional regulators modulate the expression of antioxidant and cellular repair enzymes to survive in extreme environmental conditions. Therefore, targeting these antioxidant systems and response regulators could alter cellular redox homeostasis. This review presents the mechanisms of different redox systems that favor bacterial survival in extreme environmental oxidative stress conditions.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India.
| | | |
Collapse
|
7
|
Wang B, Li K, Wu G, Xu Z, Hou R, Guo B, Zhao Y, Liu F. Sulforaphane, a secondary metabolite in crucifers, inhibits the oxidative stress adaptation and virulence of Xanthomonas by directly targeting OxyR. MOLECULAR PLANT PATHOLOGY 2022; 23:1508-1523. [PMID: 35942507 PMCID: PMC9452769 DOI: 10.1111/mpp.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Plant secondary metabolites perform numerous functions in the interactions between plants and pathogens. However, little is known about the precise mechanisms underlying their contribution to the direct inhibition of pathogen growth and virulence in planta. Here, we show that the secondary metabolite sulforaphane (SFN) in crucifers inhibits the growth, virulence, and ability of Xanthomonas species to adapt to oxidative stress, which is essential for the successful infection of host plants by phytopathogens. The transcription of oxidative stress detoxification-related genes (catalase [katA and katG] and alkylhydroperoxide-NADPH oxidoreductase subunit C [ahpC]) was substantially inhibited by SFN in Xanthomonas campestris pv. campestris (Xcc), and this phenomenon was most obvious in sax gene mutants sensitive to SFN. By performing microscale thermophoresis (MST) and electrophoretic mobility shift assay (EMSA), we observed that SFN directly bound to the virulence-related redox-sensing transcription factor OxyR and weakened the ability of OxyR to bind to the promoters of oxidative stress detoxification-related genes. Collectively, these results illustrate that SFN directly targets OxyR to inhibit the bacterial adaptation to oxidative stress, thereby decreasing bacterial virulence. Interestingly, this phenomenon occurs in multiple Xanthomonas species. This study provides novel insights into the molecular mechanisms by which SFN limits Xanthomonas adaptation to oxidative stress and virulence, and the findings will facilitate future studies on the use of SFN as a biopesticide to control Xanthomonas.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Kaihuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| |
Collapse
|
8
|
Gupta A, Imlay JA. Escherichia coli induces DNA repair enzymes to protect itself from low-grade hydrogen peroxide stress. Mol Microbiol 2022; 117:754-769. [PMID: 34942039 PMCID: PMC9018492 DOI: 10.1111/mmi.14870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Escherichia coli responds to hydrogen peroxide (H2 O2 ) by inducing defenses that protect H2 O2 -sensitive enzymes. DNA is believed to be another important target of oxidation, and E. coli contains enzymes that can repair oxidative lesions in vitro. However, those enzymes are not known to be induced by H2 O2 , and experiments have indicated that they are not necessary for the cell to withstand natural (low-micromolar) concentrations. In this study, we used H2 O2 -scavenging mutants to impose controlled doses of H2 O2 for extended time. Transcriptomic analysis revealed that in the presence of 1 µM cytoplasmic H2 O2 , the OxyR transcription factor-induced xthA, encoding exonuclease III. The xthA mutants survived a conventional 15-min exposure to even 100 times this level of H2 O2 . However, when these mutants were exposed to 1 µM H2 O2 for hours, they accumulated DNA lesions, failed to propagate, and eventually died. Although endonuclease III (nth) was not induced, nth mutants struggled to grow. Low-grade H2 O2 stress also activated the SOS regulon, and when this induction was blocked, cell replication stopped. Collectively, these data indicate that physiological levels of H2 O2 are a real threat to DNA, and the engagement of the base-excision-repair and SOS systems is necessary to enable propagation during protracted stress.
Collapse
Affiliation(s)
- Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
9
|
Tang JW, Liu X, Ye W, Li ZR, Qian PY. Biosynthesis and bioactivities of microbial genotoxin colibactins. Nat Prod Rep 2022; 39:991-1014. [PMID: 35288725 DOI: 10.1039/d1np00050k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to 2021Colibactin(s), a group of secondary metabolites produced by the pks island (clb cluster) of Escherichia coli, shows genotoxicity relevant to colorectal cancer and thus significantly affects human health. Over the last 15 years, substantial efforts have been exerted to reveal the molecular structure of colibactin, but progress is slow owing to its instability, low titer, and elusive and complex biosynthesis logic. Fortunately, benefiting from the discovery of the prodrug mechanism, over 40 precursors of colibactin have been reported. Some key biosynthesis genes located on the pks island have also been characterised. Using an integrated bioinformatics, metabolomics, and chemical synthesis approach, researchers have recently characterised the structure and possible biosynthesis processes of colibactin, thereby providing new insights into the unique biosynthesis logic and the underlying mechanism of the biological activity of colibactin. Early developments in the study of colibactin have been summarised in several previous reviews covering various study periods, whereas the two most recent reviews have focused primarily on the chemical synthesis of colibactin. The present review aims to provide an update on the biosynthesis and bioactivities of colibactin.
Collapse
Affiliation(s)
- Jian-Wei Tang
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Xin Liu
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Wei Ye
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhong-Rui Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
10
|
Lv M, Chen Y, Hu M, Yu Q, Duan C, Ye S, Ling J, Zhou J, Zhou X, Zhang L. OhrR is a central transcriptional regulator of virulence in Dickeya zeae. MOLECULAR PLANT PATHOLOGY 2022; 23:45-59. [PMID: 34693617 PMCID: PMC8659590 DOI: 10.1111/mpp.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/12/2023]
Abstract
Dickeya zeae is the causal agent of rice foot rot disease. The pathogen is known to rely on a range of virulence factors, including phytotoxin zeamines, extracellular enzymes, cell motility, and biofilm, which collectively contribute to the establishment of infections. Phytotoxin zeamines play a critical role in bacterial virulence; signalling pathways and regulatory mechanisms that govern bacterial virulence remain unclear. In this study, we identified a transcriptional regulator OhrR (organic hydroperoxide reductase regulator) that is involved in the regulation of zeamine production in D. zeae EC1. The OhrR null mutant was significantly attenuated in its virulence against rice seed, potato tubers and radish roots. Phenotype analysis showed that OhrR was also involved in the regulation of other virulence traits, including the production of extracellular cellulase, biofilm formation, and swimming/swarming motility. DNA electrophoretic mobility shift assay showed that OhrR directly regulates the transcription of key virulence genes and genes encoding bis-(3'-5')-cyclic dimeric guanosine monophosphate synthetases. Furthermore, OhrR positively regulates the transcription of regulatory genes slyA and fis through binding to their promoter regions. Our findings identify a key regulator of the virulence of D. zeae and add new insights into the complex regulatory network that modulates the physiology and virulence of D. zeae.
Collapse
Affiliation(s)
- Mingfa Lv
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yufan Chen
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Ming Hu
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinglin Yu
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Cheng Duan
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Sixuan Ye
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jinfeng Ling
- Guangdong Provincial Key Laboratory of High Technology for Plant ProtectionResearch Institute of Plant ProtectionGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jianuan Zhou
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiaofan Zhou
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lianhui Zhang
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
11
|
Kim Y, Roe JH, Park JH, Cho YJ, Lee KL. Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in Streptomyces coelicolor. J Microbiol 2021; 59:1083-1091. [PMID: 34865197 DOI: 10.1007/s12275-021-1457-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
CatR, a peroxide-sensing transcriptional repressor of Fur family, can de-repress the transcription of the catA gene encoding catalase upon peroxide stress in Streptomyces coelicolor. Since CatR-regulated genes other than catA and its own gene catR have not been identified in detail, the understanding of the role of CatR regulon is very limited. In this study, we performed transcriptomic analysis to identify genes influenced by both ΔcatR mutation and hydrogen peroxide treatment. Through ChIP-qPCR and other analyses, a new consensus sequence was found in CatR-responsive promoter region of catR gene and catA operon for direct regulation. In addition, vtlA (SCO2027) and SCO4983 were identified as new members of the CatR regulon. Expression levels of iron uptake genes were reduced by hydrogen peroxide and a DmdR1 binding sequence was identified in promoters of these genes. The increase in free iron by hydrogen peroxide was thought to suppress the iron import system by DmdR1. A putative exporter protein VtlA regulated by CatR appeared to reduce intracellular iron to prevent oxidative stress. The name vtlA (VIT1-like transporter) was proposed for iron homeostasis related gene SCO2027.
Collapse
Affiliation(s)
- Yeonbum Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Hye Roe
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Hong Park
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,The Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
12
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
13
|
Heat Shock Repressor HspR Directly Controls Avermectin Production, Morphological Development, and H 2O 2 Stress Response in Streptomyces avermitilis. Appl Environ Microbiol 2021; 87:e0047321. [PMID: 34160269 DOI: 10.1128/aem.00473-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat shock response (HSR) is a universal cellular response that promotes survival following temperature increase. In filamentous Streptomyces, which accounts for ∼70% of commercial antibiotic production, HSR is regulated by transcriptional repressors; in particular, the widespread MerR-family regulator HspR has been identified as a key repressor. However, functions of HspR in other biological processes are unknown. The present study demonstrates that HspR pleiotropically controls avermectin production, morphological development, and heat shock and H2O2 stress responses in the industrially important species Streptomyces avermitilis. HspR directly activated ave structural genes (aveA1 and aveA2) and H2O2 stress-related genes (katA1, catR, katA3, oxyR, ahpC, and ahpD), whereas it directly repressed heat shock genes (HSGs) (the dnaK1-grpE1-dnaJ1-hspR operon, clpB1p, clpB2p, and lonAp) and developmental genes (wblB, ssgY, and ftsH). HspR interacted with PhoP (response regulator of the widespread PhoPR two-component system) at dnaK1p to corepress the important dnaK1-grpE1-dnaJ1-hspR operon. PhoP exclusively repressed target HSGs (htpG, hsp18_1, and hsp18_2) different from those of HspR (clpB1p, clpB2p, and lonAp). A consensus HspR-binding site, 5'-TTGANBBNNHNNNDSTSHN-3', was identified within HspR target promoter regions, allowing prediction of the HspR regulon involved in broad cellular functions. Taken together, our findings demonstrate a key role of HspR in the coordination of a variety of important biological processes in Streptomyces species. IMPORTANCE Our findings are significant to clarify the molecular mechanisms underlying HspR function in Streptomyces antibiotic production, development, and H2O2 stress responses through direct control of its target genes associated with these biological processes. HspR homologs described to date function as transcriptional repressors but not as activators. The results of the present study demonstrate that HspR acts as a dual repressor/activator. PhoP cross talks with HspR at dnaK1p to coregulate the heat shock response (HSR), but it also has its own specific target heat shock genes (HSGs). The novel role of PhoP in the HSR further demonstrates the importance of this regulator in Streptomyces. Overexpression of hspR strongly enhanced avermectin production in Streptomyces avermitilis wild-type and industrial strains. These findings provide new insights into the regulatory roles and mechanisms of HspR and PhoP and facilitate methods for antibiotic overproduction in Streptomyces species.
Collapse
|
14
|
Li A, Okada BK, Rosen PC, Seyedsayamdost MR. Piperacillin triggers virulence factor biosynthesis via the oxidative stress response in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2021; 118:e2021483118. [PMID: 34172579 PMCID: PMC8256049 DOI: 10.1073/pnas.2021483118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural products have been an important source of therapeutic agents and chemical tools. The recent realization that many natural product biosynthetic genes are silent or sparingly expressed during standard laboratory growth has prompted efforts to investigate their regulation and develop methods to induce their expression. Because it is difficult to intuit signals that induce a given biosynthetic locus, we recently implemented a forward chemical-genetic approach to identify such inducers. In the current work, we applied this approach to nine silent biosynthetic loci in the model bacterium Burkholderia thailandensis to systematically screen for elicitors from a library of Food and Drug Administration-approved drugs. We find that β-lactams, fluoroquinolones, antifungals, and, surprisingly, calcimimetics, phenothiazine antipsychotics, and polyaromatic antidepressants are the most effective global inducers of biosynthetic genes. Investigations into the mechanism of stimulation of the silent virulence factor malleicyprol by the β-lactam piperacillin allowed us to elucidate the underlying regulatory circuits. Low-dose piperacillin causes oxidative stress, thereby inducing redox-sensing transcriptional regulators, which activate malR, a pathway-specific positive regulator of the malleicyprol gene cluster. Malleicyprol is thus part of the OxyR and SoxR regulons in B. thailandensis, allowing the bacterium to initiate virulence in response to oxidative stress. Our work catalogs a diverse array of elicitors and a previously unknown regulatory input for secondary metabolism in B. thailandensis.
Collapse
Affiliation(s)
- Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul C Rosen
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
15
|
Yekani M, Baghi HB, Vahed SZ, Ghanbari H, Hosseinpur R, Azargun R, Azimi S, Memar MY. Tightly controlled response to oxidative stress; an important factor in the tolerance of Bacteroides fragilis. Res Microbiol 2021; 172:103798. [PMID: 33485914 DOI: 10.1016/j.resmic.2021.103798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
The exposure of Bacteroides fragilis to highly oxygenated tissues induces an oxidative stress due to a shift from the reduced condition of the gastrointestinal tract to an aerobic environment of host tissues. The potent and effective responses to reactive oxygen species (ROS) make the B. fragilis tolerant to atmospheric oxygen for several days. The response to oxidative stress in B. fragilis is a complicated event that is induced and regulated by different agents. In this review, we will focus on the B. fragilis response to oxidative stress and present an overview of the regulators of responses to oxidative stress in this bacterium.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Ghanbari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasul Hosseinpur
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Azargun
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Somayeh Azimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Lee C, Choo K, Lee SJ. Active Transposition of Insertion Sequences by Oxidative Stress in Deinococcus geothermalis. Front Microbiol 2020; 11:558747. [PMID: 33224109 PMCID: PMC7674623 DOI: 10.3389/fmicb.2020.558747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022] Open
Abstract
Radiation-resistant bacterium Deinococcus geothermalis has a total of 73 insertion sequences (ISs) in genomes, and some of them are actively transposed to other loci with replicative mode due to oxidative stress of hydrogen peroxide treatment. Here, we detected two transposition events in wild-type (WT) strain and LysR family member gene disrupted strain (Δdgeo_2840). Similar to our previous report (Lee et al., 2019), phytoene desaturase (dgeo_0524), a key enzyme of carotenoid biosynthesis, was disrupted by the integration of IS element, thereby detected a single phenotypically non-pigmented colony in each WT and Δdgeo_2840 strain. Two separate types of IS element have been integrated into non-pigmented clones: ISDge11 for WT and ISDge6 for Δdgeo_2840 strain. Surprisingly, Δdgeo_2840 mutant strain revealed higher resistance to oxidative stress than WT strain at late exponential growth phase. From the qRT-PCR analysis, OxyR (dgeo_1888) was highly up-regulated to 30-fold by oxidative stress through hydrogen peroxide treatment in both WT and Δdgeo_2840 mutant strains. However, the oxidative stress response enzyme, catalase or superoxide dismutase, was not significantly induced by overexpressed OxyR. Thus, a putative LysR family regulator Dgeo_2840 controlled the expression of ISDge6 type transposase and the induction of OxyR under oxidative condition. There is LysR family DNA-binding protein dependent active transposition of specific type IS and the up-regulated OxyR has not positively controlled ROS scavenger enzymes in D. geothermalis.
Collapse
Affiliation(s)
- Chanjae Lee
- Department of Biology, Kyung Hee University, Seoul, South Korea
| | - Kyungsil Choo
- Department of Biology, Kyung Hee University, Seoul, South Korea
| | - Sung-Jae Lee
- Department of Biology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
17
|
Reanalysis of Lactobacillus paracasei Lbs2 Strain and Large-Scale Comparative Genomics Places Many Strains into Their Correct Taxonomic Position. Microorganisms 2019; 7:microorganisms7110487. [PMID: 31731444 PMCID: PMC6920896 DOI: 10.3390/microorganisms7110487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus paracasei are diverse Gram-positive bacteria that are very closely related to Lactobacillus casei, belonging to the Lactobacillus casei group. Due to extreme genome similarities between L. casei and L. paracasei, many strains have been cross placed in the other group. We had earlier sequenced and analyzed the genome of Lactobacillus paracasei Lbs2, but mistakenly identified it as L. casei. We re-analyzed Lbs2 reads into a 2.5 MB genome that is 91.28% complete with 0.8% contamination, which is now suitably placed under L. paracasei based on Average Nucleotide Identity and Average Amino Acid Identity. We took 74 sequenced genomes of L. paracasei from GenBank with assembly sizes ranging from 2.3 to 3.3 MB and genome completeness between 88% and 100% for comparison. The pan-genome of 75 L. paracasei strains hold 15,945 gene families (21,5232 genes), while the core genome contained about 8.4% of the total genes (243 gene families with 18,225 genes) of pan-genome. Phylogenomic analysis based on core gene families revealed that the Lbs2 strain has a closer relationship with L. paracasei subsp. tolerans DSM20258. Finally, the in-silico analysis of the L. paracasei Lbs2 genome revealed an important pathway that could underpin the production of thiamin, which may contribute to the host energy metabolism.
Collapse
|
18
|
Jiang G, Yang J, Li X, Cao Y, Liu X, Ling J, Wang H, Zhong Z, Zhu J. Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS Microbiol Lett 2019; 366:5290313. [PMID: 30657885 DOI: 10.1093/femsle/fnz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are not only toxic products of oxygen from aerobic metabolism or stress but also signalling molecules involved in the development of the legume-Rhizobium symbiosis. To assess the importance of alkyl hydroperoxide reductase (AhpCD) in the nitrogen-fixating bacterium Azorhizobium caulinodans, we investigated the phenotypes of the ∆ahpCD strain with regards to ROS resistance and symbiotic interactions with Sesbania rostrata. The ∆ahpCD strain was notably more sensitive than its parent strain to hydrogen peroxide (H2O2) but not to two organic peroxides, in the early log phase. The expression of ahpCD was not controlled by a LysR-type transcriptional activator either in vitro or in vivo. The catalase activity of the ∆ahpCD strain was affected at a relatively low level of H2O2 stress. Furthermore, the ∆ahpCD strain induced a reduced number of stem nodules in S. rostrata with lowering of nitrogenase activity. These data suggest that A. caulinodans AhpCD is not only important for H2O2 detoxification in vitro but also critical for symbiosis with S. rostrata. Functional analysis of AhpCD is worth investigating in other rhizobia to gain a comprehensive view of its contributions to ROS defence and symbiotic association with legumes.
Collapse
Affiliation(s)
- Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, National Engineering Research Centre for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Juan Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xingjuan Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xiaomeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Ling
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| |
Collapse
|
19
|
Kim SY, Park C, Jang HJ, Kim BO, Bae HW, Chung IY, Kim ES, Cho YH. Antibacterial strategies inspired by the oxidative stress and response networks. J Microbiol 2019; 57:203-212. [DOI: 10.1007/s12275-019-8711-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/29/2022]
|
20
|
Pan X, Wu J, Xu S, Duan T, Duan Y, Wang J, Zhang F, Zhou M. Contribution of OxyR Towards Differential Sensitivity to Antioxidants in Xanthomonas oryzae pathovars oryzae and oryzicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1244-1256. [PMID: 29905495 DOI: 10.1094/mpmi-03-18-0074-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OxyR and SoxR are two transcriptional regulators in response to oxidative stress in most bacteria, and SoxR has been reported to be activated by the endogenous redox-cycling compound phenazine in phenazine-producing organisms. However, which transcriptional regulator is activated in pathogens treated with the antibiotic phenazine-1-carboxylic acid (PCA) has not been determined. In this study, we found that PCA treatment activated OxyR rather than SoxR in the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. We also found that X. oryzae pv. oryzae was much more sensitive to PCA and H2O2 and had a defective antioxidant system (i.e., less of total antioxidant capacity and total catalase activity than X. oryzae pv. oryzicola, although X. oryzae pvs. oryzae and oryzicola are very closely related). Based on KEGG sequences, OxyR differs in 10 amino acids in X. oryzae pv. oryzae versus X. oryzae pv. oryzicola. By exchanging OxyR between X. oryzae pvs. oryzae and oryzicola, we elucidated that OxyR contributed to the differences in antioxidant capacity, total catalase activity, and sensitivity to PCA and H2O2. We also found that OxyR affected X. oryzae pvs. oryzae and oryzicola growth in a nutrient-poor medium, virulence on host plants (rice), and the hypersensitive response on nonhost plants (Nicotiana benthamiana). Thus, OxyR is a critical regulator that relates to the differences in antioxidative stress between X. oryzae pvs. oryzae and oryzicola and contributes to the differences in survival of them against oxidative stress.
Collapse
Affiliation(s)
- Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianxin Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Zhang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
IdeR, a DtxR Family Iron Response Regulator, Controls Iron Homeostasis, Morphological Differentiation, Secondary Metabolism, and the Oxidative Stress Response in Streptomyces avermitilis. Appl Environ Microbiol 2018; 84:AEM.01503-18. [PMID: 30194099 DOI: 10.1128/aem.01503-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/29/2018] [Indexed: 01/29/2023] Open
Abstract
Iron, an essential element for microorganisms, functions as a vital cofactor in a wide variety of key metabolic processes. On the other hand, excess iron may have toxic effects on bacteria by catalyzing the formation of reactive oxygen species through the Fenton reaction. The prevention of iron toxicity requires the precise control of intracellular iron levels in bacteria. Mechanisms of iron homeostasis in the genus Streptomyces (the producers of various antibiotics) are poorly understood. Streptomyces avermitilis is the industrial producer of avermectins, which are potent anthelmintic agents widely used in medicine, agriculture, and animal husbandry. We investigated the regulatory role of IdeR, a DtxR family regulator, in S. avermitilis In the presence of iron, IdeR binds to a specific palindromic consensus sequence in promoters and regulates 14 targets involved in iron metabolism (e.g., iron acquisition, iron storage, heme metabolism, and Fe-S assembly). IdeR also directly regulates 12 targets involved in other biological processes, including morphological differentiation, secondary metabolism, carbohydrate metabolism, and the tricarboxylic acid (TCA) cycle. ideR transcription is positively regulated by the peroxide-sensing transcriptional regulator OxyR. A newly constructed ideR deletion mutant (DideR) was found to be less responsive to iron levels and more sensitive to H2O2 treatment than the wild-type strain, indicating that ideR is essential for oxidative stress responses. Our findings, taken together, demonstrate that IdeR plays a pleiotropic role in the overall coordination of metabolism in Streptomyces spp. in response to iron levels.IMPORTANCE Iron is essential to almost all organisms, but in the presence of oxygen, iron is both poorly available and potentially toxic. Streptomyces species are predominantly present in soil where the environment is complex and fluctuating. So far, the mechanism of iron homeostasis in Streptomyces spp. remains to be elucidated. Here, we characterized the regulatory role of IdeR in the avermectin-producing organism S. avermitilis IdeR maintains intracellular iron levels by regulating genes involved in iron absorption and storage. IdeR also directly regulates morphological differentiation, secondary metabolism, and central metabolism. ideR is under the positive control of OxyR and is indispensable for an efficient response to oxidative stress. This investigation uncovered that IdeR acts as a global regulator coordinating iron homeostasis, morphological differentiation, secondary metabolism, and oxidative stress response in Streptomyces species. Elucidation of the pleiotropic regulation function of IdeR provides new insights into the mechanisms of how Streptomyces spp. adapt to the complex environment.
Collapse
|
22
|
Zhao X, Song X, Li Y, Yu C, Zhao Y, Gong M, Shen X, Chen M. Gene expression related to trehalose metabolism and its effect on Volvariella volvacea under low temperature stress. Sci Rep 2018; 8:11011. [PMID: 30030496 PMCID: PMC6054667 DOI: 10.1038/s41598-018-29116-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanism of the low temperature autolysis of Volvariella volvacea (V. volvacea) has not been thoroughly explained, and trehalose is one of the most important osmolytes in the resistance of fungi to adversity. The present study used the low temperature sensitive V. volvacea strain V23 and the low temperature tolerant strain VH3 as test materials. Intracellular trehalose contents under low temperature stress in the two strains were measured by high performance liquid chromatography (HPLC). Quantitative real-time PCR (qPCR) analysis was carried out to study the transcriptional expression differences of enzymes related to trehalose metabolism. And trehalose solution was exogenously added during the cultivation of fruit bodies of V. volvacea. The effect of exogenous trehalose solution on the anti-hypothermia of fruit bodies was studied by evaluating the sensory changes under low temperature storage after harvest. The results showed that the intracellular trehalose content in VH3 was higher than that in V23 under low temperature stress. In the first 2 h of low temperature stress, the expression of trehalose-6-phosphate phosphatase (TPP) gene involved in trehalose synthesis decreased, while the expression of trehalose phosphorylase (TP) gene increased. The expression of TPP gene was almost unchanged in VH3, but it decreased dramatically in V23 at 4 h of low temperature stress. The expression levels of TPP and TP genes in VH3 was significantly higher than that in V23 from 6 h to 8 h of low temperature stress. TP gene may be a crucial gene of trehalose metabolism, which was more inclined to synthesize trehalose during low temperature stress. In addition, the sensory traits of V. volvacea fruit bodies stored at 4 °C were significantly improved by the application of exogenous trehalose compared with the controls. Thus, trehalose could help V. volvacea in response to low temperature stress and high content of it may be one of the reasons that why VH3 strain was more tolerant to the low temperature stress than V23 strain.
Collapse
Affiliation(s)
- Xu Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Xiaoxia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Yapeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China. .,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China.
| | - Ming Gong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Xuexiang Shen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China. .,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China.
| |
Collapse
|
23
|
Sun M, Lyu M, Wen Y, Song Y, Li J, Chen Z. Organic Peroxide-Sensing Repressor OhrR Regulates Organic Hydroperoxide Stress Resistance and Avermectin Production in Streptomyces avermitilis. Front Microbiol 2018; 9:1398. [PMID: 30008703 PMCID: PMC6034001 DOI: 10.3389/fmicb.2018.01398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/07/2018] [Indexed: 11/13/2022] Open
Abstract
The bacterium Streptomyces avermitilis is an industrial-scale producer of avermectins, which are important anthelmintic agents widely used in agriculture, veterinary medicine, and human medicine. During the avermectin fermentation process, S. avermitilis is exposed to organic peroxides generated by aerobic respiration. We investigated the role of MarR-family transcriptional regulator OhrR in oxidative stress response and avermectin production in S. avermitilis. The S. avermitilis genome encodes two organic hydroperoxide resistance proteins: OhrB1 and OhrB2. OhrB2 is the major resistance protein in organic peroxide stress responses. In the absence of organic peroxide, the reduced form of OhrR represses the expression of ohrB2 gene by binding to the OhrR box in the promoter region. In the presence of organic peroxide, the oxidized form of OhrR dissociates from the OhrR box and the expression of ohrB2 is increased by derepression. OhrR also acts as a repressor to regulate its own expression. An ohrR-deletion mutant (termed DohrR) displayed enhanced avermectin production. Our findings demonstrate that OhrR in S. avermitilis represses avermectin production by regulating the expression of pathway-specific regulatory gene aveR. OhrR also plays a regulatory role in glycolysis and the pentose phosphate (PP) pathway by negatively controlling the expression of pykA2 and ctaB/tkt2-tal2-zwf2-opcA2-pgl.
Collapse
Affiliation(s)
- Meng Sun
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengya Lyu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuan Song
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Sun D, Wang Q, Chen Z, Li J, Wen Y. An Alternative σ Factor, σ 8, Controls Avermectin Production and Multiple Stress Responses in Streptomyces avermitilis. Front Microbiol 2017; 8:736. [PMID: 28484446 PMCID: PMC5402319 DOI: 10.3389/fmicb.2017.00736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/10/2017] [Indexed: 11/21/2022] Open
Abstract
Alternative σ factors in bacteria redirect RNA polymerase to recognize alternative promoters, thereby facilitating coordinated gene expression necessary for adaptive responses. The gene sig8 (sav_741) in Streptomyces avermitilis encodes an alternative σ factor, σ8, highly homologous to σB in Streptomyces coelicolor. Studies reported here demonstrate that σ8 is an important regulator of both avermectin production and stress responses in S. avermitilis. σ8 inhibited avermectin production by indirectly repressing expression of cluster-situated activator gene aveR, and by directly initiating transcription of its downstream gene sav_742, which encodes a direct repressor of ave structural genes. σ8 had no effect on cell growth or morphological differentiation under normal growth conditions. Growth of a sig8-deletion mutant was less than that of wild-type strain on YMS plates following treatment with heat, H2O2, diamide, NaCl, or KCl. sig8 transcription was strongly induced by these environmental stresses, indicating response by σ8 itself. A series of σ8-dependent genes responsive to heat, oxidative and osmotic stress were identified by EMSAs, qRT-PCR and in vitro transcription experiments. These findings indicate that σ8 plays an important role in mediating protective responses to various stress conditions by activating transcription of its target genes. Six σ8-binding promoter sequences were determined and consensus binding sequence BGVNVH-N15-GSNNHH (B: C, T or G, V: A, C or G, S: C or G, H: A, C or T, N: any nucleotide) was identified, leading to prediction of the σ8 regulon. The list consists of 940 putative σ8 target genes, assignable to 17 functional groups, suggesting the wide range of cellular functions controlled by σ8 in S. avermitilis.
Collapse
Affiliation(s)
- Di Sun
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Qian Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|