1
|
Serrano S, Grujović MŽ, Marković KG, Barreto-Crespo MT, Semedo-Lemsaddek T. From Dormancy to Eradication: Strategies for Controlling Bacterial Persisters in Food Settings. Foods 2025; 14:1075. [PMID: 40232118 PMCID: PMC11942268 DOI: 10.3390/foods14061075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial persistence, a dormant state that enables microorganisms to survive harsh conditions, is a significant concern in food-industry settings, where traditional antimicrobial treatments often fail to eliminate these resilient cells. This article goes beyond conventional review by compiling critical information aimed at providing practical solutions to combat bacterial persisters in food production environments. This review explores the primary mechanisms behind persister cell formation, including toxin-antitoxin systems, the alarmone guanosine tetraphosphate (ppGpp), stochastic processes (in which persistence occurs as a random event), and the SOS response. Given the serious implications for food safety and quality, the authors also report a range of physical, chemical, and biological methods for targeting and eradicating persister cells. The strategies discussed, whether applied individually or in combination, offer varying levels of availability and applicability within the industry and can serve as a guide for implementing microbial contamination control plans. While significant progress has been achieved, further research is crucial to fully understand the complex mechanisms underlying bacterial persistence in food and to develop effective and targeted strategies for its eradication in food-industry settings. Overall, the translation of these insights into practical applications aims to support the food industry in overcoming this persistent challenge, ensuring safer, more sustainable food production.
Collapse
Affiliation(s)
- Susana Serrano
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
| | - Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Maria Teresa Barreto-Crespo
- iBET, Institute of Experimental Biology and Technology, 2781-901 Oeiras, Portugal;
- ITQB, Institute of Chemical and Biological Technology António Xavier, Nova University of Lisbon, Republic Avenue, 2780-157 Oeiras, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
2
|
Liu X, Wang P, Shi Y, Cui Y, Li S, Wu Dong G, Li J, Hao M, Zhai Y, Zhou D, Liu W, Wang A, Jin Y. (P)ppGpp synthetase Rsh participates in rifampicin tolerance of persister cells in Brucella abortus in vitro. Microb Pathog 2023; 183:106310. [PMID: 37604214 DOI: 10.1016/j.micpath.2023.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Brucella abortus is facultative intracellular pathogen that causes chronic persistent infections and results in abortion and infertility in food animals. Recurrent infections can be one of the results of persister cells formation that transiently displays phenotypic tolerance to high dose of antibiotics treatment. We examined persister cells formation of B. abortus strain A19 in stationary phase and investigated a potential role for the (p)ppGpp synthetase Rsh in this process. We found that B. abortus stationary phase cells can produce higher levels of multi-drugs tolerant persister cells in vitro under high dose of antibiotics (20 × MIC) exposure than do exponential phase cells. Persister cell formation was also induced with environmental stressors pH 4.5, 0.01 M PBS (pH7.0), 2% NaCl and 25 °C, upon exposure to ampicillin, enrofloxacin and rifampicin. Persister cells were not formed following exposure to 1 mM H2O2. The numbers of persister cells were significantly increased following uptake of B. abortus stationary phase cells by RAW264.7 macrophages in contrast with cultures in TSB liquid medium. Environmental stressors to B. abortus significantly increased expression of rsh mRNA level. The rsh null mutant (Δrsh) formed significantly fewer persister cells than the complemented (CΔrsh) and wildtype (WT) strains under high dose of rifampicin in vitro. These data for the first time demonstrate that B. abortus can produce multi-drug tolerant persister cells in stationary phase. The (p)ppGpp synthetase Rsh is necessary for persister cell formation in B. abortus in the presence of rifampicin. On this basis, a new understanding of the recurrent infections of Brucella was advanced, thus provided a new basis for revelation of pathogenic mechanism of the chronic persistent infection in Brucella.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Pingping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Yong Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Yimeng Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Shengnan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Gaowa Wu Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China.
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Liu S, Brul S, Zaat SAJ. Bacterial Persister-Cells and Spores in the Food Chain: Their Potential Inactivation by Antimicrobial Peptides (AMPs). Int J Mol Sci 2020; 21:E8967. [PMID: 33260797 PMCID: PMC7731242 DOI: 10.3390/ijms21238967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
The occurrence of bacterial pathogens in the food chain has caused a severe impact on public health and welfare in both developing and developed countries. Moreover, the existence of antimicrobial-tolerant persisting morphotypes of these pathogens including both persister-cells as well as bacterial spores contributes to difficulty in elimination and in recurrent infection. Therefore, comprehensive understanding of the behavior of these persisting bacterial forms in their environmental niche and upon infection of humans is necessary. Since traditional antimicrobials fail to kill persisters and spores due to their (extremely) low metabolic activities, antimicrobial peptides (AMPs) have been intensively investigated as one of the most promising strategies against these persisting bacterial forms, showing high efficacy of inactivation. In addition, AMP-based foodborne pathogen detection and prevention of infection has made significant progress. This review focuses on recent research on common bacterial pathogens in the food chain, their persisting morphotypes, and on AMP-based solutions. Challenges in research and application of AMPs are described.
Collapse
Affiliation(s)
- Shiqi Liu
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Morcrette H, Kovacs-Simon A, Tennant RK, Love J, Wagley S, Yang ZR, Studholme DJ, Soyer OS, Champion OL, Butler CS, Titball RW. Campylobacter jejuni 11168H Exposed to Penicillin Forms Persister Cells and Cells With Altered Redox Protein Activity. Front Cell Infect Microbiol 2020; 10:565975. [PMID: 33194805 PMCID: PMC7641608 DOI: 10.3389/fcimb.2020.565975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
The formation of persister cells is one mechanism by which bacteria can survive exposure to environmental stresses. We show that Campylobacter jejuni 11168H forms persister cells at a frequency of 10−3 after exposure to 100 × MIC of penicillin G for 24 h. Staining the cell population with a redox sensitive fluorescent dye revealed that penicillin G treatment resulted in the appearance of a population of cells with increased fluorescence. We present evidence, to show this could be a consequence of increased redox protein activity in, or associated with, the electron transport chain. These data suggest that a population of penicillin G treated C. jejuni cells could undergo a remodeling of the electron transport chain in order to moderate membrane hyperpolarization and intracellular alkalization; thus reducing the antibiotic efficacy and potentially assisting in persister cell formation.
Collapse
Affiliation(s)
- Helen Morcrette
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - Andrea Kovacs-Simon
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - Richard K Tennant
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - John Love
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - Sariqa Wagley
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - Zheng R Yang
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - David J Studholme
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Olivia L Champion
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - Clive S Butler
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| | - Richard W Titball
- College of Life and Environmental Sciences-Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|