1
|
Zhai R, Zhao C, Chang L, Liu J, Zhao T, Jiang J, Zhu W. The gut-liver axis plays a limited role in mediating the liver's heat susceptibility of Chinese giant salamander. BMC Genomics 2025; 26:475. [PMID: 40360994 PMCID: PMC12070647 DOI: 10.1186/s12864-025-11644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The Chinese giant salamander (CGS, Andrias davidianus), a flagship amphibian species, is highly vulnerable to high temperatures, posing a significant threat under future climate change. Previous research linked this susceptibility to liver energy deficiency, accompanied by shifts in gut microbiota and reduced food conversion rates, raising questions about the role of the gut-liver axis in mediating heat sensitivity. This study investigated the responses of Chinese giant salamander larvae to a temperature gradient (10-30 °C), assessing physiological changes alongside histological, gut metagenomic, and tissue transcriptomic analyses. Temperatures above 20 °C led to mortality, which resulted in delayed growth. Histological and transcriptomic data revealed metabolic exhaustion and liver fibrosis in heat-stressed salamanders, underscoring the liver's critical role in heat sensitivity. While heat stress altered the gut microbiota's community structure, their functional profiles, especially in nutrient absorption and transformation, remained stable. Both gut and liver showed temperature-dependent transcriptional changes, sharing some common variations in actins, heat shock proteins, and genes related to transcription and translation. However, their energy metabolism exhibited opposite trends: it was downregulated in the liver but upregulated in the gut, with the gut showing increased activity in the pentose phosphate pathway and oxidative phosphorylation, potentially countering metabolic exhaustion. Our findings reveal that the liver of the larvae exhibits greater thermal sensitivity than the gut, and the gut-liver axis plays a limited role in mediating thermal intolerance. This study enhances mechanistic understanding of CGS heat susceptibility, providing a foundation for targeted conservation strategies in the face of climate change.
Collapse
Affiliation(s)
- Runliang Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chunlin Zhao
- School of Biological and Chemical Engineering, School of Agriculture, Panzhihua University, Panzhihua, 617000, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jiongyu Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tian Zhao
- College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
2
|
Parra J, Jarmusch SA, Duncan KR. Multi-omics analysis of antagonistic interactions among free-living Pseudonocardia from diverse ecosystems. Environ Microbiol 2024; 26:e16635. [PMID: 38899724 DOI: 10.1111/1462-2920.16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
Actinomycetes are a phylogenetically diverse bacterial group which are widely distributed across terrestrial and aquatic ecosystems. Within this order, the genus Pseudonocardia and their specialised metabolites have been the focus of previous ecological studies due to their antagonistic interactions with other microorganisms and their mutualistic interactions with insects. However, the chemical ecology of free-living Pseudonocardia remains understudied. This study applies a multi-omics approach to investigate the chemical ecology of free-living actinomycetes from the genus Pseudonocardia. In a comparative genomics analysis, it was observed that the biosynthetic gene cluster family distribution was influenced mainly by phylogenetic distance rather than the geographic or ecological origin of strains. This finding was also observed in the mass spectrometry-based metabolomic profiles of nine Pseudonocardia species isolated from marine sediments and two terrestrial species. Antagonist interactions between these 11 species were examined, and matrix-assisted laser desorption/ionisation-mass spectrometry imaging was used to examine in situ chemical interactions between the Southern Ocean strains and their phylogenetically close relatives. Overall, it was demonstrated that phylogeny was the main predictor of antagonistic interactions among free-living Pseudonocardia. Moreover, two features at m/z 441.15 and m/z 332.20 were identified as metabolites related to these interspecies interactions.
Collapse
Affiliation(s)
- Jonathan Parra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Katherine R Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
3
|
van Bergeijk DA, Augustijn HE, Elsayed SS, Willemse J, Carrión VJ, Du C, Urem M, Grigoreva LV, Cheprasov MY, Grigoriev S, Jansen H, Wintermans B, Budding AE, Spaink HP, Medema MH, van Wezel GP. Taxonomic and metabolic diversity of Actinomycetota isolated from faeces of a 28,000-year-old mammoth. Environ Microbiol 2024; 26:e16589. [PMID: 38356049 DOI: 10.1111/1462-2920.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.
Collapse
Affiliation(s)
- Doris A van Bergeijk
- Department of Microbiology, Immunology and Transplantation (Laboratory of Molecular Bacteriology), KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Hannah E Augustijn
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | | | - Joost Willemse
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Victor J Carrión
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbiology, University of Málaga, Málaga, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Chao Du
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Mia Urem
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | - Bas Wintermans
- Department of Medical Microbiology, Adrz Hospital, Goes, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Marnix H Medema
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
4
|
Korneykova MV, Myazin VA, Fokina NV, Chaporgina AA, Nikitin DA, Dolgikh AV. Structure of Microbial Communities and Biological Activity in Tundra Soils of the Euro-Arctic Region (Rybachy Peninsula, Russia). Microorganisms 2023; 11:1352. [PMID: 37317328 DOI: 10.3390/microorganisms11051352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
The relevance of the Arctic regions' study is rapidly increasing due to the sensitive response of fragile ecosystems to climate change and anthropogenic pressure. The microbiome is an important component that determines the soils' functioning and an indicator of changes occurring in ecosystems. Rybachy Peninsula is the northernmost part of the continental European Russia and is almost completely surrounded by Barents Sea water. For the first time, the microbial communities of the Entic Podzol, Albic Podzol, Rheic Histosol and Folic Histosol as well as anthropogenically disturbed soils (chemical pollution and human impact, growing crops) on the Rybachy Peninsula were characterized using plating and fluorescence microscopy methods, in parallel with the enzymatic activity of soils. The amount and structure of soil microbial biomass, such as the total biomass of fungi and prokaryote, the length and diameter of fungal and actinomycete mycelium, the proportion of spores and mycelium in the fungal biomass, the number of spores and prokaryotic cells, the proportion of small and large fungal spores and their morphology were determined. In the soils of the peninsula, the fungal biomass varied from 0.121 to 0.669 mg/g soil. The biomass of prokaryotes in soils ranged from 9.22 to 55.45 μg/g of soil. Fungi predominated, the proportion of which in the total microbial biomass varied from 78.5 to 97.7%. The number of culturable microfungi ranged from 0.53 to 13.93 × 103 CFU/g in the topsoil horizons, with a maximum in Entic Podzol and Albic Podzol soils and a minimum in anthropogenically disturbed soil. The number of culturable copiotrophic bacteria varied from 41.8 × 103 cells/g in a cryogenic spot to 5551.3 × 103 cells /g in anthropogenically disturbed soils. The number of culturable oligotrophic bacteria ranged from 77.9 to 12,059.6 × 103 cells/g. Changes in natural soils because of anthropogenic impact and a change in vegetation types have led to a change in the structure of the community of soil microorganisms. Investigated tundra soils had high enzymatic activity in native and anthropogenic conditions. The β-glucosidase and urease activity were comparable or even higher than in the soils of more southern natural zone, and the activity of dehydrogenase was 2-5 times lower. Thus, despite the subarctic climatic conditions, local soils have a significant biological activity upon which the productivity of ecosystems largely depends. The soils of the Rybachy Peninsula have a powerful enzyme pool due to the high adaptive potential of soil microorganisms to the extreme conditions of the Arctic, which allows them to perform their functions even under conditions of anthropogenic interference.
Collapse
Affiliation(s)
- Maria V Korneykova
- Smart Urban Nature Research Center, RUDN University, 6 Miklukho-Maklaya St, Moscow 117198, Russia
- Department of Ecology of Microorganisms, Institute of North Industrial Ecology Problems-Subdivision of the Federal Research Centre "Kola Science Centre of Russian Academy of Science", Apatity 184209, Russia
| | - Vladimir A Myazin
- Department of Ecology of Microorganisms, Institute of North Industrial Ecology Problems-Subdivision of the Federal Research Centre "Kola Science Centre of Russian Academy of Science", Apatity 184209, Russia
| | - Nadezhda V Fokina
- Department of Ecology of Microorganisms, Institute of North Industrial Ecology Problems-Subdivision of the Federal Research Centre "Kola Science Centre of Russian Academy of Science", Apatity 184209, Russia
| | - Alexandra A Chaporgina
- Department of Ecology of Microorganisms, Institute of North Industrial Ecology Problems-Subdivision of the Federal Research Centre "Kola Science Centre of Russian Academy of Science", Apatity 184209, Russia
| | - Dmitry A Nikitin
- Department of Soil Biology and Biochemistry, V.V. Dokuchaev Soil Science Institute, Moscow 119017, Russia
| | - Andrey V Dolgikh
- Department of Soil Geography and Evolution, Institute of Geography, Russian Academy of Sciences, Moscow 119017, Russia
| |
Collapse
|
5
|
Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East Antarctica. Extremophiles 2022; 26:24. [PMID: 35829965 PMCID: PMC9279279 DOI: 10.1007/s00792-022-01271-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/06/2022] [Indexed: 11/12/2022]
Abstract
Antimicrobial resistance is an escalating health crisis requiring urgent action. Most antimicrobials are natural products (NPs) sourced from Actinomycetota, particularly the Streptomyces. Underexplored and extreme environments are predicted to harbour novel microorganisms with the capacity to synthesise unique metabolites. Herring Island is a barren and rocky cold desert in East Antarctica, remote from anthropogenic impact. We aimed to recover rare and cold-adapted NP-producing bacteria, by employing two culturing methods which mimic the natural environment: direct soil culturing and the soil substrate membrane system. First, we analysed 16S rRNA gene amplicon sequencing data from 18 Herring Island soils and selected the soil sample with the highest Actinomycetota relative abundance (78%) for culturing experiments. We isolated 166 strains across three phyla, including novel and rare strains, with 94% of strains belonging to the Actinomycetota. These strains encompassed thirty-five ‘species’ groups, 18 of which were composed of Streptomyces strains. We screened representative strains for genes which encode polyketide synthases and non-ribosomal peptide synthetases, indicating that 69% have the capacity to synthesise polyketide and non-ribosomal peptide NPs. Fourteen Streptomyces strains displayed antimicrobial activity against selected bacterial and yeast pathogens using an in situ assay. Our results confirm that the cold-adapted bacteria of the harsh East Antarctic deserts are worthy targets in the search for bioactive compounds.
Collapse
|
6
|
Ding W, Li Y, Tian X, Chen M, Xiao Z, Chen R, Yin H, Zhang S. Investigation on Metabolites in Structural Diversity from The Deep-Sea Sediment-Derived Bacterium Agrococcus sp. SCSIO 52902 and Their Biosynthesis. Mar Drugs 2022; 20:md20070431. [PMID: 35877724 PMCID: PMC9323897 DOI: 10.3390/md20070431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Deep-sea sediment-derived bacterium may make full use of self-genes to produce more bioactive metabolites to adapt to extreme environment, resulting in the discovery of novel metabolites with unique structures and metabolic mechanisms. In the paper, we systematically investigated the metabolites in structurally diversity and their biosynthesis from the deep-sea sediment-derived bacterium Agrococcus sp. SCSIO 52902 based on OSMAC strategy, Molecular Networking tool, in combination with bioinformatic analysis. As a result, three new compounds and one new natural product, including 3R-OH-1,6-diene-cyclohexylacetic acid (1), linear tetradepsipeptide (2), N1,N5-di-p-(EE)-coumaroyl-N10-acetylspermidine (3) and furan fatty acid (4), together with nineteen known compounds (5–23) were isolated from the ethyl acetate extract of SCSIO 52902. Their structures were elucidated by comprehensive spectroscopic analysis, single-crystal X-ray diffraction, Marfey’s method and chiral-phase HPLC analysis. Bioinformatic analysis revealed that compounds 1, 3, 9 and 13–22 were closely related to the shikimate pathway, and compound 5 was putatively produced by the OSB pathway instead of the PKS pathway. In addition, the result of cytotoxicity assay showed that compound 5 exhibited weak cytotoxic activity against the HL-60 cell line.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Rouwen Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| |
Collapse
|
7
|
Zamora-Quintero AY, Torres-Beltrán M, Guillén Matus DG, Oroz-Parra I, Millán-Aguiñaga N. Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001144. [PMID: 35213299 PMCID: PMC8941997 DOI: 10.1099/mic.0.001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the Actinomadura, Micromonospora, Nocardiopsis, Plantactinospora and Streptomyces sp. We observed seasonal differences on actinobacteria recovery. For instance, Micromonospora strains were recovered during the four sampling seasons, while Arthrobacter and Pseudokineococcus were only isolated in February 2018, and Blastococcus, Rhodococcus and Streptomyces were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.
Collapse
Affiliation(s)
- Andrea Y. Zamora-Quintero
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Mónica Torres-Beltrán
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Dulce G. Guillén Matus
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Irasema Oroz-Parra
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Natalie Millán-Aguiñaga
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| |
Collapse
|
8
|
Waschulin V, Borsetto C, James R, Newsham KK, Donadio S, Corre C, Wellington E. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. THE ISME JOURNAL 2022; 16:101-111. [PMID: 34253854 PMCID: PMC8692599 DOI: 10.1038/s41396-021-01052-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022]
Abstract
The growing problem of antibiotic resistance has led to the exploration of uncultured bacteria as potential sources of new antimicrobials. PCR amplicon analyses and short-read sequencing studies of samples from different environments have reported evidence of high biosynthetic gene cluster (BGC) diversity in metagenomes, indicating their potential for producing novel and useful compounds. However, recovering full-length BGC sequences from uncultivated bacteria remains a challenge due to the technological restraints of short-read sequencing, thus making assessment of BGC diversity difficult. Here, long-read sequencing and genome mining were used to recover >1400 mostly full-length BGCs that demonstrate the rich diversity of BGCs from uncultivated lineages present in soil from Mars Oasis, Antarctica. A large number of highly divergent BGCs were not only found in the phyla Acidobacteriota, Verrucomicrobiota and Gemmatimonadota but also in the actinobacterial classes Acidimicrobiia and Thermoleophilia and the gammaproteobacterial order UBA7966. The latter furthermore contained a potential novel family of RiPPs. Our findings underline the biosynthetic potential of underexplored phyla as well as unexplored lineages within seemingly well-studied producer phyla. They also showcase long-read metagenomic sequencing as a promising way to access the untapped genetic reservoir of specialised metabolite gene clusters of the uncultured majority of microbes.
Collapse
Affiliation(s)
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | | | - Christophe Corre
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
9
|
Rego A, Fernandez-Guerra A, Duarte P, Assmy P, Leão PN, Magalhães C. Secondary metabolite biosynthetic diversity in Arctic Ocean metagenomes. Microb Genom 2021; 7. [PMID: 34904945 PMCID: PMC8767328 DOI: 10.1099/mgen.0.000731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are mega enzymes responsible for the biosynthesis of a large fraction of natural products (NPs). Molecular markers for biosynthetic genes, such as the ketosynthase (KS) domain of PKSs, have been used to assess the diversity and distribution of biosynthetic genes in complex microbial communities. More recently, metagenomic studies have complemented and enhanced this approach by allowing the recovery of complete biosynthetic gene clusters (BGCs) from environmental DNA. In this study, the distribution and diversity of biosynthetic genes and clusters from Arctic Ocean samples (NICE-2015 expedition), was assessed using PCR-based strategies coupled with high-throughput sequencing and metagenomic analysis. In total, 149 KS domain OTU sequences were recovered, 36 % of which could not be assigned to any known BGC. In addition, 74 bacterial metagenome-assembled genomes were recovered, from which 179 BGCs were extracted. A network analysis identified potential new NP families, including non-ribosomal peptides and polyketides. Complete or near-complete BGCs were recovered, which will enable future heterologous expression efforts to uncover the respective NPs. Our study represents the first report of biosynthetic diversity assessed for Arctic Ocean metagenomes and highlights the potential of Arctic Ocean planktonic microbiomes for the discovery of novel secondary metabolites. The strategy employed in this study will enable future bioprospection, by identifying promising samples for bacterial isolation efforts, while providing also full-length BGCs for heterologous expression.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Duarte
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Philipp Assmy
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- *Correspondence: Pedro N. Leão,
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, 4150-179 Porto, Portugal
- *Correspondence: Catarina Magalhães,
| |
Collapse
|
10
|
Urbanization Affects Soil Microbiome Profile Distribution in the Russian Arctic Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111665. [PMID: 34770179 PMCID: PMC8582861 DOI: 10.3390/ijerph182111665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/28/2023]
Abstract
Urbanization in the Arctic results in considerable and still poorly known environmental consequences. The effect of urbanization on soil microbiome-an ecosystem component highly sensitive to anthropogenic disturbance-remains overlooked for the Arctic region. The research compared chemical and microbial properties of the natural Podzol soils and urban soils of Murmansk-the largest Arctic city. Particular attention was given to the profile distribution, which is almost completely ignored by most microbial studies. Soil microbiome was investigated by the quantitative indicators based on fluorescence microscopy (microbial biomass) and PCR real-time methods (amount of rRNA genes copies of archaea, bacteria, and fungi). The principal changes in urban soils' properties compared to the natural references included a shift in pH and an increase in C and nutrients' contents, especially remarkable for the subsoil. The numbers of rRNA genes copies of archaea, bacteria, and fungi in urban topsoils (106-1010, 109-1010, and 107-109, respectively) were lower than in Podzol; however, the opposite pattern was shown for the subsoil. Similarly, the total microbial biomass in urban topsoils (0.55-0.75 mg g-1) was lower compared to the 1.02 mg g-1 in Podzols, while urban subsoil microbial biomass was 2-2.5 times higher than in the natural conditions. Both for urban and natural soils and throughout the profiles, fungi were dominated by mycelium forms; however, the ratios of mycelium-spores were lower, and the amount of thin mycelium was higher in urban soils than in natural Podzols. Urbanization in the Arctic altered soil morphological and chemical properties and created a new niche for microbial development in urban subsoils; its contribution to biodiversity and nutrient cycling promises to become increasingly important under projected climate change.
Collapse
|
11
|
Qualitative and Quantitative Characteristics of Soil Microbiome of Barents Sea Coast, Kola Peninsula. Microorganisms 2021; 9:microorganisms9102126. [PMID: 34683447 PMCID: PMC8539678 DOI: 10.3390/microorganisms9102126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
The soil microbiome of the Barents Sea coast of the Kola Peninsula is here characterized for the first time. The content of copies of ribosomal genes of archaea, bacteria, and fungi was determined by real-time PCR. Reserves and structure of biomass of soil microorganisms such as total biomass of fungi and prokaryotes, length and diameter of mycelium of fungi and actinomycetes, proportion of mycelium in biomass, number of spores and prokaryotic cells, proportion of small and large fungal propagules, and morphology of mycobiota spores were determined. The largest number of ribosomal gene copies was found for bacteria (from 6.47 × 109 to 3.02 × 1011 per g soil). The number of copies of ribosomal genes of fungi and archaea varied within 107–109 copies of genes/g soil. The biomass of microorganisms (prokaryotes and fungi in total) varied from 0.023 to 0.840 mg/g soil. The share of mycobiota in the microbial biomass ranged from 90% to 97%. The number of prokaryotes was not large and varied from 1.87 × 108 to 1.40 × 109 cells/g of soil, while the biomass of fungi was very significant and varied from 0.021 to 0.715 mg/g of soil. The length of actinomycete mycelium was small—from 0.77 to 88.18 m/g of soil, as was the length of fungal hyphae—an order of magnitude higher (up to 504.22 m/g of soil). The proportion of fungal mycelium, an active component of fungal biomass, varied from 25% to 89%. Most (from 65% to 100%) of mycobiota propagules were represented by specimens of small sizes, 2–3 microns. Thus, it is shown that, despite the extreme position on the mainland land of Fennoscandia, local soils had a significant number of microorganisms, on which the productivity of ecosystems largely depends.
Collapse
|
12
|
Undabarrena A, Pereira CF, Kruasuwan W, Parra J, Sélem-Mojica N, Vind K, Schniete JK. Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001084. [PMID: 34515628 PMCID: PMC8549240 DOI: 10.1099/mic.0.001084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Camila F Pereira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Worarat Kruasuwan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jonathan Parra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Nelly Sélem-Mojica
- Centro de Ciencias Matemáticas, Antigua Carretera a Pátzcuaro # 8701, Col. Ex Hacienda San José de la Huerta, Morelia C.P. 58089, Michoacán, México
| | - Kristiina Vind
- NAICONS Srl, Viale Ortles 22/4, 20139 Milan (MI), Italy
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1 6708 WD, Wageningen, Netherlands
| | - Jana K. Schniete
- Biology, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| |
Collapse
|
13
|
Parra J, Soldatou S, Rooney LM, Duncan KR. Pseudonocardia abyssalis sp. nov. and Pseudonocardia oceani sp. nov., two novel actinomycetes isolated from the deep Southern Ocean. Int J Syst Evol Microbiol 2021; 71:005032. [PMID: 34582326 PMCID: PMC8549268 DOI: 10.1099/ijsem.0.005032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 01/25/2023] Open
Abstract
The actinomycetes strains KRD168T and KRD185T were isolated from sediments collected from the deep Southern Ocean and, in this work, they are described as representing two novel species of the genus Pseudonocardia through a polyphasic approach. Despite sharing >99 % 16S rRNA gene sequence similarity with other members of the genus, comparative genomic analysis allowed species delimitation based on average nucleotide identity and digital DNA-DNA hybridization. The KRD168T genome is characterized by a size of 6.31 Mbp and a G+C content of 73.44 mol%, while the KRD185T genome has a size of 6.82 Mbp and a G+C content of 73.98 mol%. Both strains contain meso-diaminopimelic acid as the diagnostic diamino acid, glucose as the major whole-cell sugar, MK-8(H4) as a major menaquinone and iso-branched hexadecanoic acid as a major fatty acid. Biochemical and fatty acid analyses also revealed differences between these strains and their phylogenetic neighbours, supporting their status as distinct species. The names Pseudonocardia abyssalis sp. nov. (type strain KRD168T=DSM 111918T=NCIMB 15270T) and Pseudonocardia oceani (type strain KRD185T=DSM 111919T=NCIMB 15269T) are proposed.
Collapse
Affiliation(s)
- Jonathan Parra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde,, Glasgow G4 0RE, UK
| | - Sylvia Soldatou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde,, Glasgow G4 0RE, UK
- Present address: School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Liam M. Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde,, Glasgow G4 0RE, UK
- Present address: Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Katherine R. Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde,, Glasgow G4 0RE, UK
| |
Collapse
|
14
|
Moreno-Pino M, Ugalde JA, Valdés JH, Rodríguez-Marconi S, Parada-Pozo G, Trefault N. Bacteria Isolated From the Antarctic Sponge Iophon sp. Reveals Mechanisms of Symbiosis in Sporosarcina, Cellulophaga, and Nesterenkonia. Front Microbiol 2021; 12:660779. [PMID: 34177840 PMCID: PMC8222686 DOI: 10.3389/fmicb.2021.660779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Antarctic sponges harbor a diverse range of microorganisms that perform unique metabolic functions for nutrient cycles. Understanding how microorganisms establish functional sponge-microbe interactions in the Antarctic marine ecosystem provides clues about the success of these ancient animals in this realm. Here, we use a culture-dependent approach and genome sequencing to investigate the molecular determinants that promote a dual lifestyle in three bacterial genera Sporosarcina, Cellulophaga, and Nesterenkonia. Phylogenomic analyses showed that four sponge-associated isolates represent putative novel bacterial species within the Sporosarcina and Nesterenkonia genera and that the fifth bacterial isolate corresponds to Cellulophaga algicola. We inferred that isolated sponge-associated bacteria inhabit similarly marine sponges and also seawater. Comparative genomics revealed that these sponge-associated bacteria are enriched in symbiotic lifestyle-related genes. Specific adaptations related to the cold Antarctic environment are features of the bacterial strains isolated here. Furthermore, we showed evidence that the vitamin B5 synthesis-related gene, panE from Nesterenkonia E16_7 and E16_10, was laterally transferred within Actinobacteria members. Together, these findings indicate that the genomes of sponge-associated strains differ from other related genomes based on mechanisms that may contribute to the life in association with sponges and the extreme conditions of the Antarctic environment.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Juan A. Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Jorge H. Valdés
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Susana Rodríguez-Marconi
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| |
Collapse
|
15
|
Kerkhof LJ. Is Oxford Nanopore sequencing ready for analyzing complex microbiomes? FEMS Microbiol Ecol 2021; 97:6098400. [PMID: 33444433 PMCID: PMC8068755 DOI: 10.1093/femsec/fiab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
This minireview will discuss the improvements in Oxford Nanopore (Oxford; sequencing technology that make the MinION a viable platform for microbial ecology studies. Specific issues being addressed are the increase in sequence accuracy from 65 to 96.5% during the last 5 years, the ability to obtain a quantifiable/predictive signal from the MinION with respect to target molecule abundance, simple-to-use GUI-based pathways for data analysis and the modest additional equipment needs for sequencing in the field. Coupling these recent improvements with the low capital costs for equipment and the reasonable per sample cost makes MinION sequencing an attractive option for virtually any laboratory.
Collapse
Affiliation(s)
- Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
16
|
Howell L, LaRue M, Flanagan SP. Environmental DNA as a tool for monitoring Antarctic vertebrates. NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1900299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucy Howell
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Michelle LaRue
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
17
|
Soldatou S, Eldjárn GH, Ramsay A, van der Hooft JJJ, Hughes AH, Rogers S, Duncan KR. Comparative Metabologenomics Analysis of Polar Actinomycetes. Mar Drugs 2021; 19:103. [PMID: 33578887 PMCID: PMC7916644 DOI: 10.3390/md19020103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Biosynthetic and chemical datasets are the two major pillars for microbial drug discovery in the omics era. Despite the advancement of analysis tools and platforms for multi-strain metabolomics and genomics, linking these information sources remains a considerable bottleneck in strain prioritisation and natural product discovery. In this study, molecular networking of the 100 metabolite extracts derived from applying the OSMAC approach to 25 Polar bacterial strains, showed growth media specificity and potential chemical novelty was suggested. Moreover, the metabolite extracts were screened for antibacterial activity and promising selective bioactivity against drug-persistent pathogens such as Klebsiella pneumoniae and Acinetobacter baumannii was observed. Genome sequencing data were combined with metabolomics experiments in the recently developed computational approach, NPLinker, which was used to link BGC and molecular features to prioritise strains for further investigation based on biosynthetic and chemical information. Herein, we putatively identified the known metabolites ectoine and chrloramphenicol which, through NPLinker, were linked to their associated BGCs. The metabologenomics approach followed in this study can potentially be applied to any large microbial datasets for accelerating the discovery of new (bioactive) specialised metabolites.
Collapse
Affiliation(s)
- Sylvia Soldatou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | | | - Andrew Ramsay
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | | | - Alison H. Hughes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | - Katherine R. Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| |
Collapse
|
18
|
Carriot N, Paix B, Greff S, Viguier B, Briand JF, Culioli G. Integration of LC/MS-based molecular networking and classical phytochemical approach allows in-depth annotation of the metabolome of non-model organisms - The case study of the brown seaweed Taonia atomaria. Talanta 2020; 225:121925. [PMID: 33592802 DOI: 10.1016/j.talanta.2020.121925] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Untargeted LC-MS based metabolomics is a useful approach in many research areas such as medicine, systems biology, environmental sciences or even ecology. In such an approach, annotation of metabolomes of non-model organisms remains a significant challenge. In this study, an analytical workflow combining a classical phytochemical approach, using the isolation and the full characterization of the chemical structure of natural products, together with the use of MS/MS-based molecular networking with various levels of restrictiveness was developed. This protocol was applied to the marine brown seaweed Taonia atomaria, a cosmopolitan algal species, and allowed to annotate more than 200 metabolites. First, the algal organic crude extracts were fractionated by flash-chromatography and the chemical structure of eight of the main chemical constituents of this alga were fully characterized by means of spectroscopic methods (1D and 2D NMR, HRMS). These compounds were further used as chemical standards. In a second step, the main fractions of the algal extracts were analyzed by UHPLC-MS/MS and the resulting data were uploaded to the Global Natural Products Social Molecular Networking platform (GNPS) to create several molecular networks (MNs). A first MN (MN-1) was built with restrictive parameters and allowed the creation of clusters composed by nodes with highly similar MS/MS spectra. Then, using database hits and chemical standards as "seed" nodes and/or similarity between MS/MS fragmentation pattern, the main clusters were easily annotated as common glycerolipids and phospholipids, much rare lipids -such as acylglycerylhydroxymethyl-N,N,N-trimethyl-ß-alanines or fulvellic acid derivatives- but also new glycerolipids bearing a terpene moiety. Lastly, the use of less and less constrained MNs allowed to further increase the number of annotated metabolites.
Collapse
Affiliation(s)
| | - Benoît Paix
- Université de Toulon, MAPIEM, Toulon, EA 4323, France
| | - Stéphane Greff
- Aix Marseille Université, CNRS, IRD, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Station Marine d'Endoume, Marseille, France
| | - Bruno Viguier
- Université de Toulon, MAPIEM, Toulon, EA 4323, France
| | | | | |
Collapse
|
19
|
Prudence SMM, Addington E, Castaño-Espriu L, Mark DR, Pintor-Escobar L, Russell AH, McLean TC. Advances in actinomycete research: an ActinoBase review of 2019. MICROBIOLOGY-SGM 2020; 166:683-694. [PMID: 32558638 PMCID: PMC7641383 DOI: 10.1099/mic.0.000944] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The actinomycetes are Gram-positive bacteria belonging to the order Actinomycetales within the phylum Actinobacteria. They include members with significant economic and medical importance, for example filamentous actinomycetes such as Streptomyces species, which have a propensity to produce a plethora of bioactive secondary metabolites and form symbioses with higher organisms, such as plants and insects. Studying these bacteria is challenging, but also fascinating and very rewarding. As a Microbiology Society initiative, members of the actinomycete research community have been developing a Wikipedia-style resource, called ActinoBase, the purpose of which is to aid in the study of these filamentous bacteria. This review will highlight 10 publications from 2019 that have been of special interest to the ActinoBase community, covering 4 major components of actinomycete research: (i) development and regulation; (ii) specialized metabolites; (iii) ecology and host interactions; and (iv) technology and methodology.
Collapse
Affiliation(s)
- Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Emily Addington
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Laia Castaño-Espriu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - David R Mark
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | | | - Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|