1
|
Beyene GT, Kalayou S, Riaz T, Tonjum T. Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis. BMC Microbiol 2017; 17:96. [PMID: 28431522 PMCID: PMC5399837 DOI: 10.1186/s12866-017-1004-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background DNA processing chain A (DprA) is a DNA binding protein which is ubiquitous in bacteria, and is required for DNA transformation to various extents among bacterial species. However, the interaction of DprA with competence and recombination proteins is poorly understood. Therefore, the proteomes of whole Neisseria meningitidis (Nm) wildtype and dprA mutant cells were compared. Such a comparative proteomic analysis increases our understanding of the interactions of DprA with other Nm components and may elucidate its potential role beyond DNA processing in transformation. Results Using label-free quantitative proteomics, a total of 1057 unique Nm proteins were identified, out of which 100 were quantified as differentially abundant (P ≤ 0.05 and fold change ≥ |2|) in the dprA null mutant. Proteins involved in homologous recombination (RecA, UvrD and HolA), pilus biogenesis (PilG, PilT1, PilT2, PilM, PilO, PilQ, PilF and PilE), cell division, including core energy metabolism, and response to oxidative stress were downregulated in the Nm dprA null mutant. The mass spectrometry data are available via ProteomeXchange with identifier PXD006121. Immunoblotting and co-immunoprecipitation were employed to validate the association of DprA with PilG. The analysis revealed reduced amounts of PilG in the dprA null mutant and reduced amounts of DprA in the Nm pilG null mutant. Moreover, a number of pilus biogenesis proteins were shown to interact with DprA and /or PilG. Conclusions DprA interacts with proteins essential for Nm DNA recombination in transformation, pilus biogenesis, and other functions associated with the inner membrane. Inverse downregulation of Nm DprA and PilG expression in the corresponding mutants indicates a link between DNA processing and pilus biogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Getachew Tesfaye Beyene
- Department of Microbiology, University of Oslo, Oslo, Norway.,Present address: College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Shewit Kalayou
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Mekelle University College of Veterinary Medicine, Mekelle, Ethiopia
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tonjum
- Department of Microbiology, University of Oslo, Oslo, Norway. .,Department of Microbiology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Abstract
The genus Neisseria contains two pathogenic species of prominant public health concern: Neisseria gonorrhoeae and Neisseria meningitidis. These pathogens display a notable ability to undergo frequent programmed recombination events. The recombination-mediated pathways of transformation and pilin antigenic variation in the Neisseria are well-studied systems that are critical for pathogenesis. Here we will detail the conserved and unique aspects of transformation and antigenic variation in the Neisseria. Transformation will be followed from initial DNA binding through recombination into the genome with consideration to the factors necessary at each step. Additional focus is paid to the unique type IV secretion system that mediates donation of transforming DNA in the pathogenic Neisseria. The pilin antigenic variation system uses programmed recombinations to alter a major surface determinant, which allows immune avoidance and promotes infection. We discuss the trans- and cis- acting factors which facilitate pilin antigenic variation and present the current understanding of the mechanisms involved in the process.
Collapse
|
3
|
Frye SA, Lång E, Beyene GT, Balasingham SV, Homberset H, Rowe AD, Ambur OH, Tønjum T. The Inner Membrane Protein PilG Interacts with DNA and the Secretin PilQ in Transformation. PLoS One 2015; 10:e0134954. [PMID: 26248334 PMCID: PMC4527729 DOI: 10.1371/journal.pone.0134954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Expression of type IV pili (Tfp), filamentous appendages emanating from the bacterial surface, is indispensable for efficient neisserial transformation. Tfp pass through the secretin pore consisting of the membrane protein PilQ. PilG is a polytopic membrane protein, conserved in Gram-positive and Gram-negative bacteria, that is required for the biogenesis of neisserial Tfp. PilG null mutants are devoid of pili and non-competent for transformation. Here, recombinant full-length, truncated and mutated variants of meningococcal PilG were overexpressed, purified and characterized. We report that meningococcal PilG directly binds DNA in vitro, detected by both an electromobility shift analysis and a solid phase overlay assay. PilG DNA binding activity was independent of the presence of the consensus DNA uptake sequence. PilG-mediated DNA binding affinity was mapped to the N-terminus and was inactivated by mutation of residues 43 to 45. Notably, reduced meningococcal transformation of DNA in vivo was observed when PilG residues 43 to 45 were substituted by alanine in situ, defining a biologically significant DNA binding domain. N-terminal PilG also interacted with the N-terminal region of PilQ, which previously was shown to bind DNA. Collectively, these data suggest that PilG and PilQ in concert bind DNA during Tfp-mediated transformation.
Collapse
Affiliation(s)
- Stephan A. Frye
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Emma Lång
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | - Ole Herman Ambur
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Eriksson J, Eriksson OS, Maudsdotter L, Palm O, Engman J, Sarkissian T, Aro H, Wallin M, Jonsson AB. Characterization of motility and piliation in pathogenic Neisseria. BMC Microbiol 2015; 15:92. [PMID: 25925502 PMCID: PMC4449605 DOI: 10.1186/s12866-015-0424-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/15/2015] [Indexed: 11/29/2022] Open
Abstract
Background The type IV pili (Tfp) of pathogenic Neisseria (i.e., N. gonorrhoeae and N. meningitidis) are essential for twitching motility. Tfp retraction, which is dependent on the ATPase PilT, generates the forces that move bacteria over surfaces. Neisseria motility has mainly been studied in N. gonorrhoeae whereas the motility of N. meningitidis has not yet been characterized. Results In this work, we analyzed bacterial motility and monitored Tfp retraction using live-cell imaging of freely moving bacteria. We observed that N. meningitidis moved over surfaces at an approximate speed of 1.6 μm/s, whereas N. gonorrhoeae moved with a lower speed (1.0 μm/s). An alignment of the meningococcal and gonococcal pilT promoters revealed a conserved single base pair variation in the −10 promoter element that influence PilT expression. By tracking mutants with altered pilT expression or pilE sequence, we concluded that the difference in motility speed was independent of both. Live-cell imaging using total internal reflection fluorescence microscopy demonstrated that N. gonorrhoeae more often moved with fewer visible retracting filaments when compared to N. meningitidis. Correspondingly, meningococci also displayed a higher level of piliation in transmission electron microscopy. Nevertheless, motile gonococci that had the same number of filaments as N. meningitidis still moved with a lower speed. Conclusions These data reveal differences in both speed and piliation between the pathogenic Neisseria species during twitching motility, suggesting a difference in Tfp-dynamics. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0424-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jens Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden.
| | - Olaspers Sara Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden.
| | - Lisa Maudsdotter
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden.
| | - Oskar Palm
- Theoretical Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Jakob Engman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden.
| | - Tim Sarkissian
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden.
| | - Helena Aro
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden.
| | - Mats Wallin
- Theoretical Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden.
| |
Collapse
|
5
|
Salzer R, Herzberg M, Nies DH, Joos F, Rathmann B, Thielmann Y, Averhoff B. Zinc and ATP binding of the hexameric AAA-ATPase PilF from Thermus thermophilus: role in complex stability, piliation, adhesion, twitching motility, and natural transformation. J Biol Chem 2014; 289:30343-30354. [PMID: 25202014 DOI: 10.1074/jbc.m114.598656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University, 06120 Halle-Wittenberg, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University, 06120 Halle-Wittenberg, Germany
| | - Friederike Joos
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany, and
| | - Barbara Rathmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Yvonne Thielmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany,.
| |
Collapse
|
6
|
Concerted spatio-temporal dynamics of imported DNA and ComE DNA uptake protein during gonococcal transformation. PLoS Pathog 2014; 10:e1004043. [PMID: 24763594 PMCID: PMC3999279 DOI: 10.1371/journal.ppat.1004043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/17/2014] [Indexed: 01/28/2023] Open
Abstract
Competence for transformation is widespread among bacterial species. In the case of Gram-negative systems, a key step to transformation is the import of DNA across the outer membrane. Although multiple factors are known to affect DNA transport, little is known about the dynamics of DNA import. Here, we characterized the spatio-temporal dynamics of DNA import into the periplasm of Neisseria gonorrhoeae. DNA was imported into the periplasm at random locations around the cell contour. Subsequently, it was recruited at the septum of diplococci at a time scale that increased with DNA length. We found using fluorescent DNA that the periplasm was saturable within minutes with ∼40 kbp DNA. The DNA-binding protein ComE quantitatively governed the carrying capacity of the periplasm in a gene-dosage-dependent fashion. As seen using a fluorescent-tagged derivative protein, ComE was homogeneously distributed in the periplasm in the absence of external DNA. Upon addition of external DNA, ComE was relocalized to form discrete foci colocalized with imported DNA. We conclude that the periplasm can act as a considerable reservoir for imported DNA with ComE governing the amount of DNA stored potentially for transport through the inner membrane. Bacterial transformation is the import and inheritable integration of external DNA. As such, it is believed to be a major evolutionary force. A key step is the import of DNA through the outer membrane. Here, we have characterized the spatio-temporal dynamics of DNA during import and residence in the periplasm of the Gram-negative pathogen Neisseria gonorrhoeae. We found that the periplasm can serve as a reservoir for imported DNA that can fill within five minutes by importing DNA from the environment. The amount of imported DNA roughly corresponds to the size of a phage genome. The periplasmic DNA-binding protein ComE is homogeneously distributed in the periplasm in the absence of extracellular DNA. It relocates rapidly to imported DNA when external DNA is added to competent gonococci. As ComE governs the carrying capacity of the periplasm, we propose that it might condense DNA, thus linking DNA uptake to its compaction. Although the import through the outer membrane was localized all around the cell contour, the major part of the imported DNA relocated to the septum at the center of diplococci. Our findings strongly support the idea that the periplasm masses DNA independently of transport through the inner membrane.
Collapse
|
7
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
8
|
Sun Y, Bernardy EE, Hammer BK, Miyashiro T. Competence and natural transformation in vibrios. Mol Microbiol 2013; 89:583-95. [PMID: 23803158 DOI: 10.1111/mmi.12307] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 01/01/2023]
Abstract
Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co-ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| | - Eryn E Bernardy
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Brian K Hammer
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| |
Collapse
|
9
|
A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog 2013; 9:e1003473. [PMID: 23825953 PMCID: PMC3694846 DOI: 10.1371/journal.ppat.1003473] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/17/2013] [Indexed: 02/05/2023] Open
Abstract
Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.
Collapse
|
10
|
Functional screening of a metagenomic library reveals operons responsible for enhanced intestinal colonization by gut commensal microbes. Appl Environ Microbiol 2013; 79:3829-38. [PMID: 23584783 DOI: 10.1128/aem.00581-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Evidence suggests that gut microbes colonize the mammalian intestine through propagation as an adhesive microbial community. A bacterial artificial chromosome (BAC) library of murine bowel microbiota DNA in the surrogate host Escherichia coli DH10B was screened for enhanced adherence capability. Two out of 5,472 DH10B clones, 10G6 and 25G1, exhibited enhanced capabilities to adhere to inanimate surfaces in functional screens. DNA segments inserted into the 10G6 and 25G1 clones were 52 and 41 kb and included 47 and 41 protein-coding open reading frames (ORFs), respectively. DNA sequence alignments, tetranucleotide frequency, and codon usage analysis strongly suggest that these two DNA fragments are derived from species belonging to the genus Bacteroides. Consistent with this finding, a large portion of the predicted gene products were highly homologous to those of Bacteroides spp. Transposon mutagenesis and subsequent experiments that involved heterologous expression identified two operons associated with enhanced adherence. E. coli strains transformed with the 10a or 25b operon adhered to the surface of intestinal epithelium and colonized the mouse intestine more vigorously than did the control strain. This study has revealed the genetic determinants of unknown commensals (probably resembling Bacteroides species) that enhance the ability of the bacteria to colonize the murine bowel.
Collapse
|
11
|
Abstract
Natural transformation is a dominant force in bacterial evolution by promoting horizontal gene transfer. This process may have devastating consequences, such as the spread of antibiotic resistance or the emergence of highly virulent clones. However, uptake and recombination of foreign DNA are most often deleterious to competent species. Therefore, model naturally transformable gram-negative bacteria, including the human pathogen Neisseria meningitidis, have evolved means to preferentially take up homotypic DNA containing short and genus-specific sequence motifs. Despite decades of intense investigations, the DNA uptake sequence receptor in Neisseria species has remained elusive. We show here, using a multidisciplinary approach combining biochemistry, molecular genetics, and structural biology, that meningococcal type IV pili bind DNA through the minor pilin ComP via an electropositive stripe that is predicted to be exposed on the filaments surface and that ComP displays an exquisite binding preference for DNA uptake sequence. Our findings illuminate the earliest step in natural transformation, reveal an unconventional mechanism for DNA binding, and suggest that selective DNA uptake is more widespread than previously thought.
Collapse
|
12
|
Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae. J Bacteriol 2012; 194:5245-54. [PMID: 22821979 DOI: 10.1128/jb.00671-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural competence is the ability of bacteria to actively take up extracellular DNA. This DNA can recombine with the host chromosome, transforming the host cell and altering its genotype. In Haemophilus influenzae, natural competence is induced by energy starvation and the depletion of nucleotide pools. This induces a 26-gene competence regulon (Sxy-dependent cyclic AMP receptor protein [CRP-S] regulon) whose expression is controlled by two regulators, CRP and Sxy. The role of most of the CRP-S genes in DNA uptake and transformation is not known. We have therefore created in-frame deletions of each CRP-S gene and studied their competence phenotypes. All but one gene (ssb) could be deleted. Although none of the remaining CRP-S genes were required for growth in rich medium or survival under starvation conditions, DNA uptake and transformation were abolished or reduced in most of the mutants. Seventeen genes were absolutely required for transformation, with 14 of these genes being specifically required for the assembly and function of the type IV pilus DNA uptake machinery. Only five genes were dispensable for both competence and transformation. This is the first competence regulon for which all genes have been mutationally characterized.
Collapse
|
13
|
Ambur OH, Frye SA, Nilsen M, Hovland E, Tønjum T. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis. PLoS One 2012; 7:e39742. [PMID: 22768309 PMCID: PMC3388099 DOI: 10.1371/journal.pone.0039742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/26/2012] [Indexed: 12/17/2022] Open
Abstract
Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination.
Collapse
|
14
|
Lu N, Mylon SE, Kong R, Bhargava R, Zilles JL, Nguyen TH. Interactions between dissolved natural organic matter and adsorbed DNA and their effect on natural transformation of Azotobacter vinelandii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:430-435. [PMID: 22542236 DOI: 10.1016/j.scitotenv.2012.03.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/01/2012] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
To better understand gene transfer in the soil environment, the interactions between dissolved natural organic matter (NOM) and chromosomal or plasmid DNA adsorbed to silica surfaces were investigated. The rates of NOM adsorption onto silica surfaces coated with DNA were measured by quartz crystal microbalance (QCM) and showed a positive correlation with carboxylate group density for both soil and aquatic NOM in solutions containing either 1mM Ca(2+) or Mg(2+). Increasing total dissolved organic carbon (DOC) concentrations of the NOM solution also resulted in an increase in the adsorption rates, likely due to divalent cation complexation with NOM carboxylate groups and the phosphate backbones of the DNA. The results from Fourier transform infrared spectroscopy (FTIR) for dissolved DNA and DNA adsorbed on silica beads also suggest that adsorption may result from divalent cation complexation with the DNA's phosphate backbone. The interactions, between DNA and NOM, however, did not influence natural transformation of Azotobacter vinelandii by DNA. These results suggest that DNA adsorbed to NOM-coated silica or otherwise complexed with NOM remains available for natural transformation in the environment.
Collapse
Affiliation(s)
- Nanxi Lu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
15
|
Benam AV, Lång E, Alfsnes K, Fleckenstein B, Rowe AD, Hovland E, Ambur OH, Frye SA, Tønjum T. Structure-function relationships of the competence lipoprotein ComL and SSB in meningococcal transformation. MICROBIOLOGY (READING, ENGLAND) 2011; 157:1329-1342. [PMID: 21330432 PMCID: PMC3140584 DOI: 10.1099/mic.0.046896-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neisseria meningitidis, the meningococcus, is naturally competent for transformation throughout its growth cycle. The uptake of exogenous DNA into the meningococcus cell during transformation is a multi-step process. Beyond the requirement for type IV pilus expression for efficient transformation, little is known about the neisserial proteins involved in DNA binding, uptake and genome integration. This study aimed to identify and characterize neisserial DNA binding proteins in order to further elucidate the multi-factorial transformation machinery. The meningococcus inner membrane and soluble cell fractions were searched for DNA binding components by employing 1D and 2D gel electrophoresis approaches in combination with a solid-phase overlay assay with DNA substrates. Proteins that bound DNA were identified by MS analysis. In the membrane fraction, multiple components bound DNA, including the neisserial competence lipoprotein ComL. In the soluble fraction, the meningococcus orthologue of the single-stranded DNA binding protein SSB was predominant. The DNA binding activity of the recombinant ComL and SSB proteins purified to homogeneity was verified by electromobility shift assay, and the ComL-DNA interaction was shown to be Mg²+-dependent. In 3D models of the meningococcus ComL and SSB predicted structures, potential DNA binding sites were suggested. ComL was found to co-purify with the outer membrane, directly interacting with the secretin PilQ. The combined use of 1D/2D solid-phase overlay assays with MS analysis was a useful strategy for identifying DNA binding components. The ComL DNA binding properties and outer membrane localization suggest that this lipoprotein plays a direct role in neisserial transformation, while neisserial SSB is a DNA binding protein that contributes to the terminal part of the transformation process.
Collapse
Affiliation(s)
- Afsaneh V Benam
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Oslo University Hospital (Rikshospitalet), NO-0027 Oslo, Norway
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, NO-0027 Oslo, Norway
| | - Emma Lång
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Oslo University Hospital (Rikshospitalet), NO-0027 Oslo, Norway
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, NO-0027 Oslo, Norway
| | - Kristian Alfsnes
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Oslo University Hospital (Rikshospitalet), NO-0027 Oslo, Norway
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, NO-0027 Oslo, Norway
| | - Burkhard Fleckenstein
- Centre for Immune Regulation, Institute of Immunology, University of Oslo, NO-0027 Oslo, Norway
| | - Alexander D Rowe
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Oslo University Hospital (Rikshospitalet), NO-0027 Oslo, Norway
| | - Eirik Hovland
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, NO-0027 Oslo, Norway
| | - Ole Herman Ambur
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Oslo University Hospital (Rikshospitalet), NO-0027 Oslo, Norway
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, NO-0027 Oslo, Norway
| | - Stephan A Frye
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Oslo University Hospital (Rikshospitalet), NO-0027 Oslo, Norway
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, NO-0027 Oslo, Norway
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Oslo University Hospital (Rikshospitalet), NO-0027 Oslo, Norway
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, NO-0027 Oslo, Norway
| |
Collapse
|
16
|
Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci U S A 2011; 108:4494-9. [PMID: 21368196 DOI: 10.1073/pnas.1019751108] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular data on a limited number of chromosomal loci have shown that the population of Neisseria meningitidis (Nm), a deadly human pathogen, is structured in distinct lineages. Given that the Nm population undergoes substantial recombination, the mechanisms resulting in the evolution of these lineages, their persistence in time, and the implications for the pathogenicity of the bacterium are not yet completely understood. Based on whole-genome sequencing, we show that Nm is structured in phylogenetic clades. Through acquisition of specific genes and through insertions and rearrangements, each clade has acquired and remodeled specific genomic tracts, with the potential to impact on the commensal and virulence behavior of Nm. Despite this clear evidence of a structured population, we confirm high rates of detectable recombination throughout the whole Nm chromosome. However, gene conversion events were found to be longer within clades than between clades, suggesting a DNA cleavage mechanism associated with the phylogeny of the species. We identify 22 restriction modification systems, probably acquired by horizontal gene transfer from outside of the species/genus, whose distribution in the different strains coincides with the phylogenetic clade structure. We provide evidence that these clade-associated restriction modification systems generate a differential barrier to DNA exchange consistent with the observed population structure. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations, and they could provide an evolutionary framework for the population biology of a number of other bacterial species that show contradictory population structure and dynamics.
Collapse
|
17
|
Roy S, Vijay S, Arumugam M, Anand D, Mir M, Ajitkumar P. Mycobacterium tuberculosis expresses ftsE gene through multiple transcripts. Curr Microbiol 2011; 62:1581-9. [PMID: 21336990 DOI: 10.1007/s00284-011-9897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 02/06/2011] [Indexed: 11/25/2022]
Abstract
Bacterial FtsE gene codes for the ATP-binding protein, FtsE, which in complex with the transmembrane protein, FtsX, participates in diverse cellular processes. Therefore, regulated expression of FtsE and FtsX might be critical to the human pathogen, Mycobacterium tuberculosis, under stress conditions. Although ftsX gene of M. tuberculosis (MtftsX) is known to be transcribed from a promoter inside the upstream gene, ftsE, the transcriptional status of ftsE gene of M. tuberculosis (MtftsE) remains unknown. Therefore, the authors initiated transcriptional analyses of MtftsE, using total RNA from M. tuberculosis cells that were grown under stress conditions, which the pathogen is exposed to, in granuloma in tuberculosis patients. Primer extension experiments showed the presence of putative transcripts, T1, T2, T3, and T4. T1 originated from the intergenic region between the upstream gene, MRA_3135, and MtftsE. T2 and T3 were found initiated from within MRA_3135. T4 was transcribed from a region upstream of MRA_3135. RT-PCR confirmed co-transcription of MRA_3135 and MtftsE. The cloned putative promoter regions for T1, T2, and T3 elicited transcriptional activity in Mycobacterium smegmatis transformants. T1, T2, and T3, but no new transcript, were present in the M. tuberculosis cells that were grown under the stress conditions, which the pathogen is exposed to in granuloma in tuberculosis patients. It showed lack of modulation of MtftsE transcripts under the stress conditions tested, indicating that ftsE may not have a stress response-specific function in M. tuberculosis.
Collapse
Affiliation(s)
- Sougata Roy
- Indian Institute of Science, Microbiology and Cell Biology, Bangalore, Karnataka
| | | | | | | | | | | |
Collapse
|
18
|
Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Appl Environ Microbiol 2010; 76:4713-9. [PMID: 20472726 DOI: 10.1128/aem.00402-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-G+C thermophilic obligate anaerobes in the class Clostridia are considered among the bacteria most resistant to genetic engineering due to the difficulty of introducing foreign DNA, thus limiting the ability to study and exploit their native hydrolytic and fermentative capabilities. Here, we report evidence of natural genetic competence in 13 Thermoanaerobacter and Thermoanaerobacterium strains previously believed to be difficult to transform or genetically recalcitrant. In Thermoanaerobacterium saccharolyticum JW/SL-YS485, natural competence-mediated DNA incorporation occurs during the exponential growth phase with both replicating plasmid and homologous recombination-based integration, and circular or linear DNA. In T. saccharolyticum, disruptions of genes similar to comEA, comEC, and a type IV pilus (T4P) gene operon result in strains unable to incorporate further DNA, suggesting that natural competence occurs via a conserved Gram-positive mechanism. The relative ease of employing natural competence for gene transfer should foster genetic engineering in these industrially relevant organisms, and understanding the mechanisms underlying natural competence may be useful in increasing the applicability of genetic tools to difficult-to-transform organisms.
Collapse
|
19
|
Ambur OH, Davidsen T, Frye SA, Balasingham SV, Lagesen K, Rognes T, Tønjum T. Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev 2009; 33:453-70. [PMID: 19396949 PMCID: PMC2734928 DOI: 10.1111/j.1574-6976.2009.00173.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pathogenic bacteria continuously encounter multiple forms of stress in their hostile environments, which leads to DNA damage. With the new insight into biology offered by genome sequences, the elucidation of the gene content encoding proteins provides clues toward understanding the microbial lifestyle related to habitat and niche. Campylobacter jejuni, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, the pathogenic Neisseria, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus are major human pathogens causing detrimental morbidity and mortality at a global scale. An algorithm for the clustering of orthologs was established in order to identify whether orthologs of selected genes were present or absent in the genomes of the pathogenic bacteria under study. Based on the known genes for the various functions and their orthologs in selected pathogenic bacteria, an overview of the presence of the different types of genes was created. In this context, we focus on selected processes enabling genome dynamics in these particular pathogens, namely DNA repair, recombination and horizontal gene transfer. An understanding of the precise molecular functions of the enzymes participating in DNA metabolism and their importance in the maintenance of bacterial genome integrity has also, in recent years, indicated a future role for these enzymes as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo University Hospital, Norway
| | | | | | | | | | | | | |
Collapse
|