1
|
Adade NE, Ahator SD, García-Romero I, Algarañás M, Appiah V, Valvano MA, Duodu S. Stress adaptation under in vitro evolution influences survival and metabolic phenotypes of clinical and environmental strains of Vibrio cholerae El-Tor. Microbiol Spectr 2025; 13:e0121124. [PMID: 39932327 PMCID: PMC11878068 DOI: 10.1128/spectrum.01211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/12/2025] [Indexed: 03/05/2025] Open
Abstract
Bacterial adaptation to stress can lead to phenotypic variants with diverse levels of niche competitiveness, pathogenicity, and antimicrobial resistance. In this work, we employed experimental evolution to investigate whether exposure to various stress conditions results in new phenotypic and metabolic properties in clinical and environmental strains of Vibrio cholerae. Our findings revealed the emergence of variants with metabolic and genetic variations and enhanced survival under stress compared to the parental isolates. Phenotypic changes in the evolved variants included colony morphology, biofilm formation, and the appearance of proteolytic and hemolytic activities. The variants demonstrated metabolic changes in the preferred use of carbon, nitrogen, phosphorous, and sulfur substrates, while the genetic changes included single nucleotide polymorphisms (SNPs), breakpoints, translocations, and single nucleotide insertions and deletions. Mutations in genes encoding EAL and HD-GYP domain-containing proteins correlated with increased biofilm formation and different colony morphotypes. The combined analysis of the metabolic and genomic data pointed to pathways implicated in stress survival. The environmental strains were generally more pathogenic than the clinical strains in the Galleria mellonella infection model prior to the experimental evolution, and these differences did not change in the evolved variants. This study highlights the contribution of stress conditions as drivers for the evolution of genetic modifications and metabolic adaptation in V. cholerae, which may explain the continuous evolution of El-Tor biotype strains toward variants with improved survival in the environment.IMPORTANCEHow Vibrio cholerae, the causative agent of cholera, survives during the periods between outbreaks remains a critical question. Using experimental evolution based on serial bacterial passages in culture media mimicking diverse environmental stress conditions, we investigated whether clinical and environmental isolates of V. cholerae develop changes in survival and in their metabolism. The evolved variants exhibited alterations in colony morphology, biofilm formation, and metabolism, including changes in the preferred use of carbon, nitrogen, phosphorous, and sulfur substrates. These changes were accompanied by various genetic modifications, notably in genes encoding second messenger molecules that regulate multiple biochemical pathways implicated in stress survival and increased pathogenic potential. Our results suggest a continuous evolution of V. cholerae strains toward variants displaying increased survival under environmental stress conditions that may also be encountered in the human host.
Collapse
Affiliation(s)
- Nana Eghele Adade
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Inmaculada García-Romero
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Macarena Algarañás
- Laboratorio de Biofilms Microbianos, CINDEFI-UNLP-CONICET, CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Vincent Appiah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Miguel A. Valvano
- Infection Biology Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Samuel Duodu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Haase A, Arlt C, Sinz A, Sawers RG. Evidence the Isc iron-sulfur cluster biogenesis machinery is the source of iron for [NiFe]-cofactor biosynthesis in Escherichia coli. Sci Rep 2024; 14:3026. [PMID: 38321125 PMCID: PMC10847431 DOI: 10.1038/s41598-024-53745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/08/2024] Open
Abstract
[NiFe]-hydrogenases have a bimetallic NiFe(CN)2CO cofactor in their large, catalytic subunit. The 136 Da Fe(CN)2CO group of this cofactor is preassembled on a distinct HypC-HypD scaffold complex, but the intracellular source of the iron ion is unresolved. Native mass spectrometric analysis of HypCD complexes defined the [4Fe-4S] cluster associated with HypD and identified + 26 to 28 Da and + 136 Da modifications specifically associated with HypC. A HypCC2A variant without the essential conserved N-terminal cysteine residue dissociated from its complex with native HypD lacked all modifications. Native HypC dissociated from HypCD complexes isolated from Escherichia coli strains deleted for the iscS or iscU genes, encoding core components of the Isc iron-sulfur cluster biogenesis machinery, specifically lacked the + 136 Da modification, but this was retained on HypC from suf mutants. The presence or absence of the + 136 Da modification on the HypCD complex correlated with the hydrogenase enzyme activity profiles of the respective mutant strains. Notably, the [4Fe-4S] cluster on HypD was identified in all HypCD complexes analyzed. These results suggest that the iron of the Fe(CN)2CO group on HypCD derives from the Isc machinery, while either the Isc or the Suf machinery can deliver the [4Fe-4S] cluster to HypD.
Collapse
Affiliation(s)
- Alexander Haase
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Christian Arlt
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - R Gary Sawers
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
3
|
Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H 2 and CO 2 Gases. Appl Environ Microbiol 2021; 87:e0029921. [PMID: 34647819 DOI: 10.1128/aem.00299-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that is a workhorse for biotechnology. The organism naturally performs a mixed-acid fermentation under anaerobic conditions where it synthesizes formate hydrogenlyase (FHL-1). The physiological role of the enzyme is the disproportionation of formate into H2 and CO2. However, the enzyme has been observed to catalyze hydrogenation of CO2 given the correct conditions, and so it has possibilities in bio-based carbon capture and storage if it can be harnessed as a hydrogen-dependent CO2 reductase (HDCR). In this study, an E. coli host strain was engineered for the continuous production of formic acid from H2 and CO2 during bacterial growth in a pressurized batch bioreactor. Incorporation of tungsten, in place of molybdenum, in FHL-1 helped to impose a degree of catalytic bias on the enzyme. This work demonstrates that it is possible to couple cell growth to simultaneous, unidirectional formate production from carbon dioxide and develops a process for growth under pressurized gases. IMPORTANCE Greenhouse gas emissions, including waste carbon dioxide, are contributing to global climate change. A basket of solutions is needed to steadily reduce emissions, and one approach is bio-based carbon capture and storage. Here, we present our latest work on harnessing a novel biological solution for carbon capture. The Escherichia coli formate hydrogenlyase (FHL-1) was engineered to be constitutively expressed. Anaerobic growth under pressurized H2 and CO2 gases was established, and aqueous formic acid was produced as a result. Incorporation of tungsten into the enzyme in place of molybdenum proved useful in poising FHL-1 as a hydrogen-dependent CO2 reductase (HDCR).
Collapse
|
4
|
Zhang X, Huang D, Zhao Z, Cai X, Cai W, Li G. Bis-molybdopterin guanine dinucleotide modulates hemolysin expression under anaerobiosis and contributes to fitness in vivo in uropathogenic Escherichia coli. Mol Microbiol 2021; 116:1216-1231. [PMID: 34494331 DOI: 10.1111/mmi.14809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 01/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs). Successful urinary tract colonization requires appropriate expression of virulence factors in response to host environmental cues, such as limited oxygen and iron availability. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Previously, we showed that hemolysin expression is enhanced under anaerobic conditions; however, the genetic basis and regulatory mechanisms involved remain undefined. Here, a transposon-based forward screen identified bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) biosynthesis as an important factor for a full transcription of hemolysin under anaerobiosis but not under aerobiosis. bis-MGD positively influences hemolysin transcription via c3566-c3568, an operon immediately upstream of and cotranscribed with hlyCABD. Furthermore, suppressor mutation analysis identified the nitrogen regulator NtrC as a direct repressor of c3566-c3568-hlyCABD expression, and intact bis-MGD biosynthesis downregulated ntrC expression, thus at least partially explaining the positive role of bis-MGD in modulating hemolysin expression. Finally, bis-MGD is involved in hemolysin-mediated uroepithelial cell death and contributes to the competitive fitness of UPEC in a murine model of UTI. Collectively, our data establish that bis-MGD biosynthesis plays a crucial role in UPEC fitness in vivo, thus providing a potential target for combatting UTIs.
Collapse
Affiliation(s)
- Xinyang Zhang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongyan Huang
- Jiangxi Engineering Research Center for Animal Health Products, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Zihui Zhao
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuwang Cai
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
A-type carrier proteins are involved in [4Fe-4S] cluster insertion into the radical SAM protein MoaA for the synthesis of active molybdoenzymes. J Bacteriol 2021; 203:e0008621. [PMID: 33782054 DOI: 10.1128/jb.00086-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them were characterized in detail in Escherichia coli, namely IscA, SufA and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins. To further expand the knowledge of [4Fe-4S] cluster insertion into proteins, we analyzed the complex Fe-S cluster dependent network for the synthesis of the molybdenum cofactor (Moco) and the expression of genes encoding nitrate reductase in E. coli Our studies include the identification of the A-type carrier proteins ErpA and IscA involved in [4Fe-4S] cluster insertion into the S-adenosyl-methionine dependent radical SAM protein MoaA. We show that ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. Since most genes expressing molybdoenzymes are regulated by the transcriptional regulator for fumarate and nitrate reduction (FNR) under anaerobic conditions, we also identified the proteins that are crucial to obtain an active FNR under conditions of nitrate respiration. We show that ErpA is essential for the FNR-dependent expression of the narGHJI operon, a role that cannot be compensated by IscA under the growth conditions tested. SufA does not have a role in Fe-S cluster insertion into MoaA or FNR under anaerobic growth of nitrate respiration, based on low gene expression levels.IMPORTANCEUnderstanding the assembly of iron-sulfur (Fe-S) proteins is relevant to many fields, including nitrogen fixation, photosynthesis, bioenergetics and gene regulation. Still remaining critical gaps in our knowledge are how Fe-S clusters are transferred to their target proteins and how the specificity in this process is achieved, since different forms of Fe-S clusters need to be delivered to structurally highly diverse target proteins. Numerous Fe-S carrier proteins have been identified in prokaryotes like Escherichia coli, including ErpA, IscA, SusA and NfuA. In addition, the diverse Fe-S cluster delivery proteins and their target proteins underlie a complex regulatory network of expression, to ensure that both proteins are synthesized under particular growth conditions.
Collapse
|
6
|
Gerstel A, Zamarreño Beas J, Duverger Y, Bouveret E, Barras F, Py B. Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. PLoS Genet 2020; 16:e1009198. [PMID: 33137124 PMCID: PMC7671543 DOI: 10.1371/journal.pgen.1009198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/17/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022] Open
Abstract
The level of antibiotic resistance exhibited by bacteria can vary as a function of environmental conditions. Here, we report that phenazine-methosulfate (PMS), a redox-cycling compound (RCC) enhances resistance to fluoroquinolone (FQ) norfloxacin. Genetic analysis showed that E. coli adapts to PMS stress by making Fe-S clusters with the SUF machinery instead of the ISC one. Based upon phenotypic analysis of soxR, acrA, and micF mutants, we showed that PMS antagonizes fluoroquinolone toxicity by SoxR-mediated up-regulation of the AcrAB drug efflux pump. Subsequently, we showed that despite the fact that SoxR could receive its cluster from either ISC or SUF, only SUF is able to sustain efficient SoxR maturation under exposure to prolonged PMS period or high PMS concentrations. This study furthers the idea that Fe-S cluster homeostasis acts as a sensor of environmental conditions, and because its broad influence on cell metabolism, modifies the antibiotic resistance profile of E. coli. Our study investigates how phenazine compounds, which are widely present in the environment, impact antibiotic resistance of the Gram-negative bacteria Escherichia coli. The paucity of new antibacterial molecules fuels concern in the wake of increased antibiotic resistance among pathogens. Equally worrying is the realization that environmental conditions can have a drastic influence on the efficiency of antibacterial compounds. Here we report that phenazine, a member of the redox-cycling molecule family, is antagonistic to norfloxacin, a well-known and routinely used fluoroquinolone antibiotic. We show that the mechanism E. coli is using for synthesizing Fe-S clusters controls the phenazine/fluoroquinolone antagonism. Indeed, upon exposure to phenazine, E. coli switches from making Fe-S clusters with the ISC Fe-S biogenesis system to making them with SUF, a consequence of which is the activation of the SoxR transcriptional activator, up-regulation of the AcrAB efflux pump, and efflux of fluoroquinolone out of the cell. This study illustrates the major influence that environmental conditions play in setting antibiotic level resistance and further highlights the major contribution of Fe-S cluster homeostasis in antibiotic susceptibility.
Collapse
Affiliation(s)
- Audrey Gerstel
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Jordi Zamarreño Beas
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yohann Duverger
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emmanuelle Bouveret
- SAMe Unit, Département de Microbiologie, Institut Pasteur, CNRS UMR IMM 2001, Paris, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
- SAMe Unit, Département de Microbiologie, Institut Pasteur, CNRS UMR IMM 2001, Paris, France
- * E-mail: (FB); (BP)
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail: (FB); (BP)
| |
Collapse
|
7
|
Baussier C, Fakroun S, Aubert C, Dubrac S, Mandin P, Py B, Barras F. Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Adv Microb Physiol 2020; 76:1-39. [PMID: 32408945 DOI: 10.1016/bs.ampbs.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron sulfur (Fe-S) clusters rank among the most ancient and conserved prosthetic groups. Fe-S clusters containing proteins are present in most, if not all, organisms. Fe-S clusters containing proteins are involved in a wide range of cellular processes, from gene regulation to central metabolism, via gene expression, RNA modification or bioenergetics. Fe-S clusters are built by biogenesis machineries conserved throughout both prokaryotes and eukaryotes. We focus mostly on bacterial ISC machinery, but not exclusively, as we refer to eukaryotic ISC system when it brings significant complementary information. Besides covering the structural and regulatory aspects of Fe-S biogenesis, this review aims to highlight Fe-S biogenesis facets remaining matters of discussion, such as the role of frataxin, or the link between fatty acid metabolism and Fe-S homeostasis. Last, we discuss recent advances on strategies used by different species to make and use Fe-S clusters in changing redox environmental conditions.
Collapse
Affiliation(s)
- Corentin Baussier
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Soufyan Fakroun
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Sarah Dubrac
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| |
Collapse
|
8
|
Garcia PS, Gribaldo S, Py B, Barras F. The SUF system: an ABC ATPase-dependent protein complex with a role in Fe-S cluster biogenesis. Res Microbiol 2019; 170:426-434. [PMID: 31419582 DOI: 10.1016/j.resmic.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Iron-sulfur (Fe-S) clusters are considered one of the most ancient and versatile inorganic cofactors present in the three domains of life. Fe-S clusters can act as redox sensors or catalysts and are found to be used by a large number of functional and structurally diverse proteins. Here, we cover current knowledge of the SUF multiprotein machinery that synthesizes and inserts Fe-S clusters into proteins. Specific focus is put on the ABC ATPase SufC, which contributes to building Fe-S clusters, and appeared early on during evolution.
Collapse
Affiliation(s)
- Pierre Simon Garcia
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, ERL CNRS 6002, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France; Department of Microbiology, Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Simonetta Gribaldo
- Department of Microbiology, Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR7243 Aix-Marseille Université CNRS, 31 Chemin Joseph Aiguier, 13009, Marseille, France.
| | - Frédéric Barras
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, ERL CNRS 6002, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|