1
|
Behringer KI, Fritz V, Hellwig M. Metabolization of Free and Peptide-Bound Oxidized Methionine Derivatives by Saccharomyces cerevisiae in a Model System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19040-19050. [PMID: 39159198 DOI: 10.1021/acs.jafc.4c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In the brewing process, methionine is a decisive amino acid for (off-)flavor formation. A significant part of methionine is oxidized to methionine sulfoxide (MetSO) in malt. We hypothesized that MetSO and MetSO2 are metabolized to volatile compounds during yeast fermentation and examined whether the yeast Saccharomyces cerevisiae is able to catabolize l-MetSO and l-MetSO2 in free and dipeptide-bound forms. We also investigated the stability of l-methionine sulfoximine and S-methylmethionine. Cell viability in the presence of the test compounds was at least 90%. Both free and peptide-bound test substances were metabolized by Saccharomyces cerevisiae. l-MetSO was degraded most rapidly as the free amino acid, while l-MetSO2 was degraded most rapidly bound in dipeptides. We observed a different degradation behavior of the (R) and (S) diastereoisomers for l-MetSO and l-methionine sulfoximine. Furthermore, we detected methionol as the only metabolite of MetSO. Methionol sulfoxide was not formed. MetSO2 was not converted to methionol or methionol sulfone but to the respective α-hydroxy acid. We conclude that the reduction of MetSO to methionine proceeds faster than transamination. The occurrence of MetSO or MetSO2 in brewing malt will not lead to the formation of hitherto unknown volatile metabolites of the Ehrlich pathway.
Collapse
Affiliation(s)
- Kim Ina Behringer
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - Viktor Fritz
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - Michael Hellwig
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
- Chair of Special Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01062 Dresden, Germany
| |
Collapse
|
2
|
Fenner ED, Scapini T, da Costa Diniz M, Giehl A, Treichel H, Álvarez-Pérez S, Alves SL. Nature's Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J Fungi (Basel) 2022; 8:984. [PMID: 36294549 PMCID: PMC9605484 DOI: 10.3390/jof8100984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
The importance of insects for angiosperm pollination is widely recognized. In fact, approximately 90% of all plant species benefit from animal-mediated pollination. However, only recently, a third part player in this story has been properly acknowledged. Microorganisms inhabiting floral nectar, among which yeasts have a prominent role, can ferment glucose, fructose, sucrose, and/or other carbon sources in this habitat. As a result of their metabolism, nectar yeasts produce diverse volatile organic compounds (VOCs) and other valuable metabolites. Notably, some VOCs of yeast origin can influence insects' foraging behavior, e.g., by attracting them to flowers (although repelling effects have also been reported). Moreover, when insects feed on nectar, they also ingest yeast cells, which provide them with nutrients and protect them from pathogenic microorganisms. In return, insects serve yeasts as transportation and a safer habitat during winter when floral nectar is absent. From the plant's point of view, the result is flowers being pollinated. From humanity's perspective, this ecological relationship may also be highly profitable. Therefore, prospecting nectar-inhabiting yeasts for VOC production is of major biotechnological interest. Substances such as acetaldehyde, ethyl acetate, ethyl butyrate, and isobutanol have been reported in yeast volatomes, and they account for a global market of approximately USD 15 billion. In this scenario, the present review addresses the ecological, environmental, and biotechnological outlooks of this three-party mutualism, aiming to encourage researchers worldwide to dig into this field.
Collapse
Affiliation(s)
- Eduardo D. Fenner
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Mariana da Costa Diniz
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sérgio L. Alves
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
3
|
Hughes R, Elliott RJR, Li X, Munro AF, Makda A, Carter RN, Morton NM, Fujihara K, Clemons NJ, Fitzgerald R, O’Neill JR, Hupp T, Carragher NO. Multiparametric High-Content Cell Painting Identifies Copper Ionophores as Selective Modulators of Esophageal Cancer Phenotypes. ACS Chem Biol 2022; 17:1876-1889. [PMID: 35696676 PMCID: PMC9295120 DOI: 10.1021/acschembio.2c00301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Esophageal adenocarcinoma is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, the lack of "druggable" driver mutations, and the dominance of large-scale genomic rearrangements. We have previously undertaken a comprehensive small-molecule phenotypic screen using the high-content Cell Painting assay to quantify the morphological response to a total of 19,555 small molecules across a panel of genetically distinct human esophageal cell lines to identify new therapeutic targets and small molecules for the treatment of esophageal adenocarcinoma. In this current study, we report for the first time the dose-response validation studies for the 72 screening hits from the target-annotated LOPAC and Prestwick FDA-approved compound libraries and the full list of 51 validated esophageal adenocarcinoma-selective small molecules (71% validation rate). We then focus on the most potent and selective hit molecules, elesclomol, disulfiram, and ammonium pyrrolidinedithiocarbamate. Using a multipronged, multitechnology approach, we uncover a unified mechanism of action and a vulnerability in esophageal adenocarcinoma toward copper-dependent cell death that could be targeted in the future.
Collapse
Affiliation(s)
- Rebecca
E. Hughes
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Richard J. R. Elliott
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Xiaodun Li
- MRC
Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, U.K.
| | - Alison F. Munro
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Ashraff Makda
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Roderick N. Carter
- Centre
for Clinical Brain Sciences, Chancellors Building, University of Edinburgh, Edinburgh EH16 4SB, U.K.
- Centre
for Cardiovascular Science, The Queen’s
Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, U.K.
| | - Nicholas M. Morton
- Centre
for Cardiovascular Science, The Queen’s
Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, U.K.
| | - Kenji Fujihara
- Gastrointestinal
Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
- Sir Peter
MacCallum Department of Oncology, The University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Nicholas J. Clemons
- Gastrointestinal
Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
- Sir Peter
MacCallum Department of Oncology, The University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Rebecca Fitzgerald
- Early
Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge CB2 0XZ, U.K.
| | - J. Robert O’Neill
- Cambridge
Oesophagogastric Centre, Cambridge University
Hospitals Foundation Trust, Cambridge CB2 2QQ, U.K.
| | - Ted Hupp
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Neil O. Carragher
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
4
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
5
|
Vancaester E, Depuydt T, Osuna-Cruz CM, Vandepoele K. Comprehensive and Functional Analysis of Horizontal Gene Transfer Events in Diatoms. Mol Biol Evol 2021; 37:3243-3257. [PMID: 32918458 DOI: 10.1093/molbev/msaa182] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diatoms are a diverse group of mainly photosynthetic algae, responsible for 20% of worldwide oxygen production, which can rapidly respond to favorable conditions and often outcompete other phytoplankton. We investigated the contribution of horizontal gene transfer (HGT) to its ecological success. A large-scale phylogeny-based prokaryotic HGT detection procedure across nine sequenced diatoms showed that 3-5% of their proteome has a horizontal origin and a large influx occurred at the ancestor of diatoms. More than 90% of HGT genes are expressed, and species-specific HGT genes in Phaeodactylum tricornutum undergo strong purifying selection. Genes derived from HGT are implicated in several processes including environmental sensing and expand the metabolic toolbox. Cobalamin (vitamin B12) is an essential cofactor for roughly half of the diatoms and is only produced by bacteria. Five consecutive genes involved in the final synthesis of the cobalamin biosynthetic pathway, which could function as scavenging and repair genes, were detected as HGT. The full suite of these genes was detected in the cold-adapted diatom Fragilariopsis cylindrus. This might give diatoms originating from the Southern Ocean, a region typically depleted in cobalamin, a competitive advantage. Overall, we show that HGT is a prevalent mechanism that is actively used in diatoms to expand its adaptive capabilities.
Collapse
Affiliation(s)
- Emmelien Vancaester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Shi H, Almutairi M, Moskovitz J, Xu YG. Recent advances in iron homeostasis and regulation - a focus on epigenetic regulation and stroke. Free Radic Res 2021; 55:375-383. [PMID: 33345646 DOI: 10.1080/10715762.2020.1867314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron is an element with redox properties. It is active sites of many enzymes and plays an important role in various cellular and biological functions including ATP production and DNA synthesis. However, as a redox element, iron promotes free radical generation and lipid peroxidation, causing oxidative damage and cell death. Iron-mediated oxidation is a central player in ferroptosis, a type of cell death process that is different from apoptosis and necrosis. Thus, iron metabolism and homeostasis are sophisticatedly regulated. There has been exciting progress in understanding iron metabolism and regulation since hepcidin was recognized as the central regulator of iron homeostasis. Hepcidin mainly regulates the iron export function of the ferrous iron permease, ferroportin, which is the only known iron exporter expressed by mammalian cells. Particularly, epigenetic regulation has been a recent focus on iron homeostasis. Epigenetic phenomena have been demonstrated to modulate key proteins including hepcidin in iron metabolism. Here, we review the rapid progress in recent years in understanding molecular mechanisms of iron homeostasis with a focus on epigenetic regulation of hepcidin, ferritin, and ferroptosis. Interactions between methionine oxidation and iron is also discussed. Furthermore, many studies have suggested that the severity of neuronal damage after stroke is proportional to the magnitude of brain iron accumulation. Recent discoveries regarding iron metabolism in stroke is briefly discussed. Understanding the underlying mechanism in iron regulation could provide insight into the treatment of various intractable diseases including stroke.
Collapse
Affiliation(s)
- Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Mohammed Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Yuexian G Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, USA
| |
Collapse
|
7
|
Wohlgemuth F, Gomes RL, Singleton I, Rawson FJ, Avery SV. Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action. Front Microbiol 2020; 11:575157. [PMID: 33101251 PMCID: PMC7546784 DOI: 10.3389/fmicb.2020.575157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 01/29/2023] Open
Abstract
We developed a top-down strategy to characterize an antimicrobial, oxidizing sanitizer, which has diverse proposed applications including surface-sanitization of fresh foods, and with benefits for water resilience. The strategy involved finding quenchers of antimicrobial activity then antimicrobial mode of action, by identifying key chemical reaction partners starting from complex matrices, narrowing down reactivity to specific organic molecules within cells. The sanitizer electrolyzed-water (EW) retained partial fungicidal activity against the food-spoilage fungus Aspergillus niger at high levels of added soils (30–750 mg mL–1), commonly associated with harvested produce. Soil with high organic load (98 mg g–1) gave stronger EW inactivation. Marked inactivation by a complex organics mix (YEPD medium) was linked to its protein-rich components. Addition of pure proteins or amino acids (≤1 mg mL–1) fully suppressed EW activity. Mechanism was interrogated further with the yeast model, corroborating marked suppression of EW action by the amino acid methionine. Pre-culture with methionine increased resistance to EW, sodium hypochlorite, or chlorine-free ozonated water. Overexpression of methionine sulfoxide reductases (which reduce oxidized methionine) protected against EW. Fluoroprobe-based analyses indicated that methionine and cysteine inactivate free chlorine species in EW. Intracellular methionine oxidation can disturb cellular FeS-clusters and we showed that EW treatment impairs FeS-enzyme activity. The study establishes the value of a top-down approach for multi-level characterization of sanitizer efficacy and action. The results reveal proteins and amino acids as key quenchers of EW activity and, among the amino acids, the importance of methionine oxidation and FeS-cluster damage for antimicrobial mode-of-action.
Collapse
Affiliation(s)
| | - Rachel L Gomes
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Ian Singleton
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Frankie J Rawson
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Ferdouse J, Kusaba Y, Fujimaru Y, Yamamoto Y, Kitagaki H. Methionine and Glycine Stabilize Mitochondrial Activity in Sake Yeast During Ethanol Fermentation. Food Technol Biotechnol 2020; 57:535-543. [PMID: 32123515 PMCID: PMC7029386 DOI: 10.17113/ftb.57.04.19.5665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Addition of amino acids to fermentation media affects the growth and brewing profiles of yeast. In addition, retaining mitochondrial activity during fermentation is critical for the fermentation profiles of brewer’s yeasts. However, a concrete mechanism linking amino acids in fermentation media with mitochondrial activity during fermentation of brewer’s yeasts is yet unknown. Here, we report that amino acids in fermentation media, especially methionine (Met) and glycine (Gly), stabilize mitochondrial activity during fermentation of sake yeast. By utilizing atg32△ mutant sake yeast, which shows deteriorated mitochondrial activity, we screened candidate amino acids that strengthened the mitochondrial activity of sake yeast during fermentation. We identified Met and Gly as candidate amino acids that fortify mitochondrial activity in sake yeast during fermentation. To confirm this biochemically, we measured reactive oxygen species (ROS) levels in sake yeast fermented with Met and Gly. Yeast cells supplemented with Met and Gly retained high ROS levels relative to the non-supplemented sake yeast. Moreover, Met-supplemented cells showed a metabolome distinct from that of non-supplemented cells. These results indicate that specific amino acids such as Met and Gly stabilize the mitochondrial activity of sake yeast during fermentation and thus manipulate brewing profiles of yeast.
Collapse
Affiliation(s)
- Jannatul Ferdouse
- Department of Environmental Science, Faculty of Agriculture, Saga University, Saga City, Saga 840-8502, Japan.,Department of Biochemistry and Applied Biosciences, United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-8580, Japan.,Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Yuki Kusaba
- Department of Environmental Science, Faculty of Agriculture, Saga University, Saga City, Saga 840-8502, Japan
| | - Yuki Fujimaru
- Department of Environmental Science, Faculty of Agriculture, Saga University, Saga City, Saga 840-8502, Japan
| | - Yuki Yamamoto
- Department of Environmental Science, Faculty of Agriculture, Saga University, Saga City, Saga 840-8502, Japan
| | - Hiroshi Kitagaki
- Department of Environmental Science, Faculty of Agriculture, Saga University, Saga City, Saga 840-8502, Japan.,Department of Biochemistry and Applied Biosciences, United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-8580, Japan
| |
Collapse
|
9
|
Dearth SP, Castro HF, Venice F, Tague ED, Novero M, Bonfante P, Campagna SR. Metabolome changes are induced in the arbuscular mycorrhizal fungus Gigaspora margarita by germination and by its bacterial endosymbiont. MYCORRHIZA 2018; 28:421-433. [PMID: 29860608 DOI: 10.1007/s00572-018-0838-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Metabolomic profiling is becoming an increasingly important technique in the larger field of systems biology by allowing the simultaneous measurement of thousands of small molecules participating in and resulting from cellular reactions. In this way, metabolomics presents an opportunity to observe the physiological state of a system, which may provide the ability to monitor the whole of cellular metabolism as the technology progresses. The arbuscular mycorrhizal fungus Gigaspora margarita has not previously been explored with regard to metabolite composition. To develop a better understanding of G. margarita and the influences of its endosymbiont Candidatus Glomeribacter gigasporarum, a metabolomic analysis was applied to quiescent and germinated spores with and without endobacteria. Over 100 metabolites were identified and greater than 2600 unique unidentified spectral features were observed. Multivariate analysis of the metabolomes was performed, and a differentiation between all metabolic states of spores and spores hosting the endobacteria was observed. The known metabolites were recruited to many biochemical pathways, with many being involved in maintenance of the antioxidant potential, tyrosine metabolism, and melanin production. Each of the pathways had higher metabolite abundances in the presence of the endosymbiont. These metabolomics data also agree with previously reported transcriptomics results demonstrating the capability of this technique to confirm hypotheses and showing the feasibility of multi-omic approaches for the study of arbuscular mycorrhizal fungi and their endobacterial communities. Challenges still exist in metabolomic analysis, e.g., the identification of compounds is demanding due to incomplete libraries. A metabolomics technique to probe the effects of bacterial endosymbionts on fungal physiology is presented herein, and this method is useful for hypothesis generation as well as testing as noted above.
Collapse
Affiliation(s)
- Stephen P Dearth
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Hector F Castro
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Francesco Venice
- Department of Life Sciences and Systems Biology, University of Torino, viale Mattioli 25, 10125, Turin, Italy
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, viale Mattioli 25, 10125, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, viale Mattioli 25, 10125, Turin, Italy.
| | - Shawn Robert Campagna
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA.
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
10
|
Talavera D, Kershaw CJ, Costello JL, Castelli LM, Rowe W, Sims PFG, Ashe MP, Grant CM, Pavitt GD, Hubbard SJ. Archetypal transcriptional blocks underpin yeast gene regulation in response to changes in growth conditions. Sci Rep 2018; 8:7949. [PMID: 29785040 PMCID: PMC5962585 DOI: 10.1038/s41598-018-26170-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/01/2018] [Indexed: 01/30/2023] Open
Abstract
The transcriptional responses of yeast cells to diverse stresses typically include gene activation and repression. Specific stress defense, citric acid cycle and oxidative phosphorylation genes are activated, whereas protein synthesis genes are coordinately repressed. This view was achieved from comparative transcriptomic experiments delineating sets of genes whose expression greatly changed with specific stresses. Less attention has been paid to the biological significance of 1) consistent, albeit modest, changes in RNA levels across multiple conditions, and 2) the global gene expression correlations observed when comparing numerous genome-wide studies. To address this, we performed a meta-analysis of 1379 microarray-based experiments in yeast, and identified 1388 blocks of RNAs whose expression changes correlate across multiple and diverse conditions. Many of these blocks represent sets of functionally-related RNAs that act in a coordinated fashion under normal and stress conditions, and map to global cell defense and growth responses. Subsequently, we used the blocks to analyze novel RNA-seq experiments, demonstrating their utility and confirming the conclusions drawn from the meta-analysis. Our results provide a new framework for understanding the biological significance of changes in gene expression: 'archetypal' transcriptional blocks that are regulated in a concerted fashion in response to external stimuli.
Collapse
Affiliation(s)
- David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Joseph L Costello
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - William Rowe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Department of Chemistry, Loughborough University, Loughborough, United Kingdom
| | - Paul F G Sims
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Chris M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
11
|
Samp EJ, Foster RT, Edelen C. Influence of Cardiolipin on Lager Beer Dimethyl Sulfide Levels: A Possible Role Involving Mitochondria? JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2010-0803-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Vallières C, Holland SL, Avery SV. Mitochondrial Ferredoxin Determines Vulnerability of Cells to Copper Excess. Cell Chem Biol 2017; 24:1228-1237.e3. [PMID: 28867595 PMCID: PMC5654725 DOI: 10.1016/j.chembiol.2017.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/02/2017] [Accepted: 08/01/2017] [Indexed: 01/17/2023]
Abstract
The essential micronutrient copper is tightly regulated in organisms, as environmental exposure or homeostasis defects can cause toxicity and neurodegenerative disease. The principal target(s) of copper toxicity have not been pinpointed, but one key effect is impaired supply of iron-sulfur (FeS) clusters to the essential protein Rli1 (ABCE1). Here, to find upstream FeS biosynthesis/delivery protein(s) responsible for this, we compared copper sensitivity of yeast-overexpressing candidate targets. Overexpression of the mitochondrial ferredoxin Yah1 produced copper hyper-resistance. 55Fe turnover assays revealed that FeS integrity of Yah1 was particularly vulnerable to copper among the test proteins. Furthermore, destabilization of the FeS domain of Yah1 produced copper hypersensitivity, and YAH1 overexpression rescued Rli1 dysfunction. This copper-resistance function was conserved in the human ferredoxin, Fdx2. The data indicate that the essential mitochondrial ferredoxin is an important copper target, determining a tipping point where plentiful copper supply becomes excessive. This knowledge could help in tackling copper-related diseases.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Sara L Holland
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
13
|
Sharma A, Sharma D, Verma SK. Proteome wide identification of iron binding proteins of Xanthomonas translucens pv. undulosa: focus on secretory virulent proteins. Biometals 2017; 30:127-141. [DOI: 10.1007/s10534-017-9991-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/08/2017] [Indexed: 12/19/2022]
|
14
|
Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SVN, Ardehali H. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 2016; 8:247-267. [PMID: 26896449 PMCID: PMC4772952 DOI: 10.15252/emmm.201505748] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/19/2023] Open
Abstract
Excess cellular iron increases reactive oxygen species (ROS) production and causes cellular damage. Mitochondria are the major site of iron metabolism and ROS production; however, few studies have investigated the role of mitochondrial iron in the development of cardiac disorders, such as ischemic heart disease or cardiomyopathy (CM). We observe increased mitochondrial iron in mice after ischemia/reperfusion (I/R) and in human hearts with ischemic CM, and hypothesize that decreasing mitochondrial iron protects against I/R damage and the development of CM. Reducing mitochondrial iron genetically through cardiac-specific overexpression of a mitochondrial iron export protein or pharmacologically using a mitochondria-permeable iron chelator protects mice against I/R injury. Furthermore, decreasing mitochondrial iron protects the murine hearts in a model of spontaneous CM with mitochondrial iron accumulation. Reduced mitochondrial ROS that is independent of alterations in the electron transport chain's ROS producing capacity contributes to the protective effects. Overall, our findings suggest that mitochondrial iron contributes to cardiac ischemic damage, and may be a novel therapeutic target against ischemic heart disease.
Collapse
Affiliation(s)
- Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Meng Shang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatsuya Sato
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunlei Chen
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason S Shapiro
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ting Liu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anita Thakur
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Konrad T Sawicki
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sathyamangla V N Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Spincemaille P, Chandhok G, Zibert A, Schmidt H, Verbeek J, Chaltin P, Cammue BP, Cassiman D, Thevissen K. Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin. MICROBIAL CELL 2014; 1:352-364. [PMID: 28357214 PMCID: PMC5349125 DOI: 10.15698/mic2014.11.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The human pathology Wilson disease (WD) is characterized by toxic copper (Cu)
accumulation in brain and liver, resulting in, among other indications,
mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify
novel compounds that can alleviate Cu-induced toxicity, we screened the
Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We
identified 2 members of the drug class of Angiotensin II Type 1 receptor
blockers (ARBs) that could increase yeast tolerance to Cu, namely Candesartan
and Losartan. Subsequently, we show that specific ARBs can increase yeast
tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp). The latter
also induces mitochondrial dysfunction and apoptosis in mammalian cells. We
further demonstrate that specific ARBs can prevent the prevalence of Cu-induced
apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which
demonstrated most pronounced reduction of apoptosis-related markers. Next, we
tested the sensitivity of a selection of yeast knockout mutants affected in
detoxification of reactive oxygen species (ROS) and Cu for Candesartan Cilexetil
rescue in presence of Cu. These data indicate that Candesartan Cilexetil
increases yeast tolerance to Cu irrespectively of major ROS-detoxifying
proteins. Finally, we show that specific ARBs can increase mammalian cell
tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic
markers. All the above point to the potential of ARBs in preventing Cu-induced
toxicity in yeast and mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Andree Zibert
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Hartmut Schmidt
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Jef Verbeek
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Bio-Incubator 2, Wetenschapspark Arenberg, Gaston Geenslaan 2, 3001 Heverlee, Belgium. ; Centre for Drug Design and Discovery (CD3), KU Leuven R&D, Waaistraat 6, Box 5105, 3000 Leuven
| | - Bruno P Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium. ; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
16
|
Jo H, Cho YW, Ji SY, Kang GY, Lim CJ. Protective roles of methionine-R-sulfoxide reductase against stresses inSchizosaccharomyces pombe. J Basic Microbiol 2013; 54:72-80. [DOI: 10.1002/jobm.201200397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022]
Affiliation(s)
- Hannah Jo
- Department of Biochemistry; Kangwon National University; Chuncheon Korea
| | - Young-Wook Cho
- Korea Basic Science Institute Chuncheon Center; Chuncheon Korea
| | - Sun-Young Ji
- Department of Biochemistry; Kangwon National University; Chuncheon Korea
| | - Ga-Young Kang
- College of Pharmacy and Division of Life and Pharmaceutical Sciences; Ewha Womans University; Seoul Korea
| | - Chang-Jin Lim
- Department of Biochemistry; Kangwon National University; Chuncheon Korea
| |
Collapse
|
17
|
Alhebshi A, Sideri TC, Holland SL, Avery SV. The essential iron-sulfur protein Rli1 is an important target accounting for inhibition of cell growth by reactive oxygen species. Mol Biol Cell 2012; 23:3582-90. [PMID: 22855532 PMCID: PMC3442406 DOI: 10.1091/mbc.e12-05-0413] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) are linked to various degenerative conditions, but it is unclear which molecular target(s) may be the cell's primary “Achilles’ heel,” accounting for inhibition by ROS. Our results indicate that the FeS protein Rli1p, with essential and conserved functions in protein synthesis, is an important target of ROS toxicity. Oxidative stress mediated by reactive oxygen species (ROS) is linked to degenerative conditions in humans and damage to an array of cellular components. However, it is unclear which molecular target(s) may be the primary “Achilles’ heel” of organisms, accounting for the inhibitory action of ROS. Rli1p (ABCE1) is an essential and highly conserved protein of eukaryotes and archaea that requires notoriously ROS-labile cofactors (Fe-S clusters) for its functions in protein synthesis. In this study, we tested the hypothesis that ROS toxicity is caused by Rli1p dysfunction. In addition to being essential, Rli1p activity (in nuclear ribosomal-subunit export) was shown to be impaired by mild oxidative stress in yeast. Furthermore, prooxidant resistance was decreased by RLI1 repression and increased by RLI1 overexpression. This Rlip1 dependency was abolished during anaerobicity and accentuated in cells expressing a FeS cluster–defective Rli1p construct. The protein's FeS clusters appeared ROS labile during in vitro incubations, but less so in vivo. Instead, it was primarily 55FeS-cluster supply to Rli1p that was defective in prooxidant-exposed cells. The data indicate that, owing to its essential nature but dependency on ROS-labile FeS clusters, Rli1p function is a primary target of ROS action. Such insight could help inform new approaches for combating oxidative stress–related disease.
Collapse
Affiliation(s)
- Alawiah Alhebshi
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | | | | | | |
Collapse
|
18
|
Huis in 't Veld RAG, Willemsen AM, van Kampen AHC, Bradley EJ, Baas F, Pannekoek Y, van der Ende A. Deep sequencing whole transcriptome exploration of the σE regulon in Neisseria meningitidis. PLoS One 2011; 6:e29002. [PMID: 22194974 PMCID: PMC3240639 DOI: 10.1371/journal.pone.0029002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/18/2011] [Indexed: 01/24/2023] Open
Abstract
Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ70-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σE regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σE regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σE is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σE operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σE dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides.
Collapse
|
19
|
Botta G, Turn CS, Quintyne NJ, Kirchman PA. Increased iron supplied through Fet3p results in replicative life span extension of Saccharomyces cerevisiae under conditions requiring respiratory metabolism. Exp Gerontol 2011; 46:827-32. [PMID: 21798334 DOI: 10.1016/j.exger.2011.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 01/05/2023]
Abstract
We have previously shown that copper supplementation extends the replicative life span of Saccharomyces cerevisiae when grown under conditions forcing cells to respire. We now show that copper's effect on life span is through Fet3p, a copper containing enzyme responsible for high affinity transport of iron into yeast cells. Life span extensions can also be obtained by supplementing the growth medium with 1mM ferric chloride. Extension by high iron levels is still dependent on the presence of Fet3p. Life span extension by iron or copper requires growth on media containing glycerol as the sole carbon source, which forces yeast to respire. Yeast grown on glucose containing media supplemented with iron show no extension of life span. The iron associated with cells grown in media supplemented with copper or iron is 1.4-1.8 times that of cells grown without copper or iron supplementation. As with copper supplementation, iron supplementation partially rescues the life span of superoxide dismutase mutants. Cells grown with copper supplementation display decreased production of superoxide as measured by dihydroethidium staining.
Collapse
Affiliation(s)
- Gabriela Botta
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | | | | | | |
Collapse
|
20
|
Suzuki T, Iwahashi Y. Gene expression profiles of yeast Saccharomyces cerevisiae sod1 caused by patulin toxicity and evaluation of recovery potential of ascorbic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7145-7154. [PMID: 21648421 DOI: 10.1021/jf104938p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patulin (PAT) is a fungal secondary metabolite and exhibits various toxicities including DNA damage and oxidative stress. These toxicities are eased by ascorbic acid (AsA). Although a number of studies regarding the mitigating effect of AsA against PAT toxicity have been reported, a comprehensive study about gene expressions is currently underway. Here, we carried out a detailed evaluation of PAT toxicity by co-incubation with AsA using the superoxide dismutase (SOD) mutant. DNA microarray results extracted the alterations in iron transporter and Fe/S cluster assembly genes; some of the genes that constitute the cellular iron transporter systems remained dysfunctional even in the presence of AsA. Meanwhile, AsA treatment reduced the alterations of G1/S phase cell cycle regulation genes. These results suggest that oxidative stress-derived DNA damage still exists, although AsA treatment effectively reduces PAT toxicity. This implies that a combined condition is required for complete blockade of PAT toxicity.
Collapse
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | |
Collapse
|
21
|
Glass RS, Hug GL, Schöneich C, Wilson GS, Kuznetsova L, Lee TM, Ammam M, Lorance E, Nauser T, Nichol GS, Yamamoto T. Neighboring amide participation in thioether oxidation: relevance to biological oxidation. J Am Chem Soc 2009; 131:13791-805. [PMID: 19772365 DOI: 10.1021/ja904895u] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To investigate neighboring amide participation in thioether oxidation, which may be relevant to brain oxidative stress accompanying beta-amyloid peptide aggregation, conformationally constrained methylthionorbornyl derivatives with amido moieties were synthesized and characterized, including an X-ray crystallographic study of one of them. Electrochemical oxidation of these compounds, studied by cyclic voltammetry, revealed that their oxidation peak potentials were less positive for those compounds in which neighboring group participation was geometrically possible. Pulse radiolysis studies provided evidence for bond formation between the amide moiety and sulfur on one-electron oxidation in cases where the moieties are juxtaposed. Furthermore, molecular constraints in spiro analogues revealed that S-O bonds are formed on one-electron oxidation. DFT calculations suggest that isomeric sigma*(SO) radicals are formed in these systems.
Collapse
Affiliation(s)
- Richard S Glass
- Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|