1
|
Breselge S, Skibinska I, Yin X, Brennan L, Kilcawley K, Cotter PD. The core microbiomes and associated metabolic potential of water kefir as revealed by pan multi-omics. Commun Biol 2025; 8:415. [PMID: 40069560 PMCID: PMC11897133 DOI: 10.1038/s42003-025-07808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Water kefir (WK) is an artisanal fermented beverage made from sugary water, optional fruits and WK grains. WK grains can be reused to start new fermentations. Here we investigate the microbial composition and function of 69 WK grains and their ferments by shotgun metagenomics. A subset of samples was subjected to metabolomic, including volatilomic, analysis. The impact of different fermentation practices on microbial composition and fermentation characteristics was analysed and it was noted that, for example, the common practice of drying water kefir grains significantly reduces microbial diversity and negatively impacts subsequent grain growth. Metagenomic analysis allowed the detection of 96 species within WK, the definition of core genera and the detection of different community states after 48 h of fermentation. A total of 485 bacterial metagenome assembled genomes were obtained and 18 putatively novel species were predicted. Metabolite and volatile analysis show associations between key species with flavour compounds. We show the complex microbial composition of WK and links between fermentation practices, microbes and the fermented product. The results can be used as a foundation for the selection of species for large scale WK production with desired flavour profiles and to guide the regulatory framework for commercial WK production.
Collapse
Affiliation(s)
- Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | | | - Xiaofei Yin
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- VistaMilk, Cork, Ireland
| | - Kieran Kilcawley
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
2
|
Edis KK, İspirli H, Yilmaz MT, Dertli E. Liquorilactobacillus hordei SK6 and Liquorilactobacillus mali SK26 from Traditional Water Kefir Produce Dextrans with Technological Roles. Appl Biochem Biotechnol 2025; 197:1610-1629. [PMID: 39601972 DOI: 10.1007/s12010-024-05081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The significance of exopolysaccharides (EPS) in various applications has garnered increasing attention. In this study, two bacteria, Liquorilactobacillus hordei SK6 and Liquorilactobacillus mali SK26, isolated from traditional water kefir grains, produced 8.89 g/L and 7.2 g/L of homopolymeric glucan, respectively. NMR analysis revealed that both glucans were dextrans composed of (1 → 6)-linked α-D-glucose units, with (1 → 3)-linked α-D-glucose units serving as branching points, accounting for 5.3 ± 0.2% in dextran SK6 and 2.7 ± 0.15% in SK26. FTIR and XRD analyses further confirmed the amorphous nature of the dextrans, although dextran SK6 exhibited micro-arranged structures. Thermal characterization using TGA and DSC showed degradation temperatures of 298.5 °C for dextran SK6 and 282.1 °C for dextran SK26. Clear differences in morphological properties were observed using AFM and SEM. These findings provide valuable insights into dextran-producing strains and their potential applications in various industries.
Collapse
Affiliation(s)
- Kader Korkmaz Edis
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Hümeyra İspirli
- Food Engineering Department, Bayburt University, Engineering Faculty, Bayburt, Turkey
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Enes Dertli
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, İstanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
3
|
Nachtigall C, Hassler V, Wefers D, Rohm H, Jaros D. Dextrans of Weissella cibaria DSM14295: Microbial production, structure and functionality. Int J Biol Macromol 2023; 246:125631. [PMID: 37399863 DOI: 10.1016/j.ijbiomac.2023.125631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Lactic acid bacteria of the genus Weissella contribute to spontaneous fermentation in, e.g., sourdough or sauerkraut, but are not registered as starter cultures because of their pending safety assessment. Some strains are able to produce high amounts of exopolysaccharides. This study aims to demonstrate the techno-functionality of five dextrans from W. cibaria DSM14295, produced under varying cultivation conditions, with respect to structural and macromolecular properties. A maximum of 23.1 g/L dextran was achieved by applying the "cold shift" temperature regime. The dextrans differed in molecular mass (9-22∙108 Da, determined by HPSEC-RI/MALLS), intrinsic viscosity (52-73 mL/g), degree of branching (3.8-5.7 % at position O3, determined by methylation analysis) and their side chain length and architecture, determined by HPAEC-PAD after enzymatic hydrolysis. Stiffness of acid gels from milk spiked with these dextrans increased linearly with dextran concentration. Principal component analysis showed that dextrans produced in a semi-defined medium are primarily described by moisture sorption and branching properties, whereas dextrans produced in whey permeate were similar because of their functional and macromolecular properties. Overall, dextrans from W. cibaria DSM14295 have a high potential because of the high production yield and their functionality which can be tailored by the conditions during fermentation.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Verena Hassler
- Division of Food Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Daniel Wefers
- Division of Food Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Doris Jaros
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
4
|
The C-Terminal Domain of Liquorilactobacillus nagelii Dextransucrase Mediates the Production of Larger Dextrans Compared to Liquorilactobacillus hordei. Gels 2022; 8:gels8030171. [PMID: 35323284 PMCID: PMC8954249 DOI: 10.3390/gels8030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Dextransucrases released by certain lactic acid bacteria form glucose polymers with predominantly α-1,6-linkages and may be exploited biotechnologically for the tailored production of polysaccharides with application potential. Despite releasing two closely related dextransucrases, previous studies showed that water kefir borne Liquorilactobacillus (L.) hordei TMW 1.1822 and L. nagelii TMW 1.1827 produce different amounts of polysaccharides with distinct particle sizes (molecular weight and radius of gyration) and molecular architectures. To investigate where these differences originate and thus to provide deeper insights into the functionally diverse nature of polysaccharide formation during water kefir fermentation, we constructed two variants of the L. nagelii dextransucrase—a full-length enzyme and a truncated variant, devoid of a C-terminal glucan-binding domain that reflects the domain architecture of the L. hordei dextransucrase—and applied them at various enzyme concentrations to form dextran over 24 h. The full-length enzyme exhibited a high activity, forming constant amounts of dextran until a four-fold dilution, whereas the truncated variant showed a gradual decrease in activity and dextran formation at an increasing dilution. The application of the full-length enzyme resulted in higher average particle sizes compared to the truncated variant. However, the dilution of the enzyme extracts also led to a slight increase in the average particle size in both enzymes. Neither the domain architecture nor the enzyme concentration had an impact on the structural architecture of the dextrans. The presented results thus suggest that the comparatively higher processivity of the L. nagelii dextransucrase is predominantly caused by the additional C-terminal glucan-binding domain, which is absent in the L. hordei dextransucrase. The average particle size may be influenced, to some extent, by the applied reaction conditions, whereas the structural architecture of the dextrans is most likely caused by differences in the amino acid sequence of the catalytic domain.
Collapse
|
5
|
Jurášková D, Ribeiro SC, Silva CCG. Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties. Foods 2022; 11:156. [PMID: 35053888 PMCID: PMC8774684 DOI: 10.3390/foods11020156] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.
Collapse
Affiliation(s)
| | | | - Celia C. G. Silva
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Azores, Portugal; (D.J.); (S.C.R.)
| |
Collapse
|
6
|
Brezeștean I, Bocăneală M, Gherman AMR, Porav SA, Kacsó I, Rakosy-Tican E, Dina NE. Spectroscopic investigation of exopolysaccharides purified from Arthrospira platensis cultures as potential bioresources. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Pendón MD, Bengoa AA, Iraporda C, Medrano M, Garrote GL, Abraham AG. Water kefir: Factors affecting grain growth and health-promoting properties of the fermented beverage. J Appl Microbiol 2021; 133:162-180. [PMID: 34822204 DOI: 10.1111/jam.15385] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023]
Abstract
Nowadays, the interest in the consumption of healthy foods has increased as well as the homemade preparation of artisanal fermented product. Water kefir is an ancient drink of uncertain origin, which has been passed down from generation to generation and is currently consumed practically all over the world. Considering the recent and extensive updates published on sugary kefir, this work aims to shed light on the scientific works that have been published so far in relation to this complex ecosystem. We focused our review evaluating the factors that affect the beverage microbial and chemical composition that are responsible for the health attribute of water kefir as well as the grain growth. The microbial ecosystem that constitutes the grains and the fermented consumed beverage can vary according to the fermentation conditions (time and temperature) and especially with the use of different substrates (source of sugars, additives as fruits and molasses). In this sense, the populations of microorganisms in the beverage as well as the metabolites that they produce varies and in consequence their health properties. Otherwise, the knowledge of the variables affecting grain growth are also discussed for its relevance in maintenance of the starter biomass as well as the use of dextran for technological application.
Collapse
Affiliation(s)
- María Dolores Pendón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Ana Agustina Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Carolina Iraporda
- Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería, UNCPBA, Olavarría, Argentina
| | - Micaela Medrano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina.,Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| |
Collapse
|
8
|
Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering. Microorganisms 2021; 9:microorganisms9081607. [PMID: 34442685 PMCID: PMC8398850 DOI: 10.3390/microorganisms9081607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/12/2023] Open
Abstract
Glucansucrases and branching sucrases are classified in the family 70 of glycoside hydrolases. They are produced by lactic acid bacteria occupying very diverse ecological niches (soil, buccal cavity, sourdough, intestine, dairy products, etc.). Usually secreted by their producer organisms, they are involved in the synthesis of α-glucans from sucrose substrate. They contribute to cell protection while promoting adhesion and colonization of different biotopes. Dextran, an α-1,6 linked linear α-glucan, was the first microbial polysaccharide commercialized for medical applications. Advances in the discovery and characterization of these enzymes have remarkably enriched the available diversity with new catalysts. Research into their molecular mechanisms has highlighted important features governing their peculiarities thus opening up many opportunities for engineering these catalysts to provide new routes for the transformation of sucrose into value-added molecules. This article reviews these different aspects with the ambition to show how they constitute the basis for promising future developments.
Collapse
|
9
|
Lynch KM, Wilkinson S, Daenen L, Arendt EK. An update on water kefir: Microbiology, composition and production. Int J Food Microbiol 2021; 345:109128. [PMID: 33751986 DOI: 10.1016/j.ijfoodmicro.2021.109128] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 11/15/2022]
Abstract
Water kefir is a sparkling, slightly acidic fermented beverage produced by fermenting a solution of sucrose, to which dried fruits have been added, with water kefir grains. These gelatinous grains are a symbiotic culture of bacteria and yeast embedded in a polysaccharide matrix. Lactic acid bacteria, yeast and acetic acid bacteria are the primary microbial members of the sugary kefir grain. Amongst other contributions, species of lactic acid bacteria produce the exopolysaccharide matrix from which the kefir grain is formed, while yeast assists the bacteria by a nitrogen source that can be assimilated. Exactly which species predominate within the grain microbiota, however, appears to be dependent on the geographical origin of the grains and the fermentation substrate and conditions. These factors ultimately affect the characteristics of the beverage produced in terms of aroma, flavour, and acidity, for example, but can also be controlled and exploited in the production of a beverage of desired characteristics. The production of water kefir has traditionally occurred on a small scale and the use of defined starter cultures is not commonly practiced. However, as water kefir increases in popularity as a beverage - in part because of consumer lifestyle trends and in part due to water kefir being viewed as a health drink with its purported health benefits - the need for a thorough understanding of the biology and dynamics of water kefir, and for defined and controlled production processes, will ultimately increase. The aim of this review is to provide an update into the current knowledge of water kefir.
Collapse
Affiliation(s)
- Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Stuart Wilkinson
- Global Innovation & Technology Centre, Anheuser-Busch InBev nv/sa, Brouwerijplein 1, 3000 Leuven, Belgium
| | - Luk Daenen
- Global Innovation & Technology Centre, Anheuser-Busch InBev nv/sa, Brouwerijplein 1, 3000 Leuven, Belgium
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
10
|
Pittrof SL, Kaufhold L, Fischer A, Wefers D. Products Released from Structurally Different Dextrans by Bacterial and Fungal Dextranases. Foods 2021; 10:foods10020244. [PMID: 33530339 PMCID: PMC7911647 DOI: 10.3390/foods10020244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Dextran hydrolysis by dextranases is applied in the sugar industry and the medical sector, but it also has a high potential for use in structural analysis of dextrans. However, dextranases are produced by several organisms and thus differ in their properties. The aim of this study was to comparatively investigate the product patterns obtained from the incubation of linear as well as O3- and O4-branched dextrans with different dextranases. For this purpose, genes encoding for dextranases from Bacteroides thetaiotaomicron and Streptococcus salivarius were cloned and heterologously expressed in Escherichia coli. The two recombinant enzymes as well as two commercial dextranases from Chaetomium sp. and Penicillium sp. were subsequently used to hydrolyze structurally different dextrans. The hydrolysis products were investigated in detail by HPAEC-PAD. For dextranases from Chaetomium sp., Penicillium sp., and Bacteroides thetaiotaomicron, isomaltose was the end product of the hydrolysis from linear dextrans, whereas Penicillium sp. dextranase led to isomaltose and isomaltotetraose. In addition, the latter enzyme also catalyzed a disproportionation reaction when incubated with isomaltotriose. For O3- and O4-branched dextrans, the fungal dextranases yielded significantly different oligosaccharide patterns than the bacterial enzymes. Overall, the product patterns can be adjusted by choosing the correct enzyme as well as a defined enzyme activity.
Collapse
Affiliation(s)
- Silke L. Pittrof
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (S.L.P.); (L.K.); (A.F.)
| | - Larissa Kaufhold
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (S.L.P.); (L.K.); (A.F.)
| | - Anja Fischer
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (S.L.P.); (L.K.); (A.F.)
| | - Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (S.L.P.); (L.K.); (A.F.)
- Food Chemistry–Functional Food, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence:
| |
Collapse
|
11
|
Schmid J, Wefers D, Vogel RF, Jakob F. Analysis of Structural and Functional Differences of Glucans Produced by the Natively Released Dextransucrase of Liquorilactobacillus hordei TMW 1.1822. Appl Biochem Biotechnol 2021; 193:96-110. [PMID: 32820351 PMCID: PMC7790797 DOI: 10.1007/s12010-020-03407-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022]
Abstract
The properties of the glucopolymer dextran are versatile and linked to its molecular size, structure, branching, and secondary structure. However, suited strategies to control and exploit the variable structures of dextrans are scarce. The aim of this study was to delineate structural and functional differences of dextrans, which were produced in buffers at different conditions using the native dextransucrase released by Liquorilactobacillus (L.) hordei TMW 1.1822. Rheological measurements revealed that dextran produced at pH 4.0 (MW = 1.1 * 108 Da) exhibited the properties of a viscoelastic fluid up to concentrations of 10% (w/v). By contrast, dextran produced at pH 5.5 (MW = 1.86 * 108 Da) was gel-forming already at 7.5% (w/v). As both dextrans exhibited comparable molecular structures, the molecular weight primarily influenced their rheological properties. The addition of maltose to the production assays caused the formation of the trisaccharide panose instead of dextran. Moreover, pre-cultures of L. hordei TMW 1.1822 grown without sucrose were substantial for recovery of higher dextran yields, since the cells stored the constitutively expressed dextransucrase intracellularly, until sucrose became available. These findings can be exploited for the controlled recovery of functionally diverse dextrans and oligosaccharides by the use of one dextransucrase type.
Collapse
Affiliation(s)
- Jonas Schmid
- Chair of Technical Microbiology, Technical University of Munich (TUM), Freising, Germany
| | - Daniel Wefers
- Division of Food Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rudi F Vogel
- Chair of Technical Microbiology, Technical University of Munich (TUM), Freising, Germany
| | - Frank Jakob
- Chair of Technical Microbiology, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
12
|
Insights into extracellular dextran formation by Liquorilactobacillus nagelii TMW 1.1827 using secretomes obtained in the presence or absence of sucrose. Enzyme Microb Technol 2020; 143:109724. [PMID: 33375966 DOI: 10.1016/j.enzmictec.2020.109724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/21/2022]
Abstract
Dextrans are α-(1,6)-linked glucose polymers, which are exclusively produced by lactic acid bacteria from sucrose via extracellular dextransucrases. Previous studies suggested that the environmental pH and the presence of sucrose can impact the release and activity of these enzymes. To get deeper insight into this phenomenon, the dextransucrase expressed by water kefir borne Liquorilactobacillus (L.) nagelii TMW 1.1827 (formerly Lactobacillus nagelii) was recovered in supernatants of buffered cell suspensions that had been incubated with or without sucrose and at different pH. The obtained secretomes were used to time-dependently produce and recover dextrans, whose molecular and macromolecular structures were determined by methylation analysis and AF4-MALS-UV measurements, respectively. The initial pH of the buffered cell suspensions had solely a minor influence on the released dextransucrase activity. When sucrose was present during incubation, the secretomes contained significantly higher dextransucrase activities, although the amounts of totally released proteins obtained with or without sucrose were comparable. However, the dextransucrase appeared to be released in lower amounts into the environment if sucrose was not present. The amount of isolable dextran increased up to 24 h of production, although the total sucrose was consumed within the first 10 min of incubation. Furthermore, the sucrose isomer leucrose had been formed after 10 min, while its concentrations decreased over time and the portions of longer isomaltooligosaccharides (IMOs) increased. This indicated that leucrose can be used by L. nagelii TMW 1.1827 to produce more elongated and branched dextran molecules from presynthesized IMOs, while disproportionation reactions on short IMOs may appear additionally. This leads to increasing amounts of high molecular weight dextran in a state of sucrose depletion. These findings reveal new insights into the pH- and sucrose-dependent kinetics of extracellular dextran formation and may be useful for optimization of fermentative and enzymatic dextran production processes.
Collapse
|
13
|
Bechtner J, Ludwig C, Kiening M, Jakob F, Vogel RF. Living the Sweet Life: How Liquorilactobacillus hordei TMW 1.1822 Changes Its Behavior in the Presence of Sucrose in Comparison to Glucose. Foods 2020; 9:foods9091150. [PMID: 32825547 PMCID: PMC7555045 DOI: 10.3390/foods9091150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Liquorilactobacillus (L.) hordei (formerly Lactobacillus hordei) is one of the dominating lactic acid bacteria within the water kefir consortium, being highly adapted to survive in this environment, while producing high molecular weight dextrans from sucrose. In this work, we extensively studied the physiological response of L. hordei TMW 1.1822 to sucrose compared to glucose, applying label-free, quantitative proteomics of cell lysates and exoproteomes. This revealed the differential expression of 53 proteins within cellular proteomes, mostly associated with carbohydrate uptake and metabolism. Supported by growth experiments, this suggests that L. hordei TMW 1.1822 favors fructose over other sugars. The dextransucrase was expressed irrespectively of the present carbon source, while it was significantly more released in the presence of sucrose (log2FC = 3.09), being among the most abundant proteins within exoproteomes of sucrose-treated cells. Still, L. hordei TMW 1.1822 expressed other sucrose active enzymes, predictively competing with the dextransucrase reaction. While osmolysis appeared to be unlikely, sucrose led to increased release of a multitude of cytoplasmic proteins, suggesting that biofilm formation in L. hordei is not only composed of a polysaccharide matrix but is also of proteinaceous nature. Therefore, our study highlights the intrinsic adaptation of water kefir-borne L. hordei to sucrose-rich habitats and provides fundamental knowledge for its use as a starter culture in plant-based food fermentations with in situ dextran formation.
Collapse
Affiliation(s)
- Julia Bechtner
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), 85354 Freising, Germany; (J.B.); (F.J.)
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), 85354 Freising, Germany;
| | - Michael Kiening
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität München (TUM), 85354 Freising, Germany;
| | - Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), 85354 Freising, Germany; (J.B.); (F.J.)
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), 85354 Freising, Germany; (J.B.); (F.J.)
- Correspondence:
| |
Collapse
|
14
|
Jakob F, Gebrande C, Bichler RM, Vogel RF. Insights into the pH-dependent, extracellular sucrose utilization and concomitant levan formation by Gluconobacter albidus TMW 2.1191. Antonie Van Leeuwenhoek 2020; 113:863-873. [PMID: 32130597 PMCID: PMC7272483 DOI: 10.1007/s10482-020-01397-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/20/2020] [Indexed: 01/21/2023]
Abstract
Many bacteria and archaea produce the polydisperse fructose polymer levan from sucrose upon biofilm formation via extracellular levansucrases (EC 2.4.1.10). We have investigated levansucrase-release and -activities as well as molecular size of the levan formed by the acetic acid bacterium Gluconobacter albidus TMW 2.1191 at varying environmental pH conditions to obtain insight in the ecological role of its constitutively expressed levansucrase and the produced levan. A buffer system was established enabling the recovery of levansucrase-containing supernatants from preincubated cell suspensions at pH 4.3-pH 5.7. The enzyme solutions were used to produce levans at different pH values and sucrose concentrations. Finally, the amounts and size distributions of the produced levans as well as the corresponding levansucrase activities were determined and correlated with each other. The data revealed that the levansucrase was released into the environment independently of its substrate sucrose, and that more levansucrase was released at pH ≥ 5.0. The glucose release and formation of high molecular weight levans (> 3.5 kDa) from 0.1 M initial sucrose was comparable between pH ~ 4.3-5.7 using equal amounts of released levansucrase. Hence, this type of levansucrase appears to be structurally adapted to changes in the extracellular pH and to exhibit a similar total activity over a wide acidic pH range, while it produced higher amounts of larger levan molecules at higher production pH and sucrose concentrations. These findings indicate the physiological adaptation of G. albidus TMW 2.1191 to efficient colonisation of sucrose-rich habitats via released levansucrases despite changing extracellular pH conditions in course of acid formation.
Collapse
Affiliation(s)
- Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany.
| | - Clara Gebrande
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Regina M Bichler
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| |
Collapse
|
15
|
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782-2858. [PMID: 32293557 DOI: 10.1099/ijsem.0.004107] [Citation(s) in RCA: 1706] [Impact Index Per Article: 341.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
Collapse
Affiliation(s)
- Jinshui Zheng
- Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, PR China
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Elisa Salvetti
- Dept. of Biotechnology, University of Verona, Verona, Italy
| | - Charles M A P Franz
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | - Hugh M B Harris
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Paola Mattarelli
- University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy
| | - Paul W O'Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Koichi Watanabe
- Food Industry Research and Development Institute, Bioresource Collection and Research Center, Hsinchu, Taiwan, ROC.,National Taiwan University, Dept. of Animal Science and Technology, Taipei, Taiwan, ROC
| | - Sander Wuyts
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | - Michael G Gänzle
- Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Schmid J, Bechtner J, Vogel RF, Jakob F. A systematic approach to study the pH-dependent release, productivity and product specificity of dextransucrases. Microb Cell Fact 2019; 18:153. [PMID: 31506087 PMCID: PMC6737638 DOI: 10.1186/s12934-019-1208-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background Dextransucrases are extracellular enzymes, which catalyze the formation of α-1→6-linked glucose polymers from sucrose. These enzymes are exclusively expressed by lactic acid bacteria, which commonly acidify the extracellular environment due to their physiology. Dextransucrases are thus confronted with steadily changing reaction conditions in regards to the environmental pH, which can further affect the amount of released dextransucrases. In this work, we studied the effect of the environmental pH on the release, the productivity and the product specificity of the dextransucrase expressed by Lactobacillus (L.) hordei TMW 1.1822. Dextransucrases were recovered as crude extracts at pH 3.5–pH 6.5 and then again used to produce dextrans at these pH values. The respectively produced dextran amounts and sizes were determined and the obtained results finally systematically correlated. Results Maximum dextran amounts were produced at pH 4.0 and pH 4.5, while the productivity of the dextransucrases significantly decreased at pH 3.5 and pH 6.5. The distribution of dextran amounts produced at different pH most likely reflects the pH dependent activity of the dextransucrases released by L. hordei, since different transglycosylation rates were determined at different pH using the same dextransucrase amounts. Moreover, similar hydrolysis activities were detected at all tested conditions despite significant losses of transglycosylation activities indicating initial hydrolysis prior to transglycosylation reactions. The molar masses and rms radii of dextrans increased up to pH 5.5 independently of the stability of the enzyme. The gelling properties of dextrans produced at pH 4.0 and pH 5.5 were different. Conclusions The presented methodological approach allows the controlled production of dextrans with varying properties and could be transferred and adapted to other microbes for systematic studies on the release and functionality of native sucrases or other extracellular enzymes.
Collapse
Affiliation(s)
- Jonas Schmid
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), Freising, Germany
| | - Julia Bechtner
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), Freising, Germany
| | - Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), Freising, Germany.
| |
Collapse
|