1
|
Ostenfeld LJ, Sørensen AN, Neve H, Vitt A, Klumpp J, Sørensen MCH. A hybrid receptor binding protein enables phage F341 infection of Campylobacter by binding to flagella and lipooligosaccharides. Front Microbiol 2024; 15:1358909. [PMID: 38380094 PMCID: PMC10877375 DOI: 10.3389/fmicb.2024.1358909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Flagellotropic bacteriophages are interesting candidates as therapeutics against pathogenic bacteria dependent on flagellar motility for colonization and causing disease. Yet, phage resistance other than loss of motility has been scarcely studied. Here we developed a soft agar assay to study flagellotropic phage F341 resistance in motile Campylobacter jejuni. We found that phage adsorption was prevented by diverse genetic mutations in the lipooligosaccharides forming the secondary receptor of phage F341. Genome sequencing showed phage F341 belongs to the Fletchervirus genus otherwise comprising capsular-dependent C. jejuni phages. Interestingly, phage F341 encodes a hybrid receptor binding protein (RBP) predicted as a short tail fiber showing partial similarity to RBP1 encoded by capsular-dependent Fletchervirus, but with a receptor binding domain similar to tail fiber protein H of C. jejuni CJIE1 prophages. Thus, C. jejuni prophages may represent a genetic pool from where lytic Fletchervirus phages can acquire new traits like recognition of new receptors.
Collapse
Affiliation(s)
- Line Jensen Ostenfeld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Horst Neve
- Department of Microbiology and Biotechnology, Max-Rubner Institut, Kiel, Germany
| | - Amira Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Campylobacter jejuni Developed the Resistance to Bacteriophage CP39 by Phase Variable Expression of 06875 Encoding the CGPTase. Viruses 2022; 14:v14030485. [PMID: 35336892 PMCID: PMC8949473 DOI: 10.3390/v14030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage (phage) is regarded as an antimicrobial alternative for Campylobacter in food production. However, the development of phage resistance to the host is a main concern for the phage application. This study characterized the phage CP39 and investigated the phage resistance of CP39 in Campylobacter jejuni NCTC12662. We determined that phage CP39 belonged to the Myoviridae family by the WGS and phylogenetic analysis. Phage CP39 was confirmed as a capsular polysaccharide (CPS)-dependent phage by primary C. jejuni phage typing. It was further confirmed that the phage could not be adsorbed by the acapsular mutant ΔkpsM but showed the same lytic ability in both the wild-type strain NCTC 12662 and the ΔmotA mutant lacking motile flagella filaments. We further determined that the 06875 gene encoding CDP-glycerol:poly (glycerophosphate) glycerophosphotransferase (CGPTase) in the CPS loci was related to phage CP39 adsorption by SNP analysis and observed a rapid development of phage resistance in NCTC 12662 during the phage infection. Furthermore, we observed a high mutation frequency of 06875 (32%), which randomly occurred in nine different sites in the gene according to colony PCR sequencing. The mutation of the 06875 gene could cause the phase variable expression of non-functional protein and allow the bacteria against the phage infection by modifying the CPS. Our study confirmed the 06875 gene responsible for the CPS-phage adsorption for the first time and demonstrated the phase variable expression as a main mechanism for the bacteria to defend phage CP39. Our study provided knowledge for the evolutionary adaption of bacteria against the bacteriophage, which could add more information to understand the phage resistance mechanism before applying in the industry.
Collapse
|
3
|
Sørensen MCH, Gencay YE, Fanger F, Chichkova MAT, Mazúrová M, Klumpp J, Nielsen EM, Brøndsted L. Identification of Novel Phage Resistance Mechanisms in Campylobacter jejuni by Comparative Genomics. Front Microbiol 2022; 12:780559. [PMID: 34970240 PMCID: PMC8713573 DOI: 10.3389/fmicb.2021.780559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Phages infecting Campylobacter jejuni are considered a promising intervention strategy at broiler farms, yet phage sensitivity of naturally occurring poultry isolates is not well studied. Here, we investigated phage sensitivity and identified resistance mechanisms of C. jejuni strains originating from Danish broilers belonging to the most prevalent MLST (ST) types. Determining plaque formation of 51 phages belonging to Fletchervirus or Firehammervirus showed that 21 out of 31 C. jejuni strains were susceptible to at least one phage. While C. jejuni ST-21 strains encoded the common phase variable O-methyl phosphoramidate (MeOPN) receptor of the Fletchervirus and were only infected by these phages, ST-45 strains did not encode this receptor and were exclusively infected by Firehammervirus phages. To identify internal phage resistance mechanism in ST-21 strains, we performed comparative genomics of two strains, CAMSA2002 sensitive to almost all Fletchervirus phages and CAMSA2038, resistant to all 51 phages. The strains encoded diverse clustered regularly interspaced short palindromic repeats (CRISPR) spacers but none matched the tested phages. Sequence divergence was also observed in a predicted SspE homolog and putative restriction modification systems including a methyl-specific McrBC endonuclease. Furthermore, when mcrB was deleted, CAMSA2038 became sensitive to 17 out of 43 phages, three being Firehammervirus phages that otherwise did not infect any ST-21 strains. Yet, 16 phages demonstrated significantly lower efficiencies of plating on the mcrB mutant suggesting additional resistance mechanism still restricting phage propagation in CAMSA2038. Thus, our work demonstrates that C. jejuni isolates originating from broilers may have acquired several resistance mechanisms to successfully prevent phage infection in their natural habitat.
Collapse
Affiliation(s)
- Martine C H Sørensen
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yilmaz Emre Gencay
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Florian Fanger
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mariana A T Chichkova
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mária Mazúrová
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Eva M Nielsen
- Foodborne Infections, Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lone Brøndsted
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Reduced Infection Efficiency of Phage NCTC 12673 on Non-Motile Campylobacter jejuni Strains Is Related to Oxidative Stress. Viruses 2021; 13:v13101955. [PMID: 34696385 PMCID: PMC8540345 DOI: 10.3390/v13101955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 01/26/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative foodborne pathogen that causes diarrheal disease and is associated with severe post-infectious sequelae. Bacteriophages (phages) are a possible means of reducing Campylobacter colonization in poultry to prevent downstream human infections. However, the factors influencing phage-host interactions must be better understood before this strategy can be predictably employed. Most studies have focused on Campylobacter phage binding to the host surface, with all phages classified as either capsule- or flagella-specific. Here we describe the characterization of a C. jejuni phage that requires functional flagellar glycosylation and motor genes for infection, without needing the flagella for adsorption to the cell surface. Through phage infectivity studies of targeted C. jejuni mutants, transcriptomic analysis of phage-resistant mutants, and genotypic and phenotypic analysis of a spontaneous phage variant capable of simultaneously overcoming flagellar gene dependence and sensitivity to oxidative stress, we have uncovered a link between oxidative stress, flagellar motility, and phage infectivity. Taken together, our results underscore the importance of understanding phage-host interactions beyond the cell surface and point to host oxidative stress state as an important and underappreciated consideration for future phage-host interaction studies.
Collapse
|
5
|
Yamamoto S, Iyoda S, Ohnishi M. Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes. mBio 2021; 12:e0140121. [PMID: 34425708 PMCID: PMC8437040 DOI: 10.1128/mbio.01401-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Hypermutable simple sequence repeats (SSRs) are major drivers of phase variation in Campylobacter jejuni. The presence of multiple SSR-mediated phase-variable genes encoding enzymes that modify surface structures, including capsular polysaccharide (CPS) and lipooligosaccharide (LOS), generates extreme cell surface diversity within bacterial populations, thereby promoting adaptation to selective pressures in host environments. Therefore, genetically controlling SSR-mediated phase variation can be important for achieving stable and reproducible research on C. jejuni. Here, we show that natural "cotransformation" is an effective method for C. jejuni genome editing. Cotransformation is a trait of naturally competent bacteria that causes uptake/integration of multiple different DNA molecules, which has been recently adapted to multiplex genome editing by natural transformation (MuGENT), a method for introducing multiple mutations into the genomes of these bacteria. We found that cotransformation efficiently occurred in C. jejuni. To examine the feasibility of MuGENT in C. jejuni, we "locked" different polyG SSR tracts in strain NCTC11168 (which are located in the biosynthetic CPS/LOS gene clusters) into either the ON or OFF configurations. This approach, termed "MuGENT-SSR," enabled the generation of all eight edits within 2 weeks and the identification of a phase-locked strain with a highly stable type of Penner serotyping, a CPS-based serotyping scheme. Furthermore, extensive genome editing of this strain by MuGENT-SSR identified a phase-variable gene that determines the Penner serotype of NCTC11168. Thus, MuGENT-SSR provides a platform for genetic and phenotypic engineering of genetically unstable C. jejuni, making it a reliable approach for elucidating the mechanisms underlying phase-variable expression of specific phenotypes. IMPORTANCE Campylobacter jejuni is the leading bacterial cause of foodborne gastroenteritis in developed countries and occasionally progresses to the autoimmune disease Guillain-Barré syndrome. A relatively large number of hypermutable simple sequence repeat (SSR) tracts in the C. jejuni genome markedly decreases its phenotypic stability through reversible changes in the ON or OFF expression states of the genes in which they reside, a phenomenon called phase variation. Thus, controlling SSR-mediated phase variation can be important for achieving stable and reproducible research on C. jejuni. In this study, we developed a feasible and effective approach for genetically manipulate multiple SSR tracts in the C. jejuni genome using natural cotransformation, a trait of naturally transformable bacterial species that causes the uptake and integration of multiple different DNA molecules. This approach will greatly help to improve the genetic and phenotypic stability of C. jejuni to enable diverse applications in research and development.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
6
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
7
|
Cayrou C, Barratt NA, Ketley JM, Bayliss CD. Phase Variation During Host Colonization and Invasion by Campylobacter jejuni and Other Campylobacter Species. Front Microbiol 2021; 12:705139. [PMID: 34394054 PMCID: PMC8355987 DOI: 10.3389/fmicb.2021.705139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Phase variation (PV) is a phenomenon common to a variety of bacterial species for niche adaption and survival in challenging environments. Among Campylobacter species, PV depends on the presence of intergenic and intragenic hypermutable G/C homopolymeric tracts. The presence of phase-variable genes is of especial interest for species that cause foodborne or zoonotic infections in humans. PV influences the formation and the structure of the lipooligosaccharide, flagella, and capsule in Campylobacter species. PV of components of these molecules is potentially important during invasion of host tissues, spread within hosts and transmission between hosts. Motility is a critical phenotype that is potentially modulated by PV. Variation in the status of the phase-variable genes has been observed to occur during colonization in chickens and mouse infection models. Interestingly, PV is also involved in bacterial survival of attack by bacteriophages even during chicken colonization. This review aims to explore and discuss observations of PV during model and natural infections by Campylobacter species and how PV may affect strategies for fighting infections by this foodborne pathogen.
Collapse
Affiliation(s)
- Caroline Cayrou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Natalie A Barratt
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Julian M Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christopher D Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
8
|
Sørensen MCH, Vitt A, Neve H, Soverini M, Ahern SJ, Klumpp J, Brøndsted L. Campylobacter phages use hypermutable polyG tracts to create phenotypic diversity and evade bacterial resistance. Cell Rep 2021; 35:109214. [PMID: 34107245 DOI: 10.1016/j.celrep.2021.109214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Phase variation is a common mechanism for creating phenotypic heterogeneity of surface structures in bacteria important for niche adaptation. In Campylobacter, phase variation occurs by random variation in hypermutable homonucleotide 7-11 G (polyG) tracts. To elucidate how phages adapt to phase-variable hosts, we study Fletchervirus phages infecting Campylobacter dependent on a phase-variable receptor. Our data demonstrate that Fletcherviruses mimic their host and encode hypermutable polyG tracts, leading to phase-variable expression of two of four receptor-binding proteins. This creates phenotypically diverse phage populations, including a sub-population that infects the bacterial host when the phase-variable receptor is not expressed. Such population dynamics of both phage and host promote co-existence in a shared niche. Strikingly, we identify polyG tracts in more than 100 phage genera, infecting more than 70 bacterial species. Future experimental work may confirm phase variation as a widespread strategy for creating phenotypically diverse phage populations.
Collapse
Affiliation(s)
- Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Amira Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max-Rubner Institut, 24103 Kiel, Germany
| | - Matteo Soverini
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Stephen James Ahern
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
9
|
Kittler S, Steffan S, Peh E, Plötz M. Phage Biocontrol of Campylobacter: A One Health Approach. Curr Top Microbiol Immunol 2021; 431:127-168. [PMID: 33620651 DOI: 10.1007/978-3-030-65481-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human infections by Campylobacter species are among the most reported bacterial gastrointestinal diseases in the European Union and worldwide with severe outcomes in rare cases. Considering the transmission routes and farm animal reservoirs of these zoonotic pathogens, a comprehensive One Health approach will be necessary to reduce human infection rates. Bacteriophages are viruses that specifically infect certain bacterial genera, species, strains or isolates. Multiple studies have demonstrated the general capacity of phage treatments to reduce Campylobacter loads in the chicken intestine. However, phage treatments are not yet approved for extensive use in the agro-food industry in Europe. Technical inconvenience is mainly related to the efficacy of phages, depending on the optimal choice of phages and their combination, as well as application route, concentration and timing. Additionally, regulatory uncertainties have been a major concern for investment in commercial phage-based products. This review addresses the question as to how phages can be put into practice and can help to solve the issue of human campylobacteriosis in a sustainable One Health approach. By compiling the reported findings from the literature in a standardized manner, we enabled inter-experimental comparisons to increase our understanding of phage infection in Campylobacter spp. and practical on-farm studies. Further, we address some of the hurdles that still must be overcome before this new methodology can be adapted on an industrial scale. We envisage that phage treatment can become an integrated and standardized part of a multi-hurdle anti-bacterial strategy in food production. The last part of this chapter deals with some of the issues raised by legal authorities, bringing together current knowledge on Campylobacter-specific phages and the biosafety requirements for approval of phage treatment in the food industry.
Collapse
Affiliation(s)
- Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Severin Steffan
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| |
Collapse
|
10
|
Abstract
Thermophilic Campylobacter, in particular Campylobacter jejuni, C. coli and C. lari are the main relevant Campylobacter species for human infections. Due to their high capacity of genetic exchange by horizontal gene transfer (HGT), rapid adaptation to changing environmental and host conditions contribute to successful spreading and persistence of these foodborne pathogens. However, extensive HGT can exert dangerous side effects for the bacterium, such as the incorporation of gene fragments leading to disturbed gene functions. Here we discuss mechanisms of HGT, notably natural transformation, conjugation and bacteriophage transduction and limiting regulatory strategies of gene transfer. In particular, we summarize the current knowledge on how the DNA macromolecule is exchanged between single cells. Mechanisms to stimulate and to limit HGT obviously coevolved and maintained an optimal balance. Chromosomal rearrangements and incorporation of harmful mutations are risk factors for survival and can result in drastic loss of fitness. In Campylobacter, the restricted recognition and preferential uptake of free DNA from relatives are mediated by a short methylated DNA pattern and not by a classical DNA uptake sequence as found in other bacteria. A class two CRISPR-Cas system is present but also other DNases and restriction-modification systems appear to be important for Campylobacter genome integrity. Several lytic and integrated bacteriophages have been identified, which contribute to genome diversity. Furthermore, we focus on the impact of gene transfer on the spread of antibiotic resistance genes (resistome) and persistence factors. We discuss remaining open questions in the HGT field, supposed to be answered in the future by current technologies like whole-genome sequencing and single-cell approaches.
Collapse
Affiliation(s)
- Julia Carolin Golz
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| |
Collapse
|
11
|
Burnham PM, Hendrixson DR. Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol 2019; 16:551-565. [PMID: 29892020 DOI: 10.1038/s41579-018-0037-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in many areas of the world. The high incidence of sporadic cases of disease in humans is largely due to its prevalence as a zoonotic agent in animals, both in agriculture and in the wild. Compared with many other enteric bacterial pathogens, C. jejuni has strict growth and nutritional requirements and lacks many virulence and colonization determinants that are typically used by bacterial pathogens to infect hosts. Instead, C. jejuni has a different collection of factors and pathways not typically associated together in enteric pathogens to establish commensalism in many animal hosts and to promote diarrhoeal disease in the human population. In this Review, we discuss the cellular architecture and structure of C. jejuni, intraspecies genotypic variation, the multiple roles of the flagellum, specific nutritional and environmental growth requirements and how these factors contribute to in vivo growth in human and avian hosts, persistent colonization and pathogenesis of diarrhoeal disease.
Collapse
Affiliation(s)
- Peter M Burnham
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
|
13
|
Wanford JJ, Lango-Scholey L, Nothaft H, Hu Y, Szymanski CM, Bayliss CD. Random sorting of Campylobacter jejuni phase variants due to a narrow bottleneck during colonization of broiler chickens. MICROBIOLOGY-SGM 2019; 164:896-907. [PMID: 29856309 PMCID: PMC6097035 DOI: 10.1099/mic.0.000669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phase variation (PV), involving stochastic switches in gene expression, is exploited by the human pathogen Campylobacter jejuni to adapt to different environmental and host niches. Phase-variable genes of C. jejuni modulate expression of multiple surface determinants, and hence may influence host colonization. Population bottlenecks can rapidly remove the diversity generated by PV, and strict single-cell bottlenecks can lead to propagation of PV states with highly divergent phenotypes. Using a combination of high-throughput fragment size analysis and comparison with in vivo and in silico bottleneck models, we have characterized a narrow population bottleneck during the experimental colonization of broiler chickens with C. jejuni strain 81-176. We identified high levels of variation in five PV genes in the inoculum, and subsequently, massively decreased population diversity following colonization. Each bird contained a dominant five-gene phasotype that was present in the inoculum indicative of random sorting through a narrow, non-selective bottleneck during colonization. These results are evidence of the potential for confounding effects of PV on in vivo studies of Campylobacter colonization factors and poultry vaccine studies. Our results are also an argument for population bottlenecks as mediators of stochastic variability in the propensity to survive through the food chain and cause clinical human disease.
Collapse
Affiliation(s)
- Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Lea Lango-Scholey
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Yue Hu
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Christine M Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, USA.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
14
|
Richards PJ, Connerton PL, Connerton IF. Phage Biocontrol of Campylobacter jejuni in Chickens Does Not Produce Collateral Effects on the Gut Microbiota. Front Microbiol 2019; 10:476. [PMID: 30930877 PMCID: PMC6423408 DOI: 10.3389/fmicb.2019.00476] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 02/02/2023] Open
Abstract
Bacteriophage biocontrol to reduce Campylobacter jejuni levels in chickens can reduce human exposure and disease acquired through the consumption of contaminated poultry products. Investigating changes in the chicken microbiota during phage treatment has not previously been undertaken but is crucial to understanding the system-wide effects of such treatments to establish a sustainable application. A phage cocktail containing two virulent Campylobacter phages was used to treat broiler chickens colonized with C. jejuni HPC5. Campylobacter counts from cecal contents were significantly reduced throughout the experimental period but were most effective 2 days post-treatment showing a reduction of 2.4 log10 CFU g-1 relative to mock-treated Campylobacter colonized controls. The administered phages replicated in vivo to establish stable populations. Bacteriophage predation of C. jejuni was not found to affect the microbiota structure but selectively reduced the relative abundance of C. jejuni without affecting other bacteria.
Collapse
Affiliation(s)
| | | | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
15
|
Głowacka-Rutkowska A, Gozdek A, Empel J, Gawor J, Żuchniewicz K, Kozińska A, Dębski J, Gromadka R, Łobocka M. The Ability of Lytic Staphylococcal Podovirus vB_SauP_phiAGO1.3 to Coexist in Equilibrium With Its Host Facilitates the Selection of Host Mutants of Attenuated Virulence but Does Not Preclude the Phage Antistaphylococcal Activity in a Nematode Infection Model. Front Microbiol 2019; 9:3227. [PMID: 30713528 PMCID: PMC6346686 DOI: 10.3389/fmicb.2018.03227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Phage vB_SauP_phiAGO1.3 (phiAGO1.3) is a polyvalent Staphylococcus lytic podovirus with a 17.6-kb genome (Gozdek et al., 2018). It can infect most of the Staphylococcus aureus human isolates of dominant clonal complexes. We show that a major factor contributing to the wide host range of phiAGO1.3 is a lack or sparcity of target sites for certain restriction-modification systems of types I and II in its genome. Phage phiAGO1.3 requires for adsorption β-O-GlcNAcylated cell wall teichoic acid, which is also essential for the expression of methicillin resistance. Under certain conditions an exposure of S. aureus to phiAGO1.3 can lead to the establishment of a mixed population in which the bacteria and phages remain in equilibrium over multiple generations. This is reminiscent of the so called phage carrier state enabling the co-existence of phage-resistant and phage-sensitive cells supporting a continuous growth of the bacterial and phage populations. The stable co-existence of bacteria and phage favors the emergence of phage-resistant variants of the bacterium. All phiAGO1.3-resistant cells isolated from the phage-carrier-state cultures contained a mutation inactivating the two-component regulatory system ArlRS, essential for efficient expression of numerous S. aureus virulence-associated traits. Moreover, the mutants were unaffected in their susceptibility to infection with an unrelated, polyvalent S. aureus phage of the genus Kayvirus. The ability of phiAGO1.3 to establish phage-carrier-state cultures did not preclude its antistaphylococcal activity in vivo in an S. aureus nematode infection model. Taken together our results suggest that phiAGO1.3 could be suitable for the therapeutic application in humans and animals, alone or in cocktails with Kayvirus phages. It might be especially useful in the treatment of infections with the majority of methicillin-resistant S. aureus strains.
Collapse
Affiliation(s)
- Aleksandra Głowacka-Rutkowska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Gozdek
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Żuchniewicz
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Kozińska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Janusz Dębski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Aidley J, Wanford JJ, Green LR, Sheppard SK, Bayliss CD. PhasomeIt: an 'omics' approach to cataloguing the potential breadth of phase variation in the genus Campylobacter. Microb Genom 2018; 4:e000228. [PMID: 30351264 PMCID: PMC6321876 DOI: 10.1099/mgen.0.000228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
Hypermutable simple sequence repeats (SSRs) are drivers of phase variation (PV) whose stochastic, high-frequency, reversible switches in gene expression are a common feature of several pathogenic bacterial species, including the human pathogen Campylobacter jejuni. Here we examine the distribution and conservation of known and putative SSR-driven phase variable genes - the phasome - in the genus Campylobacter. PhasomeIt, a new program, was specifically designed for rapid identification of SSR-mediated PV. This program detects the location, type and repeat number of every SSR. Each SSR is linked to a specific gene and its putative expression state. Other outputs include conservation of SSR-driven phase-variable genes and the 'core phasome' - the minimal set of PV genes in a phylogenetic grouping. Analysis of 77 complete Campylobacter genome sequences detected a 'core phasome' of conserved PV genes in each species and a large number of rare PV genes with few, or no, homologues in other genome sequences. Analysis of a set of partial genome sequences, with food-chain-associated metadata, detected evidence of a weak link between phasome and source host for disease-causing isolates of sequence type (ST)-828 but not the ST-21 or ST-45 complexes. Investigation of the phasomes in the genus Campylobacter provided evidence of overlapping but distinctive mechanisms of PV-mediated adaptation to specific niches. This suggests that the phasome could be involved in host adaptation and spread of campylobacters. Finally, this tool is malleable and will have utility for studying the distribution and genic effects of other repetitive elements in diverse bacterial species.
Collapse
Affiliation(s)
- Jack Aidley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J. Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Luke R. Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Samuel K. Sheppard
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
17
|
Phase-Variable Genotypes Sweetened by Glycosylation Phenotypes. J Bacteriol 2018; 200:JB.00316-18. [PMID: 29866804 DOI: 10.1128/jb.00316-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The affordability of bacterial genome sequencing has provided a helpful tool for sequencing large strain collections. Bente Børud (J. Bacteriol. 200:e00794-17, 2018, https://doi.org/doi:10.1128/JB.00794-17) recently led an effort to analyze the genomes of a collection of oropharyngeal Neisseria meningitidis isolates from 50 healthy individuals. Paired longitudinal isolates from each individual were sequenced. Genome analyses focused on (i) predicting the expression state of phase-variable loci that encode enzymes important for O-linked protein glycosylation and (ii) correlating specific genotypes with glycosylation phenotypes.
Collapse
|
18
|
Sacher JC, Flint A, Butcher J, Blasdel B, Reynolds HM, Lavigne R, Stintzi A, Szymanski CM. Transcriptomic Analysis of the Campylobacter jejuni Response to T4-Like Phage NCTC 12673 Infection. Viruses 2018; 10:E332. [PMID: 29914170 PMCID: PMC6024767 DOI: 10.3390/v10060332] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Campylobacter jejuni is a frequent foodborne pathogen of humans. As C. jejuni infections commonly arise from contaminated poultry, phage treatments have been proposed to reduce the C. jejuni load on farms to prevent human infections. While a prior report documented the transcriptome of C. jejuni phages during the carrier state life cycle, transcriptomic analysis of a lytic C. jejuni phage infection has not been reported. We used RNA-sequencing to profile the infection of C. jejuni NCTC 11168 by the lytic T4-like myovirus NCTC 12673. Interestingly, we found that the most highly upregulated host genes upon infection make up an uncharacterized operon (cj0423⁻cj0425), which includes genes with similarity to T4 superinfection exclusion and antitoxin genes. Other significantly upregulated genes include those involved in oxidative stress defense and the Campylobactermultidrug efflux pump (CmeABC). We found that phage infectivity is altered by mutagenesis of the oxidative stress defense genes catalase (katA), alkyl-hydroxyperoxidase (ahpC), and superoxide dismutase (sodB), and by mutagenesis of the efflux pump genes cmeA and cmeB. This suggests a role for these gene products in phage infection. Together, our results shed light on the phage-host dynamics of an important foodborne pathogen during lytic infection by a T4-like phage.
Collapse
Affiliation(s)
- Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Annika Flint
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Bob Blasdel
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven 3001, Belgium.
| | - Hayley M Reynolds
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven 3001, Belgium.
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Gencay YE, Sørensen MCH, Wenzel CQ, Szymanski CM, Brøndsted L. Phase Variable Expression of a Single Phage Receptor in Campylobacter jejuni NCTC12662 Influences Sensitivity Toward Several Diverse CPS-Dependent Phages. Front Microbiol 2018; 9:82. [PMID: 29467727 PMCID: PMC5808241 DOI: 10.3389/fmicb.2018.00082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni NCTC12662 is sensitive to infection by many Campylobacter bacteriophages. Here we used this strain to investigate the molecular mechanism behind phage resistance development when exposed to a single phage and demonstrate how phase variable expression of one surface component influences phage sensitivity against many diverse C. jejuni phages. When C. jejuni NCTC12662 was exposed to phage F207 overnight, 25% of the bacterial cells were able to grow on a lawn of phage F207, suggesting that resistance develops at a high frequency. One resistant variant, 12662R, was further characterized and shown to be an adsorption mutant. Plaque assays using our large phage collection showed that seven out of 36 diverse capsular polysaccharide (CPS)-dependent phages could not infect 12662R, whereas the remaining phages formed plaques on 12662R with reduced efficiencies. Analysis of the CPS composition of 12662R by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) showed a diminished signal for O-methyl phosphoramidate (MeOPN), a phase variable modification of the CPS. This suggested that the majority of the 12662R population did not express this phase variable modification in the CPS, indicating that MeOPN serves as a phage receptor in NCTC12662. Whole genome analysis of 12662R showed a switch in the length of the phase variable homopolymeric G tract of gene 06810, encoding a putative MeOPN-transferase located in the CPS locus, resulting in a non-functional protein. To confirm the role of 06810 in phage resistance development of NCTC12662, a 06810 knockout mutant in NCTC12662 was constructed and analyzed by HR-MAS NMR demonstrating the absence of MeOPN in the CPS of the mutant. Plaque assays using NCTC12662Δ06810 demonstrated that seven of our CPS-dependent Campylobacter phages are dependent on the presence of MeOPN for successful infection of C. jejuni, whereas the remaining 29 phages infect independently of MeOPN, although with reduced efficiencies. Our data indicate that CPS-dependent phages uses diverse mechanisms for their initial interaction with their C. jejuni host.
Collapse
Affiliation(s)
- Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Martine C H Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Cory Q Wenzel
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|