1
|
Hota S, Kumar M. Unveiling the impact of Leptospira TolC efflux protein on host tissue adherence, complement evasion, and diagnostic potential. Infect Immun 2024; 92:e0041924. [PMID: 39392312 PMCID: PMC11556070 DOI: 10.1128/iai.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The TolC family protein of Leptospira is a type I outer membrane efflux protein. Phylogenetic analysis revealed significant sequence conservation among pathogenic Leptospira species (83%-98% identity) compared with intermediate and saprophytic species. Structural modeling indicated a composition of six β-strands and 10 α-helices arranged in two repeats, resembling bacterial outer membrane efflux proteins. Recombinant TolC (rTolC), expressed in a heterologous host and purified via Ni-NTA chromatography, maintained its secondary structural integrity, as verified by circular dichroism spectroscopy. Polyclonal antibodies against rTolC detected native TolC expression in pathogenic Leptospira but not in nonpathogenic ones. Immunoassays and detergent fractionation assays indicated surface localization of TolC. The rTolC's recognition by sera from leptospirosis-infected hosts across species suggests its utility as a diagnostic marker. Notably, rTolC demonstrated binding affinity for various extracellular matrix components, including collagen and chondroitin sulfate A, as well as plasma proteins such as factor H, C3b, and plasminogen, indicating potential roles in tissue adhesion and immune evasion. Functional assays demonstrated that rTolC-bound FH retained cofactor activity for C3b cleavage, highlighting TolC's role in complement regulation. The rTolC protein inhibited both the alternative and the classical pathway-mediated membrane attack complex (MAC) deposition in vitro. Blocking surface-expressed TolC on leptospires using specific antibodies reduced FH acquisition by Leptospira and increased MAC deposition on the spirochete. These findings indicate that TolC contributes to leptospiral virulence by promoting host tissue colonization and evading the immune response, presenting it as a potential target for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Ikujuni AP, Dhar R, Cordova A, Bowman AM, Noga S, Slusky JSG. Discovery and Characterization of Two Folded Intermediates for Outer Membrane Protein TolC Biogenesis. J Mol Biol 2024; 436:168652. [PMID: 38871177 PMCID: PMC11297670 DOI: 10.1016/j.jmb.2024.168652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
TolC is the outer membrane protein responsible for antibiotic efflux in E. coli. Compared to other outer membrane proteins it has an unusual fold and has been shown to fold independently of commonly used periplasmic chaperones, SurA and Skp. Here we find that the assembly of TolC involves the formation of two folded intermediates using circular dichroism, gel electrophoresis, site-specific disulfide bond formation and radioactive labeling. First the TolC monomer folds, and then TolC assembles into a trimer both in detergent-free buffer and in the presence of detergent micelles. We find that a TolC trimer also forms in the periplasm and is present in the periplasm before it inserts in the outer membrane. The monomeric and trimeric folding intermediates may be used in the future to develop a new approach to antibiotic efflux pump inhibition by targeting the assembly pathway of TolC.
Collapse
Affiliation(s)
- Ayotunde Paul Ikujuni
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Andres Cordova
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Sarah Noga
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States; Computational Biology Program, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66045-7534, United States.
| |
Collapse
|
3
|
Ikujuni AP, Budiardjo SJ, Dhar R, Slusky JSG. Detergent headgroups control TolC folding in vitro. Biophys J 2023; 122:1185-1197. [PMID: 36772796 PMCID: PMC10111266 DOI: 10.1016/j.bpj.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
TolC is the trimeric outer membrane component of the efflux pump system in Escherichia coli that is responsible for antibiotic efflux from bacterial cells. Overexpression of efflux pumps has been reported to decrease susceptibility to antibiotics in a variety of bacterial pathogens. Reliable production of membrane proteins allows for the biophysical and structural characterization needed to better understand efflux and for the development of therapeutics. Preparation of recombinant protein for biochemical/structural studies often involves the production of proteins as inclusion body aggregates from which active proteins are recovered. Here, we find that the in vitro folding of TolC into its functional trimeric state from inclusion bodies is dependent on the headgroup composition of detergent micelles used. Nonionic detergent favors the formation of functional trimeric TolC, whereas zwitterionic detergents induce the formation of a non-native, oligomeric TolC fold. We also find that nonionic detergents with shorter alkyl lengths facilitate TolC folding. It remains to be seen whether the charges in lipid headgroups have similar effects on membrane insertion and folding in biological systems.
Collapse
Affiliation(s)
| | - S Jimmy Budiardjo
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas; Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
4
|
Hodges FJ, Torres VVL, Cunningham AF, Henderson IR, Icke C. Redefining the bacterial Type I protein secretion system. Adv Microb Physiol 2023; 82:155-204. [PMID: 36948654 DOI: 10.1016/bs.ampbs.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.
Collapse
Affiliation(s)
- Freya J Hodges
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Ashrafi H, Siraji MI, Showva NN, Hossain MM, Hossan T, Hasan MA, Shohael AM, Shawan MMAK. Structure to function analysis with antigenic characterization of a hypothetical protein,HPAG1_0576 from Helicobacter pylori HPAG1. Bioinformation 2019; 15:456-466. [PMID: 31485131 PMCID: PMC6704333 DOI: 10.6026/97320630015456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori, a unique gastric pathogen causing chronic inflammation in the gastric mucosa with a possibility to develop gastric cancer has one-third of its proteins still uncharacterized. In this study, a hypothetical protein (HP) namely HPAG1_0576 from H. pylori HPAG1 was chosen for detailed computational analysis of its structural, functional and epitopic properties. The primary, secondary and 3D structure/model of the selected HP was constructed. Then refinement and structure validation were done, which indicated a good quality of the newly constructed model. ProFunc and STRING suggested that HPAG1_0576 shares 98% identity with a carcinogenic factor, TNF-α inducing protein (Tip-α ) of H. pylori. IEDB immunoinformatics tool predicted VLMLQACTCPNTSQRNS from position 19-35 as most potential B-cell linear epitope and SFLKSKQL from position 5-12 as most potent conformational epitope. Alternatively, FALVRARGF and FLCGLGVLM were predicted as most immunogenic CD8+ and CD4+ T-cell epitopes respectively. At the same time findings of IFN epitope tool suggests that, HPAG1_0576 had a great potential to evoke interferon-gamma (IFN-γ) mediated immune response. However, this experiment is a primary approach for in silico vaccine designing from a HP, findings of this study will provide significant insights in further investigations and will assist in identifying new drug targets/vaccine candidates.
Collapse
Affiliation(s)
- Hanan Ashrafi
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
- Department of Biomedicine,University of Bergen, Bergen, Norway
| | - Muntequa Ishtiaq Siraji
- Department of Biomedicine,University of Bergen, Bergen, Norway
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka,Bangladesh
| | - Nazmir Nur Showva
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md. Mozamme Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Tareq Hossan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md. Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abdullah Mohammad Shohael
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | | |
Collapse
|
6
|
Masuda I, Matsubara R, Christian T, Rojas ER, Yadavalli SS, Zhang L, Goulian M, Foster LJ, Huang KC, Hou YM. tRNA Methylation Is a Global Determinant of Bacterial Multi-drug Resistance. Cell Syst 2019; 8:302-314.e8. [PMID: 30981730 PMCID: PMC6483872 DOI: 10.1016/j.cels.2019.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 12/19/2018] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Gram-negative bacteria are intrinsically resistant to drugs because of their double-membrane envelope structure that acts as a permeability barrier and as an anchor for efflux pumps. Antibiotics are blocked and expelled from cells and cannot reach high-enough intracellular concentrations to exert a therapeutic effect. Efforts to target one membrane protein at a time have been ineffective. Here, we show that m1G37-tRNA methylation determines the synthesis of a multitude of membrane proteins via its control of translation at proline codons near the start of open reading frames. Decreases in m1G37 levels in Escherichia coli and Salmonella impair membrane structure and sensitize these bacteria to multiple classes of antibiotics, rendering them incapable of developing resistance or persistence. Codon engineering of membrane-associated genes reduces their translational dependence on m1G37 and confers resistance. These findings highlight the potential of tRNA methylation in codon-specific translation to control the development of multi-drug resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuma Matsubara
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Srujana S Yadavalli
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Lisheng Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Walsh SI, Craney A, Romesberg FE. Not just an antibiotic target: Exploring the role of type I signal peptidase in bacterial virulence. Bioorg Med Chem 2016; 24:6370-6378. [PMID: 27769673 PMCID: PMC5279723 DOI: 10.1016/j.bmc.2016.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/23/2023]
Abstract
The looming antibiotic crisis has prompted the development of new strategies towards fighting infection. Traditional antibiotics target bacterial processes essential for viability, whereas proposed antivirulence approaches rely on the inhibition of factors that are required only for the initiation and propagation of infection within a host. Although antivirulence compounds have yet to prove their efficacy in the clinic, bacterial signal peptidase I (SPase) represents an attractive target in that SPase inhibitors exhibit broad-spectrum antibiotic activity, but even at sub-MIC doses also impair the secretion of essential virulence factors. The potential consequences of SPase inhibition on bacterial virulence have not been thoroughly examined, and are explored within this review. In addition, we review growing evidence that SPase has relevant biological functions outside of mediating secretion, and discuss how the inhibition of these functions may be clinically significant.
Collapse
Affiliation(s)
- Shawn I Walsh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 2016; 1:16107. [PMID: 27573113 DOI: 10.1038/nmicrobiol.2016.107] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Jozefien De Geyter
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Valentina Zorzini
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
9
|
Classifying β-Barrel Assembly Substrates by Manipulating Essential Bam Complex Members. J Bacteriol 2016; 198:1984-92. [PMID: 27161117 DOI: 10.1128/jb.00263-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The biogenesis of the outer membrane (OM) of Escherichia coli is a conserved and vital process. The assembly of integral β-barrel outer membrane proteins (OMPs), which represent a major component of the OM, depends on periplasmic chaperones and the heteropentameric β-barrel assembly machine (Bam complex) in the OM. However, not all OMPs are affected by null mutations in the same chaperones or nonessential Bam complex members, suggesting there are categories of substrates with divergent requirements for efficient assembly. We have previously demonstrated two classes of substrates, one comprising large, low-abundance, and difficult-to-assemble substrates that are heavily dependent on SurA and also Skp and FkpA, and the other comprising relatively simple and abundant substrates that are not as dependent on SurA but are strongly dependent on BamB for assembly. Here, we describe novel mutations in bamD that lower levels of BamD 10-fold and >25-fold without altering the sequence of the mature protein. We utilized these mutations, as well as a previously characterized mutation that lowers wild-type BamA levels, to reveal a third class of substrates. These mutations preferentially cause a marked decrease in the levels of multimeric proteins. This susceptibility of multimers to lowered quantities of Bam machines in the cell may indicate that multiple Bam complexes are needed to efficiently assemble multimeric proteins into the OM. IMPORTANCE The outer membrane (OM) of Gram-negative bacteria, such as Escherichia coli, serves as a selective permeability barrier that prevents the uptake of toxic molecules and antibiotics. Integral β-barrel proteins (OMPs) are assembled by the β-barrel assembly machine (Bam), components of which are conserved in mitochondria, chloroplasts, and all Gram-negative bacteria, including many clinically relevant pathogenic species. Bam is essential for OM biogenesis and accommodates a diverse array of client proteins; however, a mechanistic model that accounts for the selectivity and broad substrate range of Bam is lacking. Here, we show that the assembly of multimeric OMPs is more strongly affected than that of monomeric OMPs when essential Bam complex components are limiting, suggesting that multiple Bam complexes are needed to assemble multimeric proteins.
Collapse
|
10
|
Huysmans GHM, Guilvout I, Pugsley AP. Sequential steps in the assembly of the multimeric outer membrane secretin PulD. J Biol Chem 2013; 288:30700-30707. [PMID: 24019525 DOI: 10.1074/jbc.m113.489112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Investigations into protein folding are largely dominated by studies on monomeric proteins. However, the transmembrane domain of an important group of membrane proteins is only formed upon multimerization. Here, we use in vitro translation-coupled folding and insertion into artificial liposomes to investigate kinetic steps in the assembly of one such protein, the outer membrane secretin PulD of the bacterial type II secretion system. Analysis of the folding kinetics, measured by the acquisition of distinct determinants of the native state, provides unprecedented evidence for a sequential multistep process initiated by membrane-driven oligomerization. The effects of varying the lipid composition of the liposomes indicate that PulD first forms a "prepore" structure that attains the native state via a conformational switch.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Ingrid Guilvout
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Anthony P Pugsley
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
11
|
Masi M, Pagès JM. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J 2013; 7:22-33. [PMID: 23569467 PMCID: PMC3617542 DOI: 10.2174/1874285801307010022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/26/2022] Open
Abstract
Antibiotic translocation across membranes of Gram-negative bacteria is a key step for the activity on their specific intracellular targets. Resistant bacteria control their membrane permeability as a first line of defense to protect themselves against external toxic compounds such as antibiotics and biocides. On one hand, resistance to small hydrophilic antibiotics such as ß-lactams and fluoroquinolones frequently results from the « closing » of their way in: the general outer membrane porins. On the other hand, an effective way out for a wide range of antibiotics is provided by TolC-like proteins, which are outer membrane components of multidrug efflux pumps. Accordingly, altered membrane permeability, including porin modifications and/or efflux pumps’ overexpression, is always associated to multidrug resistance (MDR) in a number of clinical isolates. Several recent studies have highlighted our current understanding of porins/TolC structures and functions in Enterobacteriaceae. Here, we review the transport of antibiotics through the OmpF/C general porins and the TolC-like channels with regards to recent data on their structure, function, assembly, regulation and contribution to bacterial resistance. Because MDR strains have evolved global strategies to identify and fight our antibiotic arsenal, it is important to constantly update our global knowledge on antibiotic transport.
Collapse
Affiliation(s)
- Muriel Masi
- CNRS-UMR 8619, Institut de Biophysique et de Biochimie Moléculaire et Cellulaire (IBBMC), Université Paris Sud, Orsay, France
| | | |
Collapse
|
12
|
Misra R. Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts. ISRN MOLECULAR BIOLOGY 2012; 2012:708203. [PMID: 27335668 PMCID: PMC4890855 DOI: 10.5402/2012/708203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/22/2012] [Indexed: 01/12/2023]
Abstract
In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems—Gram-negative bacteria, mitochondria and chloroplasts—research on bacterial and mitochondrial systems has so far led the way in dissecting the β-barrel OMP assembly pathways. Many exciting discoveries have been made, including the identification of β-barrel OMP assembly machineries in bacteria and mitochondria, and potentially the core assembly component in chloroplasts. The atomic structures of all five components of the bacterial β-barrel assembly machinery (BAM) complex, except the β-barrel domain of the core BamA protein, have been solved. Structures reveal that these proteins contain domains/motifs known to facilitate protein-protein interactions, which are at the heart of the assembly pathways. While structural information has been valuable, most of our current understanding of the β-barrel OMP assembly pathways has come from genetic, molecular biology, and biochemical analyses. This paper provides a comparative account of the β-barrel OMP assembly pathways in Gram-negative bacteria, mitochondria, and chloroplasts.
Collapse
Affiliation(s)
- Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
13
|
Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front Microbiol 2011; 2:189. [PMID: 21954395 PMCID: PMC3174397 DOI: 10.3389/fmicb.2011.00189] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/25/2011] [Indexed: 01/18/2023] Open
Abstract
TolC is an archetypal member of the outer membrane efflux protein (OEP) family. These proteins are involved in export of small molecules and toxins across the outer membrane of Gram-negative bacteria. Genomes of some bacteria such as Pseudomonas species contain multiple copies of OEPs. In contrast, enterobacteria contain a single tolC gene, the product of which functions with multiple transporters. Inactivation of tolC has a major impact on enterobacterial physiology and virulence. Recent studies suggest that the role of TolC in physiology of enterobacteria is very broad and affects almost all aspects of cell adaptation to adverse environments. We review the current state of understanding TolC structure and present an integrated view of TolC function in enterobacteria. We propose that seemingly unrelated phenotypes of tolC mutants are linked together by a single most common condition – an oxidative damage to membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | | | | | | |
Collapse
|
14
|
Bennion D, Charlson ES, Coon E, Misra R. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol Microbiol 2011; 77:1153-71. [PMID: 20598079 DOI: 10.1111/j.1365-2958.2010.07280.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BamA of Escherichia coli is an essential component of the hetero-oligomeric machinery that mediates β-barrel outer membrane protein (OMP) assembly. The C- and N-termini of BamA fold into trans-membrane β-barrel and five soluble POTRA domains respectively. Detailed characterization of BamA POTRA 1 missense and deletion mutants revealed two competing OMP assembly pathways, one of which is followed by the archetypal trimeric β-barrel OMPs, OmpF and LamB, and is dependent on POTRA 1. Interestingly, our data suggest that BamA also requires its POTRA 1 domain for proper assembly. The second pathway is independent of POTRA 1 and is exemplified by TolC. Site-specific cross-linking analysis revealed that the POTRA 1 domain of BamA interacts with SurA, a periplasmic chaperone required for the assembly of OmpF and LamB, but not that of TolC and BamA. The data suggest that SurA and BamA POTRA 1 domain function in concert to assist folding and assembly of most β-barrel OMPs except for TolC, which folds into a unique soluble α-helical barrel and an OM-anchored β-barrel. The two assembly pathways finally merge at some step beyond POTRA 1 but presumably before membrane insertion, which is thought to be catalysed by the trans-membrane β-barrel domain of BamA.
Collapse
Affiliation(s)
- Drew Bennion
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|