1
|
Singh S, Arya G, Mishra R, Singla S, Pratap A, Upadhayay K, Sharma M, Chaba R. Molecular mechanisms underlying allosteric behavior of Escherichia coli DgoR, a GntR/FadR family transcriptional regulator. Nucleic Acids Res 2025; 53:gkae1299. [PMID: 39777470 PMCID: PMC11705089 DOI: 10.1093/nar/gkae1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
GntR/FadR family featuring an N-terminal winged helix-turn-helix DNA-binding domain and a C-terminal α-helical effector-binding and oligomerization domain constitutes one of the largest families of transcriptional regulators. Several GntR/FadR regulators govern the metabolism of sugar acids, carbon sources implicated in bacterial-host interactions. Although effectors are known for a few sugar acid regulators, the unavailability of relevant structures has left their allosteric mechanism unexplored. Here, using DgoR, a transcriptional repressor of d-galactonate metabolism in Escherichia coli, as a model, and its superrepressor alleles, we probed allostery in a GntR/FadR family sugar acid regulator. Genetic and biochemical studies established compromised response to d-galactonate as the reason for the superrepressor behavior of the mutants: T180I does not bind d-galactonate, and while A97V, S171L and M188I bind d-galactonate, effector binding does not induce a conformational change required for derepression, suggesting altered allostery. For mechanistic insights into allosteric communication, we performed simulations of the modeled DgoR structure in different allosteric states for both the wild-type and mutant proteins. We found that each mutant exhibits unique dynamics disrupting the intrinsic allosteric communication pathways, thereby impacting DgoR function. We finally validated the allosteric communication model by testing in silico predictions with experimental data.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Garima Arya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Rajesh Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Shivam Singla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Akhil Pratap
- Biological Systems Engineering, Plaksha University, Sector 101 alpha, IT City, SAS Nagar, Mohali 140306, Punjab, India
| | - Krishna Upadhayay
- Council of Scientific and Industrial Research—Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Monika Sharma
- Biological Systems Engineering, Plaksha University, Sector 101 alpha, IT City, SAS Nagar, Mohali 140306, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
2
|
Singh S, Gola C, Singh B, Agrawal V, Chaba R. D-galactonate metabolism in enteric bacteria: a molecular and physiological perspective. Curr Opin Microbiol 2024; 81:102524. [PMID: 39137493 DOI: 10.1016/j.mib.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
D-galactonate, a widely prevalent sugar acid, was first reported as a nutrient source for enteric bacteria in the 1970s. Since then, decades of research enabled a description of the modified Entner-Doudoroff pathway involved in its degradation and reported the structural and biochemical features of its metabolic enzymes, primarily in Escherichia coli K-12. However, only in the last few years, the D-galactonate transporter has been characterized, and the regulation of the dgo operon, encoding the structural genes for the transporter and enzymes of D-galactonate metabolism, has been detailed. Notably, in recent years, multiple evolutionary studies have identified the dgo operon as a dominant target for adaptation of E. coli in the mammalian gut. Despite considerable research on dgo operon, numerous fundamental questions remain to be addressed. The emerging relevance of the dgo operon in host-bacterial interactions further necessitates the study of D-galactonate metabolism in other enterobacterial strains.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Chetna Gola
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Bhupinder Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Vishal Agrawal
- Amity School of Biological Sciences, Amity University Punjab, Mohali, SAS Nagar, Punjab 140306, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
3
|
Clausen U, Vital ST, Lambertus P, Gehler M, Scheve S, Wöhlbrand L, Rabus R. Catabolic Network of the Fermentative Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a Physiologic-Proteomic Perspective. Microb Physiol 2024; 34:88-107. [PMID: 38262373 DOI: 10.1159/000536327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Phocaeicola vulgatus (formerly Bacteroides vulgatus) is a prevalent member of human and animal guts, where it influences by its dietary-fiber-fueled, fermentative metabolism the microbial community as well as the host health. Moreover, the fermentative metabolism of P. vulgatus bears potential for a sustainable production of bulk chemicals. The aim of the present study was to refine the current understanding of the P. vulgatus physiology. METHODS P. vulgatus was adapted to anaerobic growth with 14 different carbohydrates, ranging from hexoses, pentoses, hemicellulose, via an uronic acid to deoxy sugars. These substrate-adapted cells formed the basis to define the growth stoichiometries by quantifying growth/fermentation parameters and to reconstruct the catabolic network by applying differential proteomics. RESULTS The determination of growth performance revealed, e.g., doubling times (h) from 1.39 (arabinose) to 14.26 (glucuronate), biomass yields (gCDW/mmolS) from 0.01 (fucose) to 0.27 (α-cyclodextrin), and ATP yields (mMATP/mMC) from 0.21 (rhamnose) to 0.60 (glucuronate/xylan). Furthermore, fermentation product spectra were determined, ranging from broad and balanced (with xylan: acetate, succinate, formate, and propanoate) to rather one sided (with rhamnose or fucose: mainly propane-1,2-diol). The fermentation network serving all tested compounds is composed of 56 proteins (all identified), with several peripheral reaction sequences formed with high substrate specificity (e.g., conversion of arabinose to d-xylulose-3-phosphate) implicating a fine-tuned regulation. By contrast, central modules (e.g., glycolysis or the reaction sequence from PEP to succinate) were constitutively formed. Extensive formation of propane-1,2-diol from rhamnose and fucose involves rhamnulokinase (RhaB), rhamnulose-1-phosphate kinase (RhaD), and lactaldehyde reductase (FucO). Furthermore, Sus-like systems are apparently the most relevant uptake systems and a complex array of transmembrane electron-transfer systems (e.g., Na+-pumping Rnf and Nqr complexes, fumarate reductase) as well as F- and V-type ATP-synthases were detected. CONCLUSIONS The present study provides insights into the potential contribution of P. vulgatus to the gut metabolome and into the strain's biotechnological potential for sustainable production of short-chain fatty acids and alcohols.
Collapse
Affiliation(s)
- Urte Clausen
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sören-Tobias Vital
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Pia Lambertus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Martina Gehler
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Pellegrino GM, Browne TS, Sharath K, Bari KA, Vancuren S, Allen-Vercoe E, Gloor GB, Edgell DR. Metabolically-targeted dCas9 expression in bacteria. Nucleic Acids Res 2023; 51:982-996. [PMID: 36629257 PMCID: PMC9881133 DOI: 10.1093/nar/gkac1248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
The ability to restrict gene expression to a relevant bacterial species in a complex microbiome is an unsolved problem. In the context of the human microbiome, one desirable target metabolic activity are glucuronide-utilization enzymes (GUS) that are implicated in the toxic re-activation of glucuronidated compounds in the human gastrointestinal (GI) tract, including the chemotherapeutic drug irinotecan. Here, we take advantage of the variable distribution of GUS enzymes in bacteria as a means to distinguish between bacteria with GUS activity, and re-purpose the glucuronide-responsive GusR transcription factor as a biosensor to regulate dCas9 expression in response to glucuronide inducers. We fused the Escherichia coli gusA regulatory region to the dCas9 gene to create pGreg-dCas9, and showed that dCas9 expression is induced by glucuronides, but not other carbon sources. When conjugated from E. coli to Gammaproteobacteria derived from human stool, dCas9 expression from pGreg-dCas9 was restricted to GUS-positive bacteria. dCas9-sgRNAs targeted to gusA specifically down-regulated gus operon transcription in Gammaproteobacteria, with a resulting ∼100-fold decrease in GusA activity. Our data outline a general strategy to re-purpose bacterial transcription factors responsive to exogenous metabolites for precise ligand-dependent expression of genetic tools such as dCas9 in diverse bacterial species.
Collapse
Affiliation(s)
- Gregory M Pellegrino
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Tyler S Browne
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Keerthana Sharath
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Khaleda A Bari
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Sarah J Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Gregory B Gloor
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - David R Edgell
- To whom correspondence should be addressed. Tel: +1 519 661 3133; Fax: +1 519 661 3175;
| |
Collapse
|
5
|
Tutukina MN, Dakhnovets AI, Kaznadzey AD, Gelfand MS, Ozoline ON. Sense and antisense RNA products of the uxuR gene can affect motility and chemotaxis acting independent of the UxuR protein. Front Mol Biosci 2023; 10:1121376. [PMID: 36936992 PMCID: PMC10016265 DOI: 10.3389/fmolb.2023.1121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Small non-coding and antisense RNAs are widespread in all kingdoms of life, however, the diversity of their functions in bacteria is largely unknown. Here, we study RNAs synthesised from divergent promoters located in the 3'-end of the uxuR gene, encoding transcription factor regulating hexuronate metabolism in Escherichia coli. These overlapping promoters were predicted in silico with rather high scores, effectively bound RNA polymerase in vitro and in vivo and were capable of initiating transcription in sense and antisense directions. The genome-wide correlation between in silico promoter scores and RNA polymerase binding in vitro and in vivo was higher for promoters located on the antisense strands of the genes, however, sense promoters within the uxuR gene were more active. Both regulatory RNAs synthesised from the divergent promoters inhibited expression of genes associated with the E. coli motility and chemotaxis independent of a carbon source on which bacteria had been grown. Direct effects of these RNAs were confirmed for the fliA gene encoding σ28 subunit of RNA polymerase. In addition to intracellular sRNAs, promoters located within the uxuR gene could initiate synthesis of transcripts found in the fraction of RNAs secreted in the extracellular medium. Their profile was also carbon-independent suggesting that intragenic uxuR transcripts have a specific regulatory role not directly related to the function of the protein in which gene they are encoded.
Collapse
Affiliation(s)
- Maria N. Tutukina
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Lab of Functional Genomics and Cellular Stress, Institute of Cell Biophysics RAS, FRC PRCBR, Pushchino, Russia
- RTC “Bioinformatics”, A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
- *Correspondence: Maria N. Tutukina, , Olga N. Ozoline,
| | - Artemiy I. Dakhnovets
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Biotechnology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Anna D. Kaznadzey
- RTC “Bioinformatics”, A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
| | - Mikhail S. Gelfand
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- RTC “Bioinformatics”, A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
| | - Olga N. Ozoline
- Lab of Functional Genomics and Cellular Stress, Institute of Cell Biophysics RAS, FRC PRCBR, Pushchino, Russia
- *Correspondence: Maria N. Tutukina, , Olga N. Ozoline,
| |
Collapse
|
6
|
Bessonova TA, Fando MS, Kostareva OS, Tutukina MN, Ozoline ON, Gelfand MS, Nikulin AD, Tishchenko SV. Differential Impact of Hexuronate Regulators ExuR and UxuR on the Escherichia coli Proteome. Int J Mol Sci 2022; 23:ijms23158379. [PMID: 35955512 PMCID: PMC9369180 DOI: 10.3390/ijms23158379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
ExuR and UxuR are paralogous proteins belonging to the GntR family of transcriptional regulators. Both are known to control hexuronic acid metabolism in a variety of Gammaproteobacteria but the relative impact of each of them is still unclear. Here, we apply 2D difference electrophoresis followed by mass-spectrometry to characterise the changes in the Escherichia coli proteome in response to a uxuR or exuR deletion. Our data clearly show that the effects are different: deletion of uxuR resulted in strongly enhanced expression of D-mannonate dehydratase UxuA and flagellar protein FliC, and in a reduced amount of outer membrane porin OmpF, while the absence of ExuR did not significantly alter the spectrum of detected proteins. Consequently, the physiological roles of proteins predicted as homologs seem to be far from identical. Effects of uxuR deletion were largely dependent on the cultivation conditions: during growth with glucose, UxuA and FliC were dramatically altered, while during growth with glucuronate, activation of both was not so prominent. During the growth with glucose, maximal activation was detected for FliC. This was further confirmed by expression analysis and physiological tests, thus suggesting the involvement of UxuR in the regulation of bacterial motility and biofilm formation.
Collapse
Affiliation(s)
- Tatiana A. Bessonova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya, 3, Pushchino 142290, Russia; (T.A.B.); (O.N.O.)
| | - Maria S. Fando
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya, 4, Pushchino 142290, Russia; (M.S.F.); (O.S.K.); (A.D.N.); (S.V.T.)
| | - Olga S. Kostareva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya, 4, Pushchino 142290, Russia; (M.S.F.); (O.S.K.); (A.D.N.); (S.V.T.)
| | - Maria N. Tutukina
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya, 3, Pushchino 142290, Russia; (T.A.B.); (O.N.O.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30 Build 1, Moscow 121205, Russia;
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per 19 Build 1, Moscow 127051, Russia
- Correspondence:
| | - Olga N. Ozoline
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya, 3, Pushchino 142290, Russia; (T.A.B.); (O.N.O.)
| | - Mikhail S. Gelfand
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30 Build 1, Moscow 121205, Russia;
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per 19 Build 1, Moscow 127051, Russia
| | - Alexey D. Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya, 4, Pushchino 142290, Russia; (M.S.F.); (O.S.K.); (A.D.N.); (S.V.T.)
| | - Svetlana V. Tishchenko
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya, 4, Pushchino 142290, Russia; (M.S.F.); (O.S.K.); (A.D.N.); (S.V.T.)
| |
Collapse
|
7
|
Purtov YA, Tishchenko SV, Nikulin AD. Modeling the Interaction of the UxuR–ExuR Heterodimer with the Components of the Metabolic Pathway of Escherichia coli for Hexuronate Utilization. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
9
|
Ni C, Fox KJ, Prather KLJ. Substrate-activated expression of a biosynthetic pathway in Escherichia coli. Biotechnol J 2021; 17:e2000433. [PMID: 34050620 DOI: 10.1002/biot.202000433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022]
Abstract
Microbes can facilitate production of valuable chemicals more sustainably than traditional chemical processes in many cases: they utilize renewable feedstocks, require less energy intensive process conditions, and perform a variety of chemical reactions using endogenous or heterologous enzymes. In response to the metabolic burden imposed by production pathways, chemical inducers are frequently used to initiate gene expression after the cells have reached sufficient density. While chemically inducible promoters are a common research tool used for pathway expression, they introduce a compound extrinsic to the process along with the associated costs. We developed an expression control system for a biosynthetic pathway for the production of d-glyceric acid that utilizes galacturonate as both the inducer and the substrate, thereby eliminating the need for an extrinsic chemical inducer. Activation of expression in response to the feed is actuated by a galacturonate-responsive transcription factor biosensor. We constructed variants of the galacturonate biosensor with a heterologous transcription factor and cognate hybrid promoter, and selected for the best performer through fluorescence characterization. We showed that native E. coli regulatory systems do not interact with our biosensor and favorable biosensor response exists in the presence and absence of galacturonate consumption. We then employed the control circuit to regulate the expression of the heterologous genes of a biosynthetic pathway for the production d-glyceric acid that was previously developed in our lab. Productivity via substrate-induction with our control circuit was comparable to IPTG-controlled induction and significantly outperformed a constitutive expression control, producing 2.13 ± 0.03 g L-1 d-glyceric acid within 6 h of galacturonate substrate addition. This work demonstrated feed-activated pathway expression to be an attractive control strategy for more readily scalable microbial biosynthesis.
Collapse
Affiliation(s)
- Cynthia Ni
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kevin J Fox
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Arya G, Pal M, Sharma M, Singh B, Singh S, Agrawal V, Chaba R. Molecular insights into effector binding by DgoR, a GntR/FadR family transcriptional repressor of D-galactonate metabolism in Escherichia coli. Mol Microbiol 2020; 115:591-609. [PMID: 33068046 DOI: 10.1111/mmi.14625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/23/2023]
Abstract
Several GntR/FadR transcriptional regulators govern sugar acid metabolism in bacteria. Although effectors have been identified for a few sugar acid regulators, the mode of effector binding is unknown. Even in the overall FadR subfamily, there are limited details on effector-regulator interactions. Here, we identified the effector-binding cavity in Escherichia coli DgoR, a FadR subfamily transcriptional repressor of D-galactonate metabolism that employs D-galactonate as its effector. Using a genetic screen, we isolated several dgoR superrepressor alleles. Blind docking suggested eight amino acids corresponding to these alleles to form a part of the effector-binding cavity. In vivo and in vitro assays showed that these mutations compromise the inducibility of DgoR without affecting its oligomeric status or affinity for target DNA. Taking Bacillus subtilis GntR as a representative, we demonstrated that the effector-binding cavity is similar among FadR subfamily sugar acid regulators. Finally, a comparison of sugar acid regulators with other FadR members suggested conserved features of effector-regulator recognition within the FadR subfamily. Sugar acid metabolism is widely implicated in bacterial colonization and virulence. The present study sets the basis to investigate the influence of natural genetic variations in FadR subfamily regulators on their sensitivity to sugar acids and ultimately on host-bacterial interactions.
Collapse
Affiliation(s)
- Garima Arya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Mohinder Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, India
| | - Bhupinder Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Vishal Agrawal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
11
|
Jimenez AG, Ellermann M, Abbott W, Sperandio V. Diet-derived galacturonic acid regulates virulence and intestinal colonization in enterohaemorrhagic Escherichia coli and Citrobacter rodentium. Nat Microbiol 2019; 5:368-378. [PMID: 31873206 PMCID: PMC6992478 DOI: 10.1038/s41564-019-0641-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Enteric pathogens sense the complex chemistry within the gastrointestinal (GI) tract to efficiently compete with the resident microbiota and establish a colonization niche. Here we show that enterohemorrhagic E. coli (EHEC), and its surrogate murine infection model Citrobacter rodentium, sense galacturonic-acid to initiate a multi-layered program towards successful mammalian infection. Galacturonic-acid utilization as a carbon source aids the initial pathogen expansion. The main source of galacturonic-acid is dietary pectin, which is broken into galacturonic-acid by the prominent member of the microbiota, Bacteroides thetaiotamicron (Bt). This regulation occurs through the ExuR transcription factor. However, galacturonic-acid is also sensed as a signal through ExuR to modulate the expression of the genes encoding a molecular syringe known as a type three secretion system (T3SS) leading to infectious colitis and inflammation. Galacturonic-acid moonlights as a nutrient and a signal directing the exquisite microbiota-pathogen relationships within the GI tract. Importantly, this work highlights that differential dietary sugar availability impacts the relationship between the microbiota and enteric pathogens, as well as disease outcomes.
Collapse
Affiliation(s)
- Angel G Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melissa Ellermann
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Cabral DJ, Penumutchu S, Reinhart EM, Zhang C, Korry BJ, Wurster JI, Nilson R, Guang A, Sano WH, Rowan-Nash AD, Li H, Belenky P. Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome. Cell Metab 2019; 30:800-823.e7. [PMID: 31523007 PMCID: PMC6948150 DOI: 10.1016/j.cmet.2019.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/24/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Although antibiotics disturb the structure of the gut microbiota, factors that modulate these perturbations are poorly understood. Bacterial metabolism is an important regulator of susceptibility in vitro and likely plays a large role within the host. We applied a metagenomic and metatranscriptomic approach to link antibiotic-induced taxonomic and transcriptional responses within the murine microbiome. We found that antibiotics significantly alter the expression of key metabolic pathways at the whole-community and single-species levels. Notably, Bacteroides thetaiotaomicron, which blooms in response to amoxicillin, upregulated polysaccharide utilization. In vitro, we found that the sensitivity of this bacterium to amoxicillin was elevated by glucose and reduced by polysaccharides. Accordingly, we observed that dietary composition affected the abundance and expansion of B. thetaiotaomicron, as well as the extent of microbiome disruption with amoxicillin. Our work indicates that the metabolic environment of the microbiome plays a role in the response of this community to antibiotics.
Collapse
Affiliation(s)
- Damien J Cabral
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Elizabeth M Reinhart
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55904, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - August Guang
- Center for Computation & Visualization, Brown University, Brown University, Providence, RI 02906, USA; Center for Computational Biology of Human Disease, Brown University, Providence, RI 02906, USA
| | - William H Sano
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55904, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
13
|
Shimada T, Ogasawara H, Ishihama A. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12. Nucleic Acids Res 2019. [PMID: 29529243 PMCID: PMC5934670 DOI: 10.1093/nar/gky138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroshi Ogasawara
- Shinshu University, Research Center for Supports to Advanced Science, Division of Gene Research, Ueda, Nagano 386-8567, Japan.,Shinshu University, Research Center for Fungal and Microbial Dynamism, Kamiina, Nagano 399-4598, Japan
| | - Akira Ishihama
- Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
14
|
Purtov YA, Tutukina MN, Nikulin AD, Ozoline ON. The Topology of the Contacts of Potential Ligands for the UxuR Transcription Factor of Escherichia coli as Revealed by Flexible Molecular Docking. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Bessonova TA, Lekontseva NV, Shvyreva US, Nikulin AD, Tutukina MN, Ozoline ON. Overproduction and purification of the Escherichia coli transcription factors "toxic" to a bacterial cell. Protein Expr Purif 2019; 161:70-77. [PMID: 31054315 DOI: 10.1016/j.pep.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 11/28/2022]
Abstract
Transcription factors play a crucial role in control of life of a bacterial cell, working as switchers to a different life style or pathogenicity. To reconstruct the network of regulatory events taking place in changing growth conditions, we need to know regulons of as many transcription factors as possible, and motifs recognized by them. Experimentally this can be attained via ChIP-seq in vivo, SELEX and DNAse I footprinting in vitro. All these approaches require large amounts of purified proteins. However, overproduction of transcription factors leading to their extensive binding to the regulatory elements on the DNA make them toxic to a bacterial cell thus significantly complicating production of a soluble protein. Here, on the example of three regulators from Escherichia coli, UxuR, ExuR, and LeuO, we show that stable production of toxic transcription factors in a soluble fraction can be significantly enhanced by holding the expression of a recombinant protein back at the early stages of bacterial growth. This can be achieved by cloning genes together with their regulatory regions containing repressor sites, with subsequent growth in a very rich media where activity of excessive regulators is not crucial, followed by induction with a very low concentration of an inducer. Schemes of further purification of these proteins were developed, and functional activity was confirmed.
Collapse
Affiliation(s)
- Tatiana A Bessonova
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russia; Institute of Protein Research RAS, Pushchino, Moscow region, 142290, Russia; Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | - Uliana S Shvyreva
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russia; Institute of Protein Research RAS, Pushchino, Moscow region, 142290, Russia
| | - Alexey D Nikulin
- Institute of Protein Research RAS, Pushchino, Moscow region, 142290, Russia
| | - Maria N Tutukina
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russia; Kharkevich Institute for Information Transmission Problems RAS, Moscow, 127051, Russia
| | - Olga N Ozoline
- Institute of Cell Biophysics of RAS, Pushchino, Moscow region, 142290, Russia
| |
Collapse
|
16
|
Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in Escherichia coli. J Bacteriol 2019; 201:JB.00281-18. [PMID: 30455279 DOI: 10.1128/jb.00281-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
d-Galactonate, an aldonic sugar acid, is used as a carbon source by Escherichia coli, and the structural dgo genes involved in its metabolism have previously been investigated. Here, using genetic, biochemical and bioinformatics approaches, we present the first detailed molecular and functional insights into the regulation of d-galactonate metabolism in E. coli K-12 by the transcriptional regulator DgoR. We found that dgoR deletion accelerates the growth of E. coli in d-galactonate concomitant with the strong constitutive expression of dgo genes. In the dgo locus, sequence upstream of dgoR alone harbors the d-galactonate-inducible promoter that likely drives the expression of all dgo genes. DgoR exerts repression on the dgo operon by binding two inverted repeats overlapping the dgo promoter. Binding of d-galactonate induces a conformational change in DgoR to derepress the dgo operon. The findings from our work firmly place DgoR in the GntR family of transcriptional regulators: DgoR binds an operator sequence [5'-TTGTA(G/C)TACA(A/T)-3'] matching the signature of GntR family members that recognize inverted repeats [5'-(N) y GT(N) x AC(N) y -3', where x and y indicate the number of nucleotides, which varies], and it shares critical protein-DNA contacts. We also identified features in DgoR that are otherwise less conserved in the GntR family. Recently, missense mutations in dgoR were recovered in a natural E. coli isolate adapted to the mammalian gut. Our results show these mutants to be DNA binding defective, emphasizing that mutations in the dgo-regulatory elements are selected in the host to allow simultaneous induction of dgo genes. The present study sets the basis to explore the regulation of dgo genes in additional enterobacterial strains where they have been implicated in host-bacterium interactions.IMPORTANCE d-Galactonate is a widely prevalent aldonic sugar acid. Despite the proposed significance of the d-galactonate metabolic pathway in the interaction of enteric bacteria with their hosts, there are no details on its regulation even in Escherichia coli, which has been known to utilize d-galactonate since the 1970s. Here, using multiple methodologies, we identified the promoter, operator, and effector of DgoR, the transcriptional repressor of d-galactonate metabolism in E. coli We establish DgoR as a GntR family transcriptional regulator. Recently, a human urinary tract isolate of E. coli introduced in the mouse gut was found to accumulate missense mutations in dgoR Our results show these mutants to be DNA binding defective, hence emphasizing the role of the d-galactonate metabolic pathway in bacterial colonization of the mammalian gut.
Collapse
|
17
|
Novel Metabolic Pathways and Regulons for Hexuronate Utilization in Proteobacteria. J Bacteriol 2018; 201:JB.00431-18. [PMID: 30249705 DOI: 10.1128/jb.00431-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
We used comparative genomics to reconstruct d-galacturonic and d-glucuronic acid catabolic pathways and associated transcriptional regulons involving the tripartite ATP-independent periplasmic (TRAP) family transporters that bind hexuronates in proteobacteria. The reconstructed catabolic network involves novel transcription factors, catabolic enzymes, and transporters for utilization of both hexuronates and aldarates (d-glucarate and meso-galactarate). The reconstructed regulons for a novel GntR family transcription factor, GguR, include the majority of hexuronate/aldarate utilization genes in 47 species from the Burkholderiaceae, Comamonadaceae, Halomonadaceae, and Pseudomonadaceae families. GudR, GulR, and UdhR are additional local regulators of some hexuronate/aldarate utilization genes in some of the above-mentioned organisms. The predicted DNA binding motifs of GguR and GudR regulators from Ralstonia pickettii and Polaromonas were validated by in vitro binding assays. Genes from the GulR- and GguR-controlled loci were differentially expressed in R. pickettii grown on hexuronates and aldarates. By a combination of bioinformatics and experimental techniques we identified a novel variant of the oxidative pathway for hexuronate utilization, including two previously uncharacterized subfamilies of lactone hydrolases (UxuL and UxuF). The genomic context of respective genes and reconstruction of associated pathways suggest that both enzymes catalyze the conversion of d-galactaro- and d-glucaro-1,5-lactones to the ring-opened aldarates. The activities of the purified recombinant enzymes, UxuL and UxuF, from four proteobacterial species were directly confirmed and kinetically characterized. The inferred novel aldarate-specific transporter from the tripartite tricarboxylate transporter (TTT) family transporter TctC was confirmed to bind d-glucarate in vitro This study expands our knowledge of bacterial carbohydrate catabolic pathways by identifying novel families of catabolic enzymes, transcriptional regulators, and transporters.IMPORTANCE Hexuronate catabolic pathways and their transcriptional networks are highly variable among different bacteria. We identified novel transcriptional regulators that control the hexuronate and aldarate utilization genes in four families of proteobacteria. By regulon reconstruction and genome context analysis we identified several novel components of the common hexuronate/aldarate utilization pathways, including novel uptake transporters and catabolic enzymes. Two novel families of lactonases involved in the oxidative pathway of hexuronate catabolism were characterized. Novel transcriptional regulons were validated via in vitro binding assays and gene expression studies with Polaromonas and Ralstonia species. The reconstructed catabolic pathways are interconnected with each other metabolically and coregulated via the GguR regulons in proteobacteria.
Collapse
|
18
|
Kaznadzey A, Shelyakin P, Belousova E, Eremina A, Shvyreva U, Bykova D, Emelianenko V, Korosteleva A, Tutukina M, Gelfand MS. The genes of the sulphoquinovose catabolism in Escherichia coli are also associated with a previously unknown pathway of lactose degradation. Sci Rep 2018; 8:3177. [PMID: 29453395 PMCID: PMC5816610 DOI: 10.1038/s41598-018-21534-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022] Open
Abstract
Comparative genomics analysis of conserved gene cassettes demonstrated resemblance between a recently described cassette of genes involved in sulphoquinovose degradation in Escherichia coli K-12 MG1655 and a Bacilli cassette linked with lactose degradation. Six genes from both cassettes had similar functions related to carbohydrate metabolism, namely, hydrolase, aldolase, kinase, isomerase, transporter, and transcription factor. The Escherichia coli sulphoglycolysis cassette was thus predicted to be associated with lactose degradation. This prediction was confirmed experimentally: expression of genes coding for aldolase (yihT), isomerase (yihS), and kinase (yihV) was dramatically increased during growth on lactose. These genes were previously shown to be activated during growth on sulphoquinovose, so our observation may indicate multi-functional capabilities of the respective proteins. Transcription starts for yihT, yihV and yihW were mapped in silico, in vitro and in vivo. Out of three promoters for yihT, one was active only during growth on lactose. We further showed that switches in yihT transcription are controlled by YihW, a DeoR-family transcription factor in the Escherichia coli cassette. YihW acted as a carbon source-dependent dual regulator involved in sustaining the baseline growth in the absence of lac-operon, with function either complementary, or opposite to a global regulator of carbohydrate metabolism, cAMP-CRP.
Collapse
Affiliation(s)
- Anna Kaznadzey
- A. A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia
| | - Pavel Shelyakin
- A. A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia
- N. I. Vavilov Institute of General Genetics, RAS, ul. Gubkina 3, Moscow, 119991, Russia
| | - Evgeniya Belousova
- M. V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
| | - Aleksandra Eremina
- The University of Edinburgh, Alexander Crum Brown Rd, Edinburgh, Scotland, EH9 3FF, UK
| | - Uliana Shvyreva
- Institute of Cell Biophysics, RAS, Institutskaya 3, Pushchino, 142290, Russia
| | - Darya Bykova
- M. V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
| | - Vera Emelianenko
- M. V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
| | | | - Maria Tutukina
- Institute of Cell Biophysics, RAS, Institutskaya 3, Pushchino, 142290, Russia.
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Mikhail S Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia
- M. V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143028, Russia
- Faculty of Computer Science, Higher School of Economics, Kochnovsky pr. 3, Moscow, 125319, Russia
| |
Collapse
|
19
|
Bessonova TA, Shumeiko SA, Purtov YA, Antipov SS, Preobrazhenskaya EV, Tutukina MN, Ozoline ON. Hexuronates influence the oligomeric form of the Dps structural protein of bacterial nucleoid and its ability to bind to linear DNA fragments. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350916060075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|