1
|
Tian D, Liu Y, Zhang Y, Liu Y, Xia Y, Xu B, Xu J, Yomo T. Implementation of Fluorescent-Protein-Based Quantification Analysis in L-Form Bacteria. Bioengineering (Basel) 2024; 11:81. [PMID: 38247958 PMCID: PMC10813599 DOI: 10.3390/bioengineering11010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-wall-less (L-form) bacteria exhibit morphological complexity and heterogeneity, complicating quantitative analysis of them under internal and external stimuli. Stable and efficient labeling is needed for the fluorescence-based quantitative cell analysis of L-forms during growth and proliferation. Here, we evaluated the expression of multiple fluorescent proteins (FPs) under different promoters in the Bacillus subtilis L-form strain LR2 using confocal microscopy and imaging flow cytometry. Among others, Pylb-derived NBP3510 showed a superior performance for inducing several FPs including EGFP and mKO2 in both the wild-type and L-form strains. Moreover, NBP3510 was also active in Escherichia coli and its L-form strain NC-7. Employing these established FP-labeled strains, we demonstrated distinct morphologies in the L-form bacteria in a quantitative manner. Given cell-wall-deficient bacteria are considered protocell and synthetic cell models, the generated cell lines in our work could be valuable for L-form-based research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Liu Y, Zhang Y, Kang C, Tian D, Lu H, Xu B, Xia Y, Kashiwagi A, Westermann M, Hoischen C, Xu J, Yomo T. Comparative genomics hints at dispensability of multiple essential genes in two Escherichia coli L-form strains. Biosci Rep 2023; 43:BSR20231227. [PMID: 37819245 PMCID: PMC10600066 DOI: 10.1042/bsr20231227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
Despite the critical role of bacterial cell walls in maintaining cell shapes, certain environmental stressors can induce the transition of many bacterial species into a wall-deficient state called L-form. Long-term induced Escherichia coli L-forms lose their rod shape and usually hold significant mutations that affect cell division and growth. Besides this, the genetic background of L-form bacteria is still poorly understood. In the present study, the genomes of two stable L-form strains of E. coli (NC-7 and LWF+) were sequenced and their gene mutation status was determined and compared with their parental strains. Comparative genomic analysis between two L-forms reveals both unique adaptions and common mutated genes, many of which belong to essential gene categories not involved in cell wall biosynthesis, indicating that L-form genetic adaptation impacts crucial metabolic pathways. Missense variants from L-forms and Lenski's long-term evolution experiment (LTEE) were analyzed in parallel using an optimized DeepSequence pipeline to investigate predicted mutation effects (α) on protein functions. We report that the two L-form strains analyzed display a frequency of 6-10% (0% for LTEE) in mutated essential genes where the missense variants have substantial impact on protein functions (α<0.5). This indicates the emergence of different survival strategies in L-forms through changes in essential genes during adaptions to cell wall deficiency. Collectively, our results shed light on the detailed genetic background of two E. coli L-forms and pave the way for further investigations of the gene functions in L-form bacterial models.
Collapse
Affiliation(s)
- Yunfei Liu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Yueyue Zhang
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Chen Kang
- School of Software Engineering, East China Normal University, Shanghai 200062, PR China
| | - Di Tian
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Hui Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Martin Westermann
- Center for Electron Microscopy, Medical Faculty, Friedrich–Schiller–University Jena, Ziegelmühlenweg 1, D-07743 Jena, Germany
| | - Christian Hoischen
- CF Imaging, Leibniz Institute On Aging, Fritz–Lipmann–Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| |
Collapse
|
3
|
Ohta K, Shimizu T, Oshima T, Ichihashi N. Genetic analysis of Bacillus subtilis stable L-forms obtained via long-term cultivation. J GEN APPL MICROBIOL 2023; 69:45-52. [PMID: 36384691 DOI: 10.2323/jgam.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Various bacteria can change to a spherical cell-wall-deficient state, called L-from, in the presence of antibiotics that inhibit cell wall synthesis. L-forms are classified into two types: unstable and stable L-forms. Unstable L-forms revert to a normal walled state in the absence of antibiotics, while stable L-forms remain in their wall-deficient state. The conversion from unstable to stable L-forms has been often observed during long-term cultivation. However, the genetic cause for this conversion is not yet fully understood. Here, we obtained stable Bacillus subtilis L-form strains from unstable L-form strains via three independent long-term culturing experiments. The whole genome sequencing of the long-cultured strains identified many mutations, and some mutations were commonly found in all three long-cultured strains. The knockout strain of one of the commonly mutated genes, tagF, in the ancestral strain lost the ability to revert to walled state (rod shape), supporting that eliminating the function of tagF gene is one of the possible methods to convert unstable L forms to a stable state.
Collapse
Affiliation(s)
- Kazuki Ohta
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo
| | - Tenma Shimizu
- Graduate School of Frontier Biosciences, Osaka University
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo
- Komaba Institute for Science, The University of Tokyo
- Universal Biology Institute, Graduate School of Science, The University of Tokyo
| |
Collapse
|
4
|
Lazenby JJ, Li ES, Whitchurch CB. Cell wall deficiency - an alternate bacterial lifestyle? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35925044 DOI: 10.1099/mic.0.001218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Historically, many species of bacteria have been reported to produce viable, cell wall deficient (CWD) variants. A variety of terms have been used to refer to CWD bacteria and a plethora of methods described in which to induce, cultivate and propagate them. In this review, we will examine the long history of scientific research on CWD bacteria examining the methods by which CWD bacteria are generated; the requirements for survival in a CWD state; the replicative processes within a CWD state; and the reversion of CWD bacteria into a walled state, or lack thereof. In doing so, we will present evidence that not all CWD variants are alike and that, at least in some cases, CWD variants arise through an adaptive lifestyle switch that enables them to live and thrive without a cell wall, often to avoid antimicrobial activity. Finally, the implications of CWD bacteria in recurring infections, tolerance to antibiotic therapy and antimicrobial resistance will be examined to illustrate the importance of greater understanding of the CWD bacteria in human health and disease.
Collapse
Affiliation(s)
- James J Lazenby
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Erica S Li
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Cynthia B Whitchurch
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TK, UK
| |
Collapse
|
5
|
CleanSeq: A Pipeline for Contamination Detection, Cleanup, and Mutation Verifications from Microbial Genome Sequencing Data. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Contaminations frequently occur in bacterial cultures, which significantly affect the reproducibility and reliability of the results from whole-genome sequencing (WGS). Decontaminated WGS data with clean reads is the only desirable source for detecting possible variants correctly. Improvements in bioinformatics are essential to analyze the contaminated WGS dataset. Existing pipelines usually contain contamination detection, decontamination, and variant calling separately. The efficiency and results from existing pipelines fluctuate since distinctive computational models and parameters are applied. It is then promising to develop a bioinformatical tool containing functions to discriminate and remove contaminated reads and improve variant calling from clean reads. In this study, we established a Python-based pipeline named CleanSeq for automatic detection and removal of contaminating reads, analyzing possible genome variants with proper verifications via local re-alignments. The application and reproducibility are proven in either simulated, publicly available datasets or actual genome sequencing reads from our experimental evolution study in Escherichia coli. We successfully obtained decontaminated reads, called out all seven consistent mutations from the contaminated bacterial sample, and derived five colonies. Collectively, the results demonstrated that CleanSeq could effectively process the contaminated samples to achieve decontaminated reads, based on which reliable results (i.e., variant calling) could be obtained.
Collapse
|
6
|
Ongenae V, Briegel A, Claessen D. Cell wall deficiency as an escape mechanism from phage infection. Open Biol 2021; 11:210199. [PMID: 34465216 PMCID: PMC8437236 DOI: 10.1098/rsob.210199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Wong F, Wilson S, Helbig R, Hegde S, Aftenieva O, Zheng H, Liu C, Pilizota T, Garner EC, Amir A, Renner LD. Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level. Front Microbiol 2021; 12:712007. [PMID: 34421870 PMCID: PMC8372035 DOI: 10.3389/fmicb.2021.712007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to β-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating β-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features-turgor pressure, mechanosensitive channels, and cell shape changes-that are expected to modulate lysis. We develop a mechanical model of bacterial cell lysis and experimentally analyze the dynamics of lysis in hundreds of single Escherichia coli cells. We find that turgor pressure is the only factor, of these three cellular features, which robustly modulates lysis. We show that mechanosensitive channels do not modulate lysis due to insufficiently fast solute outflow, and that cell shape changes result in more severe cellular lesions but do not influence the dynamics of lysis. These results inform a single-cell view of bacterial cell lysis and underscore approaches of combatting antibiotic tolerance to β-lactams aimed at targeting cellular turgor.
Collapse
Affiliation(s)
- Felix Wong
- Department of Biological Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ralf Helbig
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Smitha Hegde
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olha Aftenieva
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Hai Zheng
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| |
Collapse
|
8
|
Ramirez-Diaz DA, Merino-Salomón A, Meyer F, Heymann M, Rivas G, Bramkamp M, Schwille P. FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis. Nat Commun 2021; 12:3310. [PMID: 34083531 PMCID: PMC8175707 DOI: 10.1038/s41467-021-23387-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/27/2021] [Indexed: 01/28/2023] Open
Abstract
FtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.
Collapse
Affiliation(s)
- Diego A Ramirez-Diaz
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximillians-University, Munich, Germany
| | - Adrián Merino-Salomón
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- International Max Planck Research School for Molecular Life Sciences (IMPRS-LS), Munich, Germany
| | - Fabian Meyer
- Institute of General Microbiology, Christian-Albrechts-Unversity, Kiel, Germany
| | - Michael Heymann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Marc Bramkamp
- Institute of General Microbiology, Christian-Albrechts-Unversity, Kiel, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
9
|
Chikada T, Kanai T, Hayashi M, Kasai T, Oshima T, Shiomi D. Direct Observation of Conversion From Walled Cells to Wall-Deficient L-Form and Vice Versa in Escherichia coli Indicates the Essentiality of the Outer Membrane for Proliferation of L-Form Cells. Front Microbiol 2021; 12:645965. [PMID: 33776978 PMCID: PMC7991099 DOI: 10.3389/fmicb.2021.645965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli are surrounded by an outer membrane, which encloses a peptidoglycan layer. Even if thinner than in many Gram-positive bacteria, the peptidoglycan in E. coli allows cells to withstand turgor pressure in hypotonic medium. In hypertonic medium, E. coli treated with a cell wall synthesis inhibitor such as penicillin G form wall-deficient cells. These so-called L-form cells grow well under anaerobic conditions (i.e., in the absence of oxidative stress), becoming deformed and dividing as L-form. Upon removal of the inhibitor, they return to the walled rod-shaped state. Recently, the outer membrane was reported to provide rigidity to Gram-negative bacteria and to strengthen wall-deficient cells. However, it remains unclear why L-form cells need the outer membrane for growth. Using a microfluidic system, we found that, upon treatment with the outer membrane-disrupting drugs polymyxin B and polymyxin B nonapeptide or with the outer membrane synthesis inhibitor CHIR-090, the cells lysed during cell deformation and division, indicating that the outer membrane was important even in hypertonic medium. L-form cells could return to rod-shaped when trapped in a narrow space, but not in a wide space, likely due to insufficient physical force. Outer membrane rigidity could be compromised by lack of outer membrane proteins; Lpp, OmpA, or Pal. Deletion of lpp caused cells to lyse during cell deformation and cell division. In contrast, ompA and pal mutants could be deformed and return to small oval cells even when less physical force was exerted. These results strongly suggest that wall-deficient E. coli cells require a rigid outer membrane to survive, but not too rigid to prevent them from changing cell shape.
Collapse
Affiliation(s)
- Taiki Chikada
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Tomomi Kanai
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Masafumi Hayashi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Taishi Kasai
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| |
Collapse
|
10
|
Zou J, Kou SH, Xie R, VanNieuwenhze MS, Qu J, Peng B, Zheng J. Non-walled spherical Acinetobacter baumannii is an important type of persister upon β-lactam antibiotic treatment. Emerg Microbes Infect 2021; 9:1149-1159. [PMID: 32419626 PMCID: PMC7448848 DOI: 10.1080/22221751.2020.1770630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial persistence is one of the major causes of antibiotic treatment failure and the step stone for antibiotic resistance. However, the mechanism by which persisters arise has not been well understood. Maintaining a dormant state to prevent antibiotics from taking effect is believed to be the fundamental mechanistic basis, and persisters normally maintain an intact cellular structure. Here we examined the morphologies of persisters in Acinetobacter baumannii survived from the treatment by three major classes of antibiotics (i.e. β-lactam, aminoglycoside, and fluoroquinolone) with microcopy and found that a fraction of enlarged spherical bacteria constitutes a major sub-population of bacterial survivors from β-lactam antibiotic treatment, whereas survivors from the treatment of aminoglycoside and fluoroquinolone were less changed morphologically. Further studies showed that these spherical bacteria had completely lost their cell wall structures but could survive without any osmoprotective reagent. The spherical bacteria were not the viable-but-non-culturable cells and they could revive upon the removal of β-lactam antibiotics. Importantly, these non-walled spherical bacteria also persisted during antibiotic therapy in vivo using Galleria mellonella as the infection model. Additionally, the combinational treatment on A. baumannii by β-lactam and membrane-targeting antibiotic significantly enhanced the killing efficacy. Our results indicate that in addition to the dormant, structure intact persisters, the non-wall spherical bacterium is another important type of persister in A. baumannii. The finding suggests that targeting the bacterial cell membrane during β-lactam chemotherapy could enhance therapeutic efficacy on A. baumannii infection, which might also help to reduce the resistance development of A. baumannii.
Collapse
Affiliation(s)
- Jin Zou
- Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China
| | - Si-Hoi Kou
- Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China
| | - Ruiqiang Xie
- Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China
| | | | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, People's Republic of China
| | - Bo Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China.,Institute of Translational Medicine, University of Macau, Macau SAR, People's Republic of China
| |
Collapse
|
11
|
Claessen D, Errington J. Cell Wall Deficiency as a Coping Strategy for Stress. Trends Microbiol 2019; 27:1025-1033. [PMID: 31420127 DOI: 10.1016/j.tim.2019.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
Abstract
The cell wall is a surface layer located outside the cell membrane of almost all bacteria; it protects cells from environmental stresses and gives them their typical shape. The cell wall is highly conserved in bacteria and is the target for some of our best antibiotics. Surprisingly, some bacteria are able to shed their wall under the influence of stress, yielding cells that are cell-wall-deficient. Notably, wall-deficient cells are flexible and are able to maneuver through narrow spaces, insensitive to wall-targeting antibiotics, and capable of taking up and exchanging DNA. Moreover, given that wall-associated epitopes are often recognized by host defense systems, wall deficiency provides a plausible explanation for how some bacteria may hide in their host. In this review we focus on this paradoxical stress response, which provides cells with unique opportunities that are unavailable to walled cells.
Collapse
Affiliation(s)
- Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands.
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4AX, UK.
| |
Collapse
|