1
|
Liu P, Ye Y, Xiang S, Li Y, Zhu C, Chen Z, Hu J, Gen Y, Lou L, Duan X, Zhang J, Gu W. iTRAQ-Based Quantitative Proteomics Analysis Reveals the Invasion Mechanism of Spiroplasma eriocheiris in 3T6 Cells. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164619666220113154423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Spiroplasma eriocheiris is a novel pathogen of freshwater crustaceans and
is closely related to S. mirum. They have no cell wall and a helical morphology. They have the ability
to infect mammals with an unclear mechanism.
Objective:
In this study, our aim was to investigate the profile of protein expression in 3T6 cells infected
with S. eriocheiris.
Methods:
The proteome of 3T6 cells infected by S. eriocheiris was systematically investigated by
iTRAQ.
Results:
We identified and quantified 4915 proteins, 67 differentially proteins were found, including
30 up-regulated proteins and 37 down-regulated proteins. GO term analysis shows that dysregulation
of adhesion protein , interferon and cytoskeletal regulation are associated with apoptosis. Adhesion
protein Vcam1 and Interferon-induced protein GBP2, Ifit1, TAPBP, CD63 ,Arhgef2 were
up-regulated. A key cytoskeletal regulatory protein, ARHGEF17 was down-regulated. KEGG pathway
analysis showed the NF-kappa B signaling pathway, the MAPK signaling pathway , the Jak-STAT
signaling pathway and NOD-like receptor signaling are closely related to apoptosis in vivo.
Conclusion:
Analysis of the signaling pathways involved in invasion may provide new insights for
understanding the infection mechanisms of S. eriocheiris.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Shasha Xiang
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Yuxin Li
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Chengbin Zhu
- Hengyang Chinese
Medicine Hospital, Hengyang 421001, Hunan, China
| | - Zixu Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Jie Hu
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Ye Gen
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Li Lou
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Xuqi Duan
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Juan Zhang
- Institute of Pathogenic Biology, Hengyang Medical College, Institute of Pharmacy and Pharmacology, University of
South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative
Innovation Center for Molecular Target New Drug Study, Hengyang 421001, Hunan, China
| | - Wei Gu
- Jiangsu Key Laboratory
for Microbes & Functional Genomics and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College
of Life Sciences, Nanjing Normal University, No.1 Wenyuan Road, 210046 Nanjing, China
- Co-Innovation Center for
Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu, China
| |
Collapse
|
2
|
Kim SH, Song JH, Kim J, Kang DK. Characterisation of a lysophospholipase from Lactobacillus mucosae. Biotechnol Lett 2020; 42:1735-1741. [PMID: 32342437 DOI: 10.1007/s10529-020-02895-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In this study, we characterised a novel lysophospholipase (LysoPL) from the L. mucosae LM1 strain. The gene, LM-lysoPL, encoding LysoPL from L. mucosae LM1 was cloned, analyzed, and expressed. RESULTS LM-lysoPL contained a conserved region and catalytic triad motif responsible for lysophospholipase activity. After purification, UHPLC-MS analysis showed that recombinant LM-LysoPL hydrolyzed phosphatidic acid, generating lysophosphatidic acid. The enzyme had greater hydrolytic activity against C16 and C18 fatty acids, indicating a preference for long-chain fatty acids. Enzymatic assays showed that the optimal pH and temperature of recombinant LM-LysoPL were 7 and 30 °C, respectively, and it was enzymatically active within a narrow pH range. CONCLUSIONS To the best of our knowledge, this is the first study to identify and characterize a lysophospholipase from lactic acid bacteria. Our findings provide a basis for understanding the probiotic role of L. mucosae LM1 in the gut.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Animal Resource Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Ji Hoon Song
- Department of Animal Resource Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Resource Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resource Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
3
|
FTIR Microspectroscopy for the Assessment of Mycoplasmas in HepG2 Cell Culture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To assess the presence and absence of mycoplasma contamination in cell culture, Fourier transform infrared (FTIR) microspectroscopy, coupled with multivariate analysis, was deployed to determine the biomolecular changes in hepatocellular carcinoma cells, HepG2, before and after mycoplasma contamination. The contaminated HepG2 cells were treated with antibiotic BM-Cyclin to decontaminate the mycoplasma, and polymerase chain reaction (PCR) was then performed to confirm the presence or the absence of mycoplasma contamination. The contaminated and decontaminated HepG2 cells were analyzed by FTIR microspectroscopy with principal component analysis (PCA) and peak integral area analysis. The results showed that the FTIR spectra of contaminated HepG2 cells demonstrated the alteration in the IR spectra corresponding to the lipid, protein, and nucleic acid regions. PCA analysis distinguished the spectral differences between the groups of mycoplasma-contaminated and -decontaminated cells. The PCA loading plots suggest that lipid and protein are the main contributed molecules for the difference between these two cell groups. Peak integral area analysis illustrated the increase of lipid and nucleic acid and the decrease of protein contents in the contaminated HepG2 cells. FTIR microspectroscopy is, therefore, proven to be a potential tool for assessing mycoplasma removal by monitoring biomolecular alterations in cell culture.
Collapse
|
4
|
Ning M, Xiu Y, Yuan M, Bi J, Hou L, Gu W, Wang W, Meng Q. Spiroplasma eriocheiris Invasion Into Macrobrachium rosenbergii Hemocytes Is Mediated by Pathogen Enolase and Host Lipopolysaccharide and β-1, 3-Glucan Binding Protein. Front Immunol 2019; 10:1852. [PMID: 31440244 PMCID: PMC6694788 DOI: 10.3389/fimmu.2019.01852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
Spiroplasma eriocheiris is a crustacean pathogen, without a cell wall, that causes enormous economic loss. Macrobrachium rosenbergii hemocytes are the major targets during S. eriocheiris infection. As wall-less bacteria, S. eriocheiris, its membrane protein should interact with host membrane protein directly and firstly when invaded in host cell. In this investigation, six potential hemocyte receptor proteins were identified firstly that mediate interaction between S. eriocheiris and M. rosenbergii. Among these proteins, lipopolysaccharide and β-1, 3-glucan binding protein (MrLGBP) demonstrated to bind to S. eriocheiris using bacterial binding assays and confocal microscopy. Four spiroplasma ligand proteins for MrLGBP were isolated and identified. But, competitive assessment demonstrated that only enolase of S. eriocheiris (SeEnolase) could be a candidate ligand for MrLGBP. Subsequently, the interaction between MrLGBP and SeEnolase was confirmed by co-immunoprecipitation and co-localization in vitro. After the interaction between MrLGBP and SeEnolase was inhibited by antibody neutralization test, the virulence ability of S. eriocheiris was effectively reduced. The quantity of S. eriocheiris decreased in Drosophila S2 cells after overexpression of MrLGBP, compared with the controls. In addition, RNA interference (RNAi) knockdown of MrLGBP made M. rosenbergii more sensitive to S. eriocheiris infection. Further studies found that the immune genes, including MrLGBP and prophenoloxidase (MrproPO), MrRab7A, and Mrintegrin α1 were significantly up-regulated by SeEnolase stimulation. After SeEnolase pre-stimulation, the ability of M. rosenbergii resistance to S. eriocheiris was significantly improved. Collectively, this investigation demonstrated that MrLGBP and pathogen SeEnolase involved in mediating S. eriocheiris invasion into M. rosenbergii hemocytes.
Collapse
Affiliation(s)
- Mingxiao Ning
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yunji Xiu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Meijun Yuan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Libo Hou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Co-innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China
| | - Wen Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Co-innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China
| |
Collapse
|
5
|
Hao W, Gao Q, Wang J, Gu W, Wang W, Meng Q. SPE0313 located at cell membrane of Spiroplasma eriocheiris is required for adhesion and invasion Eriocheir sinensis hemocytes. JOURNAL OF FISH DISEASES 2019; 42:423-430. [PMID: 30659624 DOI: 10.1111/jfd.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Wenjing Hao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qi Gao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jian Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, China
| | - Wen Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, China
| |
Collapse
|