1
|
Fountain AJ, Waller NJE, Cheung CY, Jowsey W, Chrisp MT, Troll M, Edelstein PH, Cook GM, McNeil MB, Ramakrishnan L. Verapamil and its metabolite norverapamil inhibit the Mycobacterium tuberculosis MmpS5L5 efflux pump to increase bedaquiline activity. Proc Natl Acad Sci U S A 2025; 122:e2426827122. [PMID: 40244664 PMCID: PMC12036985 DOI: 10.1073/pnas.2426827122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Bedaquiline is the cornerstone of a new regimen for the treatment of drug-resistant tuberculosis. However, its clinical use is threatened by the emergence of bedaquiline-resistant strains of Mycobacterium tuberculosis. Bedaquiline targets mycobacterial ATP synthase but the predominant route to clinical bedaquiline resistance is via upregulation of the MmpS5L5 efflux pump due to mutations that inactivate the transcriptional repressor Rv0678. Here, we show that the MmpS5L5 efflux pump reduces susceptibility to bedaquiline as well as its new, more potent derivative TBAJ-876 and other antimicrobial substrates, including clofazimine and the DprE1 inhibitors PBTZ-169 and OPC-167832. Furthermore, the increased resistance of Rv0678 mutants stems entirely from increased MmpS5L5 expression. These results highlight the potential of a pharmacological MmpS5L5 inhibitor to increase drug efficacy. Verapamil, primarily used as a calcium channel inhibitor, is known to inhibit diverse efflux pumps and to potentiate bedaquiline and clofazimine activity in M. tuberculosis. Here, we show that verapamil potentiates the activity of multiple diverse MmpS5L5 substrates. Using biochemical approaches, we demonstrate that verapamil does not exert this effect by acting as a disruptor of the protonmotive force used to power MmpS5L5, as previously proposed, suggesting that verapamil inhibits the function of the MmpS5L5 pump. Finally, norverapamil, the major verapamil metabolite, which has greatly reduced calcium channel activity, has equal potency in reducing resistance to MmpS5L5 substrates. Our findings highlight verapamil's potential for enhancing bedaquiline TB treatment, for preventing acquired resistance to bedaquiline and other MmpS5L5 substrates, while also providing the impetus to identify additional MmpS5L5 inhibitors.
Collapse
Affiliation(s)
- Adam J. Fountain
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Michael T. Chrisp
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Mark Troll
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Paul H. Edelstein
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Lalita Ramakrishnan
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| |
Collapse
|
2
|
Jowsey WJ, Cook GM, McNeil MB. Antibiotic resistance in Mycobacterium tuberculosis alters tolerance to cell wall-targeting inhibitors. JAC Antimicrob Resist 2024; 6:dlae086. [PMID: 38836195 PMCID: PMC11148391 DOI: 10.1093/jacamr/dlae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/11/2024] [Indexed: 06/06/2024] Open
Abstract
Background A limited ability to eliminate drug-resistant strains of Mycobacterium tuberculosis is a major contributor to the morbidity of TB. Complicating this problem, little is known about how drug resistance-conferring mutations alter the ability of M. tuberculosis to tolerate antibiotic killing. Here, we investigated if drug-resistant strains of M. tuberculosis have an altered ability to tolerate killing by cell wall-targeting inhibitors. Methods Bacterial killing and MIC assays were used to test for antibiotic tolerance and synergy against a panel of drug-resistant M. tuberculosis strains. Results Our results demonstrate that vancomycin and thioacetazone exhibit increased killing of diverse drug-resistant strains. Mutations in mmaA4 and mmpL3 increased vancomycin killing, which was consistent with vancomycin synergizing with thioacetazone and MmpL3-targeting inhibitors. In contrast, mutations in the mce1 operon conferred tolerance to vancomycin. Conclusions Overall, this work demonstrates how drug-resistant strains experience perturbations in cell-wall production that alters their tolerance to killing by cell wall-targeting inhibitors.
Collapse
Affiliation(s)
- William J Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Yuliani Y, Ilmi AFN, Petsong S, Sawatpanich A, Chirakul S, Chatsuwan T, Palaga T, Rotcheewaphan S. CRISPR Interference-Mediated Silencing of the mmpL3 Gene in Mycobacterium smegmatis and Its Impact on Antimicrobial Susceptibility. Antibiotics (Basel) 2024; 13:483. [PMID: 38927150 PMCID: PMC11200583 DOI: 10.3390/antibiotics13060483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The discovery of novel therapeutic agents, especially those targeting mycobacterial membrane protein large 3 (mmpL3), has shown promise. In this study, the CRISPR interference-Streptococcus thermophilus nuclease-deactivated Cas9 (CRISPRi-dCas9Sth1) system was utilized to suppress mmpL3 expression in Mycobacterium smegmatis, and its impacts on susceptibility to antimicrobial agents were evaluated. METHODS The repression of the mmpL3 gene was confirmed by RT-qPCR. The essentiality, growth curve, viability, and antimicrobial susceptibility of the mmpL3 knockdown strain were investigated. RESULTS mmpL3 silencing was achieved by utilizing 0.5 and 1 ng/mL anhydrotetracycline (ATc), resulting in reductions in the expression of 60.4% and 74.4%, respectively. mmpL3 silencing led to a significant decrease in bacterial viability when combined with one-half of the minimal inhibitory concentrations (MICs) of rifampicin, rifabutin, ceftriaxone, or isoniazid, along with 0.1 or 0.5 ng/mL ATc (p < 0.05). However, no significant difference was observed for clarithromycin or amikacin. CONCLUSIONS The downregulation of the mmpL3 gene in mycobacteria was achieved through the use of CRISPRi-dCas9Sth1, resulting in growth deficiencies and resensitization to certain antimicrobial agents. The impact was dependent upon the level of gene expression.
Collapse
Affiliation(s)
- Yonita Yuliani
- Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (Y.Y.); (A.F.N.I.)
| | - Azizah Fitriana Nurul Ilmi
- Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (Y.Y.); (A.F.N.I.)
| | - Suthidee Petsong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
| | - Ajcharaporn Sawatpanich
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
| | - Sunisa Chirakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Suwatchareeporn Rotcheewaphan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Campolattano N, D'Abrosca G, Russo L, De Siena B, Della Gala M, De Chiara I, Marasco R, Goff A, Waddell SJ, Sacco M, Muscariello L. Insight into the on/off switch that regulates expression of the MSMEG-3762/63 efflux pump in Mycobacterium smegmatis. Sci Rep 2023; 13:20332. [PMID: 37989843 PMCID: PMC10663510 DOI: 10.1038/s41598-023-47695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Drug resistance is one of the most difficult challenges facing tuberculosis (TB) control. Drug efflux is among the mechanisms leading to drug resistance. In our previous studies, we partially characterized the ABC-type MSMEG-3762/63 efflux pump in Mycobacterium smegmatis, which shares high percentage of identity with the Mycobacterium tuberculosis Rv1687/86c pump. MSMEG-3762/63 was shown to have extrusion activity for rifampicin and ciprofloxacin, used in first and second-line anti-TB treatments. Moreover, we described the functional role of the TetR-like MSMEG-3765 protein as a repressor of the MSMEG_3762/63/65 operon and orthologous Rv1687/86/85c in M. tuberculosis. Here we show that the operon is upregulated in the macrophage environment, supporting a previous observation of induction triggered by acid-nitrosative stress. Expression of the efflux pump was also induced by sub-inhibitory concentrations of rifampicin or ciprofloxacin. Both these drugs also prevented the binding of the MSMEG-3765 TetR repressor protein to its operator in the MSMEG_3762/63/65 operon. The hypothesis that these two drugs might be responsible for the induction of the efflux pump operon was assessed by bioinformatics analyses. Docking studies using a structural model of the regulator MSMEG-3765 showed that both antibiotics abolished the ability of this transcriptional repressor to recognize the efflux pump operon by interacting with the homodimer at different binding sites within the same binding pocket. Reduced binding of the repressor leads to induction of the efflux pump in M. smegmatis, and reduced efficacy of these two anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Nicoletta Campolattano
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Gianluca D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Barbara De Siena
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Milena Della Gala
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Ida De Chiara
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Rosangela Marasco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Aaron Goff
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Margherita Sacco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Lidia Muscariello
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
5
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Adams O, Deme JC, Parker JL, Fowler PW, Lea SM, Newstead S. Cryo-EM structure and resistance landscape of M. tuberculosis MmpL3: An emergent therapeutic target. Structure 2021; 29:1182-1191.e4. [PMID: 34242558 PMCID: PMC8752444 DOI: 10.1016/j.str.2021.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022]
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent and in 2019 an estimated 10 million people worldwide contracted the disease. Although treatments for TB exist, continual emergence of drug-resistant variants necessitates urgent development of novel antituberculars. An important new target is the lipid transporter MmpL3, which is required for construction of the unique cell envelope that shields Mycobacterium tuberculosis (Mtb) from the immune system. However, a structural understanding of the mutations in Mtb MmpL3 that confer resistance to the many preclinical leads is lacking, hampering efforts to circumvent resistance mechanisms. Here, we present the cryoelectron microscopy structure of Mtb MmpL3 and use it to comprehensively analyze the mutational landscape of drug resistance. Our data provide a rational explanation for resistance variants local to the central drug binding site, and also highlight a potential alternative route to resistance operating within the periplasmic domain.
Collapse
Affiliation(s)
- Oliver Adams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Justin C Deme
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford OX1 3RE, UK; Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Philip W Fowler
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe, Oxford OX3 9DU, UK
| | - Susan M Lea
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford OX1 3RE, UK; Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
7
|
Liu Y, Zhang C, Wang Z, Lin M, Wang J, Wu M. Pleiotropic roles of late embryogenesis abundant proteins of Deinococcus radiodurans against oxidation and desiccation. Comput Struct Biotechnol J 2021; 19:3407-3415. [PMID: 34188783 PMCID: PMC8213827 DOI: 10.1016/j.csbj.2021.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022] Open
Abstract
Deinococcus radiodurans, an important extremophile, possesses extraordinary stress tolerance ability against lethal and mutagenic effects of DNA-damaging agents, such as γ-rays, ultraviolet, oxidation, and desiccation. How global regulators of this bacterium function in response to oxidation and desiccation has been an intense topic as elucidating such mechanisms may help to facilitate some beneficial applications in agriculture or medicine. Particularly, a variety of functional proteins have been characterized for D. radiodurans' behaviors under abiotic stresses. Interestingly, a group of Late Embryogenesis Abundant proteins (LEAs) in D. radiodurans have been characterized both biochemically and physiologically, which are shown indispensable for stabilizing crucial metabolic enzymes in a chaperone-like manner and thereby maintaining the metal ion homeostasis under oxidation and desiccation. The rapid progress in understanding deinococcal LEA proteins has substantially extended their functions in both plants and animals. Herein, we discuss the latest studies of radiodurans LEA proteins ranging from the classification to structures to functions. Importantly, the harnessing of these proteins may have unlimited potential for biotechnology, engineering and disease treatments.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Chen Zhang
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| |
Collapse
|
8
|
Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 2021; 121:5378-5416. [PMID: 33211490 PMCID: PMC8119314 DOI: 10.1021/acs.chemrev.0c00621] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug resistant (MDR) bacteria are a global threat with many common infections becoming increasingly difficult to eliminate. While significant effort has gone into the development of potent biocides, the effectiveness of many first-line antibiotics has been diminished due to adaptive resistance mechanisms. Bacterial membrane proteins belonging to the resistance-nodulation-cell division (RND) superfamily play significant roles in mediating bacterial resistance to antimicrobials. They participate in multidrug efflux and cell wall biogenesis to transform bacterial pathogens into "superbugs" that are resistant even to last resort antibiotics. In this review, we summarize the RND superfamily of efflux transporters with a primary focus on the assembly and function of the inner membrane pumps. These pumps are critical for extrusion of antibiotics from the cell as well as the transport of lipid moieties to the outer membrane to establish membrane rigidity and stability. We analyze recently solved structures of bacterial inner membrane efflux pumps as to how they bind and transport their substrates. Our cumulative data indicate that these RND membrane proteins are able to utilize different oligomerization states to achieve particular activities, including forming MDR pumps and cell wall remodeling machineries, to ensure bacterial survival. This mechanistic insight, combined with simulated docking techniques, allows for the design and optimization of new efflux pump inhibitors to more effectively treat infections that today are difficult or impossible to cure.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
9
|
Chengalroyen MD, Jordaan A, Seldon R, Ioerger T, Franzblau SG, Nasr M, Warner DF, Mizrahi V. Biological Profiling Enables Rapid Mechanistic Classification of Phenotypic Screening Hits and Identification of KatG Activation-Dependent Pyridine Carboxamide Prodrugs With Activity Against Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:582416. [PMID: 33282750 PMCID: PMC7691319 DOI: 10.3389/fcimb.2020.582416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023] Open
Abstract
Compounds with novel modes of action are urgently needed to develop effective combination therapies for the treatment of tuberculosis. In this study, a series of compounds was evaluated for activity against replicating Mycobacterium tuberculosis and Vero cell line toxicity. Fourteen of the compounds with in vitro activities in the low micrometer range and a favorable selectivity index were classified using reporter strains of M. tuberculosis which showed that six interfered with cell wall metabolism and one disrupted DNA metabolism. Counter-screening against strains carrying mutations in promiscuous drug targets argued against DprE1 and MmpL3 as hits of any of the cell wall actives and eliminated the cytochrome bc1 complex as a target of any of the compounds. Instead, whole-genome sequencing of spontaneous resistant mutants and/or counter-screening against common isoniazid-resistant mutants of M. tuberculosis revealed that four of the six cell wall-active compounds, all pyridine carboxamide analogues, were metabolized by KatG to form InhA inhibitors. Resistance to two of these compounds was associated with mutations in katG that did not confer cross-resistance to isoniazid. Of the remaining seven compounds, low-level resistance to one was associated with an inactivating mutation in Rv0678, the regulator of the MmpS5-MmpL5 system, which has been implicated in non-specific efflux of multiple chemotypes. Another mapped to the mycothiol-dependent reductase, Rv2466c, suggesting a prodrug mechanism of action in that case. The inability to isolate spontaneous resistant mutants to the seven remaining compounds suggests that they act via mechanisms which have yet to be elucidated.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ronnett Seldon
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,H3D Drug Discovery and Development Centre, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Thomas Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Mohamed Nasr
- Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Abstract
Mycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. The Mycobacterium tuberculosis protein MmpL3 performs an essential role in cell wall synthesis, since it effects the transport of trehalose monomycolates across the inner membrane. Numerous structurally diverse pharmacophores have been identified as inhibitors of MmpL3 largely based on the identification of resistant isolates with mutations in MmpL3. For some compounds, it is possible there are different primary or secondary targets. Here, we have investigated resistance to the spiral amine class of compounds. Isolation and sequencing of resistant mutants demonstrated that all had mutations in MmpL3. We hypothesized that if additional targets of this pharmacophore existed, then successive rounds to generate resistant isolates might reveal mutations in other loci. Since compounds were still active against resistant isolates, albeit with reduced potency, we isolated resistant mutants in this background at higher concentrations. After a second round of isolation with the spiral amine, we found additional mutations in MmpL3. To increase our chance of finding alternative targets, we ran a third round of isolation using a different molecule scaffold (AU1235, an adamantyl urea). Surprisingly, we obtained further mutations in MmpL3. Multiple mutations in MmpL3 increased the level and spectrum of resistance to different pharmacophores but did not incur a fitness cost in vitro. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. IMPORTANCEMycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores.
Collapse
|
11
|
Li M, Gašparovič H, Weng X, Chen S, Korduláková J, Jessen-Trefzer C. The Two-Component Locus MSMEG_0244/0246 Together With MSMEG_0243 Affects Biofilm Assembly in M. smegmatis Correlating With Changes in Phosphatidylinositol Mannosides Acylation. Front Microbiol 2020; 11:570606. [PMID: 33013801 PMCID: PMC7516205 DOI: 10.3389/fmicb.2020.570606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ferric and ferrous iron is an essential transition metal for growth of many bacterial species including mycobacteria. The genomic region msmeg_0234 to msmeg_0252 from Mycobacterium smegmatis is putatively involved in iron/heme metabolism. We investigate the genes encoding the presumed two component system MSMEG_0244/MSMEG_0246, the neighboring gene msmeg_0243 and their involvement in this process. We show that purified MSMEG_0243 indeed is a heme binding protein. Deletion of msmeg_0243/msmeg_0244/msmeg_0246 in Mycobacterium smegmatis leads to a defect in biofilm formation and colony growth on solid agar, however, this phenotype is independent of the supplied iron source. Further, analysis of the corresponding mutant and its lipids reveals that changes in morphology and biofilm formation correlate with altered acylation patterns of phosphatidylinositol mannosides (PIMs). We provide the first evidence that msmeg_0244/msmeg_0246 work in concert in cellular lipid homeostasis, especially in the maintenance of PIMs, with the heme-binding protein MSMEG_0243 as potential partner.
Collapse
Affiliation(s)
- Miaomaio Li
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Henrich Gašparovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Xing Weng
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Si Chen
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Shao M, McNeil M, Cook GM, Lu X. MmpL3 inhibitors as antituberculosis drugs. Eur J Med Chem 2020; 200:112390. [DOI: 10.1016/j.ejmech.2020.112390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
|
13
|
Nesterova LY, Tsyganov IV, Tkachenko AG. Biogenic Polyamines Influence the Antibiotic Susceptibility and Cell-Surface Properties of Mycobacterium smegmatis. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tateishi Y, Minato Y, Baughn AD, Ohnishi H, Nishiyama A, Ozeki Y, Matsumoto S. Genome-wide identification of essential genes in Mycobacterium intracellulare by transposon sequencing - Implication for metabolic remodeling. Sci Rep 2020; 10:5449. [PMID: 32214196 PMCID: PMC7096427 DOI: 10.1038/s41598-020-62287-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
The global incidence of the human nontuberculous mycobacteria (NTM) disease is rapidly increasing. However, knowledge of gene essentiality under optimal growth conditions and conditions relevant to the natural ecology of NTM, such as hypoxia, is lacking. In this study, we utilized transposon sequencing to comprehensively identify genes essential for growth in Mycobacterium intracellulare. Of 5126 genes of M. intracellulare ATCC13950, 506 genes were identified as essential genes, of which 280 and 158 genes were shared with essential genes of M. tuberculosis and M. marinum, respectively. The shared genes included target genes of existing antituberculous drugs including SQ109, which targets the trehalose monomycolate transporter MmpL3. From 175 genes showing decreased fitness as conditionally essential under hypoxia, preferential carbohydrate metabolism including gluconeogenesis, glyoxylate cycle and succinate production was suggested under hypoxia. Virulence-associated genes including proteasome system and mycothiol redox system were also identified as conditionally essential under hypoxia, which was further supported by the higher effective suppression of bacterial growth under hypoxia compared to aerobic conditions in the presence of these inhibitors. This study has comprehensively identified functions essential for growth of M. intracellulare under conditions relevant to the host environment. These findings provide critical functional genomic information for drug discovery.
Collapse
Affiliation(s)
- Yoshitaka Tateishi
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, 689 23rd Avenue S.E. Microbiology Research Facility, Minneapolis, 55455, MN, USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, 689 23rd Avenue S.E. Microbiology Research Facility, Minneapolis, 55455, MN, USA
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
15
|
Zhang B, Li J, Yang X, Wu L, Zhang J, Yang Y, Zhao Y, Zhang L, Yang X, Yang X, Cheng X, Liu Z, Jiang B, Jiang H, Guddat LW, Yang H, Rao Z. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell 2019; 176:636-648.e13. [PMID: 30682372 DOI: 10.1016/j.cell.2019.01.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/22/2018] [Accepted: 12/31/2018] [Indexed: 01/01/2023]
Abstract
Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.
Collapse
Affiliation(s)
- Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jia Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xi Cheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Identification of New MmpL3 Inhibitors by Untargeted and Targeted Mutant Screens Defines MmpL3 Domains with Differential Resistance. Antimicrob Agents Chemother 2019; 63:AAC.00547-19. [PMID: 31405862 DOI: 10.1128/aac.00547-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
The Mycobacterium tuberculosis mycolate flippase MmpL3 has been the proposed target for multiple inhibitors with diverse chemical scaffolds. This diversity in chemical scaffolds has made it difficult to predict compounds that inhibit MmpL3 without whole-genome sequencing of isolated resistant mutants. Here, we describe the identification of four new inhibitors that select for resistance mutations in mmpL3. Using these resistant mutants, we conducted a targeted whole-cell phenotypic screen of 163 novel M. tuberculosis growth inhibitors for differential growth inhibition of wild-type M. tuberculosis compared to the growth of a pool of 24 unique mmpL3 mutants. The screen successfully identified six additional putative MmpL3 inhibitors. The compounds were bactericidal both in vitro and against intracellular M. tuberculosis M. tuberculosis cells treated with these compounds were shown to accumulate trehalose monomycolates, have reduced levels of trehalose dimycolate, and displace an MmpL3-specific probe, supporting MmpL3 as the target. The inhibitors were mycobacterium specific, with several also showing activity against the nontuberculous mycobacterial species M. abscessus Cluster analysis of cross-resistance profiles generated by dose-response experiments for each combination of 13 MmpL3 inhibitors against each of the 24 mmpL3 mutants defined two clades of inhibitors and two clades of mmpL3 mutants. Pairwise combination studies of the inhibitors revealed interactions that were specific to the clades identified in the cross-resistance profiling. Additionally, modeling of resistance-conferring substitutions to the MmpL3 crystal structure revealed clade-specific localization of the residues to specific domains of MmpL3, with the clades showing differential resistance. Several compounds exhibited high solubility and stability in microsomes and low cytotoxicity in macrophages, supporting their further development. The combined study of multiple mutants and novel compounds provides new insights into structure-function interactions of MmpL3 and small-molecule inhibitors.
Collapse
|
17
|
Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.00629-19. [PMID: 31160289 DOI: 10.1128/aac.00629-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for novel therapeutics to treat Mycobacterium tuberculosis infections. Genetic strategies for validating novel targets are available, yet their time-consuming nature limits their utility. Here, using MmpL3 as a model target, we report on the application of mycobacterial CRISPR interference for the rapid validation of target essentiality and compound mode of action. This strategy has the potential to rapidly accelerate tuberculosis drug discovery.
Collapse
|
18
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
19
|
Li W, Stevens CM, Pandya AN, Darzynkiewicz Z, Bhattarai P, Tong W, Gonzalez-Juarrero M, North EJ, Zgurskaya HI, Jackson M. Direct Inhibition of MmpL3 by Novel Antitubercular Compounds. ACS Infect Dis 2019; 5:1001-1012. [PMID: 30882198 PMCID: PMC6580365 DOI: 10.1021/acsinfecdis.9b00048] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MmpL3, an essential transporter involved in the export of mycolic acids, is the proposed target of a number of antimycobacterial inhibitors under development. Whether MmpL3 serves as the direct target of these compounds, however, has been called into question after the discovery that some of them dissipated the proton motive force from which MmpL transporters derive their energy. Using a combination of in vitro and whole-cell-based approaches, we here provide evidence that five structurally distinct MmpL3 inhibitor series, three of which impact proton motive force in Mycobacterium tuberculosis, directly interact with MmpL3. Medium- to high-throughput assays based on these approaches were developed to facilitate the future screening and optimization of MmpL3 inhibitors. The promiscuity of MmpL3 as a drug target and the mechanisms through which missense mutations located in a transmembrane region of this transporter may confer cross-resistance to a variety of chemical scaffolds are discussed in light of the exquisite vulnerability of MmpL3, its apparent mechanisms of interaction with inhibitors, and evidence of conformational changes induced both by the inhibitors and one of the most commonly identified resistance mutations in MmpL3.
Collapse
Affiliation(s)
- Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Casey M. Stevens
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Amitkumar N. Pandya
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Zbigniew Darzynkiewicz
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Pankaj Bhattarai
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Weiwei Tong
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - E. Jeffrey North
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| |
Collapse
|
20
|
Computational studies on N-phenyl pyrrole derivatives as MmpL3 inhibitors in Mycobacterium tuberculosis. Comput Biol Chem 2018; 78:81-94. [PMID: 30500556 DOI: 10.1016/j.compbiolchem.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023]
Abstract
The fight against tuberculosis (TB) is a time immemorial one and the emergence of new drug resistant strains of Mycobacterium tuberculosis keeps throwing new challenges to the scientific community immersed in finding mechanisms to control this dreaded disease. Computer aided drug designing (CADD) is one of the several approaches that can assist in identifying the potent actives against Mycobacterium. In this work, a series of 109 known Mycobacterial membrane proteins large 3 (MmpL3) inhibitors were pooled and atom based 3D QSAR analysis was performed to understand the structural features essential for inhibitory activity against the MmpL3, known to be a key player in transporting substances critical for cell wall integrity of Mycobacterium. The data set employed was randomly split into training set and test set molecules. The training set of 74 molecules was used to derive CoMFA and CoMSIA models that were statistically reliable (CoMFA: q2loo = 0.53; r2ncv = 0.93 and CoMSIA: q2loo = 0.60; r2ncv = 0.93). The derived models also exhibited good external predictive ability (CoMFA: r2pred = 0.78 and CoMSIA: r2pred = 0.79). The results are quite encouraging and information derived from these analyses was applied to design new molecules. The designed molecule showed appreciable predicted activity values and reasonably good ADMET profile. The strategy used in designing new molecules can be pursued in the hunt for new chemical entities targeting MmpL3, expanding the existing arsenal against TB.
Collapse
|
21
|
Pal R, Hameed S, Fatima Z. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria. Biometals 2018; 32:49-63. [PMID: 30430296 DOI: 10.1007/s10534-018-0157-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is a global threat to human health hence better understanding of the MTB pathogenesis for improved therapeutics requires immediate attention. Emergence of drug-resistant strains has stimulated an urgent need for adopting new strategies that could be implemented to control TB. One of the contributing mechanisms by which MTB evades drug doses is overexpression of drug efflux pumps. Thus blocking or modulating the functionality of efflux pumps represents an attractive approach to combat drug resistance. Iron is a critical micronutrient required for MTB survival and not freely available inside the host. In this study, we demonstrated that iron deprivation impairs drug efflux pump activity and confers synergism for anti-TB drugs in presence of efflux pump inhibitors against MTB. Mechanistic insights revealed that iron deprivation inhibit resistance nodulation division superfamily transporter activity. This was evident from enhanced Nile red accumulation and reduced expression of MmpL3, a transmembrane promising target involved in mycolic acid transport across membrane. Furthermore, iron deprivation led to abrogated MA transport particularly of class methoxy-MA which was confirmed by TLC and mass spectrometry based lipidome analysis. Additionally, iron deprivation leads to enhanced membrane fluidity in MTB. Together, MmpL3 being a promiscuous anti-TB target, metal chelation strategy could be adopted to boost the effectiveness of current anti-TB drug regimes to combat drug resistance TB.
Collapse
Affiliation(s)
- Rahul Pal
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India.
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India.
| |
Collapse
|
22
|
HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter. Antimicrob Agents Chemother 2018; 62:AAC.02459-17. [PMID: 29661875 DOI: 10.1128/aac.02459-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is a deadly disease that requires a long course of treatment. The emergence of drug-resistant strains has driven efforts to discover new small molecules that can kill the bacterium. Here, we report characterizations of the compound HC2091, which kills M. tuberculosis in a time- and dose-dependent manner in vitro and inhibits M. tuberculosis growth in macrophages. Whole-genome sequencing of spontaneous HC2091-resistant mutants identified single-nucleotide variants in the mmpL3 mycolic acid transporter gene. HC2091-resistant mutants do not exhibit cross-resistance with the well-characterized Mycobacterium membrane protein large 3 (MmpL3) inhibitor SQ109, suggesting a distinct mechanism of interaction with MmpL3. Additionally, HC2091 does not modulate bacterial membrane potential or kill nonreplicating M. tuberculosis, thus acting differently from other known MmpL3 inhibitors. RNA sequencing (RNA-seq) transcriptional profiling and lipid profiling of M. tuberculosis treated with HC2091 or SQ109 show that the two compounds target a similar pathway. HC2091 has a chemical structure dissimilar to those of previously described MmpL3 inhibitors, supporting the notion that HC2091 is a new class of MmpL3 inhibitor.
Collapse
|