1
|
Li X, Gluth A, Feng S, Qian WJ, Yang B. Harnessing redox proteomics to study metabolic regulation and stress response in lignin-fed Rhodococci. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:180. [PMID: 37986172 PMCID: PMC10662689 DOI: 10.1186/s13068-023-02424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Rhodococci are studied for their bacterial ligninolytic capabilities and proclivity to accumulate lipids. Lignin utilization is a resource intensive process requiring a variety of redox active enzymes and cofactors for degradation as well as defense against the resulting toxic byproducts and oxidative conditions. Studying enzyme expression and regulation between carbon sources will help decode the metabolic rewiring that stymies lignin to lipid conversion in these bacteria. Herein, a redox proteomics approach was applied to investigate a fundamental driver of carbon catabolism and lipid anabolism: redox balance. RESULTS A consortium of Rhodococcus strains was employed in this study given its higher capacity for lignin degradation compared to monocultures. This consortium was grown on glucose vs. lignin under nitrogen limitation to study the importance of redox balance as it relates to nutrient availability. A modified bottom-up proteomics workflow was harnessed to acquire a general relationship between protein abundance and protein redox states. Global proteomics results affirm differential expression of enzymes involved in sugar metabolism vs. those involved in lignin degradation and aromatics metabolism. As reported previously, several enzymes in the lipid biosynthetic pathways were downregulated, whereas many involved in β-oxidation were upregulated. Interestingly, proteins involved in oxidative stress response were also upregulated perhaps in response to lignin degradation and aromatics catabolism, which require oxygen and reactive oxygen species and generate toxic byproducts. Enzymes displaying little-to-no change in abundance but differences in redox state were observed in various pathways for carbon utilization (e.g., β‑ketoadipate pathway), lipid metabolism, as well as nitrogen metabolism (e.g., purine scavenging/synthesis), suggesting potential mechanisms of redox-dependent regulation of metabolism. CONCLUSIONS Efficient lipid production requires a steady carbon and energy flux while balancing fundamental requirements for enzyme production and cell maintenance. For lignin, we theorize that this balance is difficult to establish due to resource expenditure for enzyme production and stress response. This is supported by significant changes to protein abundances and protein cysteine oxidation in various metabolic pathways and redox processes.
Collapse
Affiliation(s)
- Xiaolu Li
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Austin Gluth
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA.
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
2
|
Giacalone D, Yap RE, Ecker AMV, Tan S. PrrA modulates Mycobacterium tuberculosis response to multiple environmental cues and is critically regulated by serine/threonine protein kinases. PLoS Genet 2022; 18:e1010331. [PMID: 35913986 PMCID: PMC9371303 DOI: 10.1371/journal.pgen.1010331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to adapt to its surrounding environment is critical for the bacterium to successfully colonize its host. Transcriptional changes are a vital mechanism by which Mtb responds to key environmental signals experienced, such as pH, chloride (Cl-), nitric oxide (NO), and hypoxia. However, much remains unknown regarding how Mtb coordinates its response to the disparate signals seen during infection. Utilizing a transcription factor (TF) overexpression plasmid library in combination with a pH/Cl--responsive luciferase reporter, we identified the essential TF, PrrA, part of the PrrAB two-component system, as a TF involved in modulation of Mtb response to pH and Cl-. Further studies revealed that PrrA also affected Mtb response to NO and hypoxia, with prrA overexpression dampening induction of NO and hypoxia-responsive genes. PrrA is phosphorylated not just by its cognate sensor histidine kinase PrrB, but also by serine/threonine protein kinases (STPKs) at a second distinct site. Strikingly, a STPK-phosphoablative PrrA variant was significantly dampened in its response to NO versus wild type Mtb, disrupted in its ability to adaptively enter a non-replicative state upon extended NO exposure, and attenuated for in vivo colonization. Together, our results reveal PrrA as an important regulator of Mtb response to multiple environmental signals, and uncover a critical role of STPK regulation of PrrA in its function. Vital to successful host colonization by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the bacterium’s ability to respond and adapt to changes in its local environment during infection. Here, we discover that the essential transcription factor PrrA, part of the PrrAB two-component system (TCS), modulates Mtb response to four important environmental cues encountered within the host: pH, chloride, nitric oxide, and hypoxia. PrrA acts as a rheostat, adjusting the amplitude of Mtb gene expression changes upon bacterial exposure to each of the four environmental signals. Further, we reveal a critical impact of serine/threonine protein kinases (STPKs) on PrrA function, with prevention of STPK phosphorylation of PrrA disrupting adaptive response of Mtb to growth-inhibiting cues and attenuating the bacterium’s ability to colonize its host. Our work uncovers PrrA as a regulator with broad impact across environmental signals, and highlights how two regulatory systems, TCSs and STPKs, critically interact in coordinating Mtb response to environmental cues.
Collapse
Affiliation(s)
- David Giacalone
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Rochelle E. Yap
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alwyn M. V. Ecker
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
3
|
Patil V, Jain V. Understanding Metabolic Remodeling in Mycobacterium smegmatis to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State. Front Microbiol 2021; 12:722229. [PMID: 34539614 PMCID: PMC8440910 DOI: 10.3389/fmicb.2021.722229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
Mycobacteria such as Mycobacterium tuberculosis, the causative agent of tuberculosis that annually kills several million people worldwide, and Mycobacterium smegmatis, the non-pathogenic fast-growing mycobacteria, require oxidative phosphorylation to meet their energy requirements. We have previously shown that deletion of one of the two copies of atpD gene that codes for the ATP synthase β-subunit establishes an energy-compromised state in M. smegmatis. Here we report that upon such deletion, a major routing of electron flux occurs through the less energy-efficient complexes of its respiratory chain. ΔatpD bacterium also shows an increased reduced state which is further confirmed by the overexpression of WhiB3, a major redox sensor. We show a substantial modulation of the biosynthesis of cell wall associated lipids and triacylglycerol (TAG). An accumulation of TAG-containing lipid bodies is further confirmed by using 14C oleate incorporation. Interestingly, the mutant also shows an overexpression of TAG-degrading lipase genes, and the intracellular lipolytic enzymes mediate TAG hydrolysis for their utilization as energy source. We believe that our in vitro energy-depleted model will allow us to explore the critical link between energy metabolism, redox homeostasis, and lipid biosynthesis during ATP-depleted state, which will enhance our understanding of the bacterial adaptation, and will allow us to identify novel drug targets to counter mycobacterial infections.
Collapse
Affiliation(s)
- Varsha Patil
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
4
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
5
|
Li M, Gašparovič H, Weng X, Chen S, Korduláková J, Jessen-Trefzer C. The Two-Component Locus MSMEG_0244/0246 Together With MSMEG_0243 Affects Biofilm Assembly in M. smegmatis Correlating With Changes in Phosphatidylinositol Mannosides Acylation. Front Microbiol 2020; 11:570606. [PMID: 33013801 PMCID: PMC7516205 DOI: 10.3389/fmicb.2020.570606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ferric and ferrous iron is an essential transition metal for growth of many bacterial species including mycobacteria. The genomic region msmeg_0234 to msmeg_0252 from Mycobacterium smegmatis is putatively involved in iron/heme metabolism. We investigate the genes encoding the presumed two component system MSMEG_0244/MSMEG_0246, the neighboring gene msmeg_0243 and their involvement in this process. We show that purified MSMEG_0243 indeed is a heme binding protein. Deletion of msmeg_0243/msmeg_0244/msmeg_0246 in Mycobacterium smegmatis leads to a defect in biofilm formation and colony growth on solid agar, however, this phenotype is independent of the supplied iron source. Further, analysis of the corresponding mutant and its lipids reveals that changes in morphology and biofilm formation correlate with altered acylation patterns of phosphatidylinositol mannosides (PIMs). We provide the first evidence that msmeg_0244/msmeg_0246 work in concert in cellular lipid homeostasis, especially in the maintenance of PIMs, with the heme-binding protein MSMEG_0243 as potential partner.
Collapse
Affiliation(s)
- Miaomaio Li
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Henrich Gašparovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Xing Weng
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Si Chen
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Maarsingh JD, Yang S, Park JG, Haydel SE. Comparative transcriptomics reveals PrrAB-mediated control of metabolic, respiration, energy-generating, and dormancy pathways in Mycobacterium smegmatis. BMC Genomics 2019; 20:942. [PMID: 31810444 PMCID: PMC6898941 DOI: 10.1186/s12864-019-6105-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/13/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mycobacterium smegmatis is a saprophytic bacterium frequently used as a genetic surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. tuberculosis. RESULTS RNA-seq differential expression analysis of M. smegmatis wild-type (WT), ΔprrAB mutant, and complementation strains revealed that during in vitro exponential growth, PrrAB regulates 167 genes (q < 0.05), 57% of which are induced in the WT background. Gene ontology and cluster of orthologous groups analyses showed that PrrAB regulates genes participating in ion homeostasis, redox balance, metabolism, and energy production. PrrAB induced transcription of dosR (devR), a response regulator gene that promotes latent infection in M. tuberculosis and 21 of the 25 M. smegmatis DosRS regulon homologues. Compared to the WT and complementation strains, the ΔprrAB mutant exhibited an exaggerated delayed growth phenotype upon exposure to potassium cyanide and respiratory inhibition. Gene expression profiling correlated with these growth deficiency results, revealing that PrrAB induces transcription of the high-affinity cytochrome bd oxidase genes under both aerobic and hypoxic conditions. ATP synthesis was ~ 64% lower in the ΔprrAB mutant relative to the WT strain, further demonstrating that PrrAB regulates energy production. CONCLUSIONS The M. smegmatis PrrAB two-component system regulates respiratory and oxidative phosphorylation pathways, potentially to provide tolerance against the dynamic environmental conditions experienced in its natural ecological niche. PrrAB positively regulates ATP levels during exponential growth, presumably through transcriptional activation of both terminal respiratory branches (cytochrome c bc1-aa3 and cytochrome bd oxidases), despite transcriptional repression of ATP synthase genes. Additionally, PrrAB positively regulates expression of the dormancy-associated dosR response regulator genes in an oxygen-independent manner, which may serve to fine-tune sensory perception of environmental stimuli associated with metabolic repression.
Collapse
Affiliation(s)
- Jason D Maarsingh
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Shanshan Yang
- Bioinformatics Core, Knowledge Enterprise Development, Arizona State University, Tempe, AZ, USA
| | - Jin G Park
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Shelley E Haydel
- School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,The Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Alvarez HM, Herrero OM, Silva RA, Hernández MA, Lanfranconi MP, Villalba MS. Insights into the Metabolism of Oleaginous Rhodococcus spp. Appl Environ Microbiol 2019; 85:e00498-19. [PMID: 31324625 PMCID: PMC6715851 DOI: 10.1128/aem.00498-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Some species belonging to the Rhodococcus genus, such as Rhodococcus opacus, R. jostii, and R. wratislaviensis, are known to be oleaginous microorganisms, since they are able to accumulate triacylglycerols (TAG) at more than 20% of their weight (dry weight). Oleaginous rhodococci are promising microbial cell factories for the production of lipids to be used as fuels and chemicals. Cells could be engineered to create strains capable of producing high quantities of oils from industrial wastes and a variety of high-value lipids. The comprehensive understanding of carbon metabolism and its regulation will contribute to the design of a reliable process for bacterial oil production. Bacterial oleagenicity requires an integral configuration of metabolism and regulatory processes rather than the sole existence of an efficient lipid biosynthesis pathway. In recent years, several studies have been focused on basic aspects of TAG biosynthesis and accumulation using R. opacus PD630 and R. jostii RHA1 strains as models of oleaginous bacteria. The combination of results obtained in these studies allows us to propose a metabolic landscape for oleaginous rhodococci. In this context, this article provides a comprehensive and integrative view of different metabolic and regulatory attributes and innovations that explain the extraordinary ability of these bacteria to synthesize and accumulate TAG. We hope that the accessibility to such information in an integrated way will help researchers to rationally select new targets for further studies in the field.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - O Marisa Herrero
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Roxana A Silva
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Martín A Hernández
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P Lanfranconi
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Maria S Villalba
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| |
Collapse
|