1
|
Emam EAF, Roy K, Singh DP, Saini DK, Varshney U. An unusual activity of mycobacterial MutT1 Nudix hydrolase domain as a protein phosphatase regulates nucleoside diphosphate kinase function. J Bacteriol 2025; 207:e0031424. [PMID: 39660902 PMCID: PMC11784022 DOI: 10.1128/jb.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
MutT proteins are Nudix hydrolases characterized by the presence of a Nudix box, GX5EX7REUXEEXGU, where U is a bulky hydrophobic residue and X is any residue. Major MutT proteins hydrolyze 8-oxo-(d)GTP (8-oxo-GTP or 8-oxo-dGTP) to the corresponding 8-oxo-(d)GMP, preventing their incorporation into nucleic acids. Mycobacterial MutT1 comprises an N-terminal domain (NTD) harboring the Nudix box motif, and a C-terminal domain (CTD) harboring the RHG histidine phosphatase motif. Interestingly, unlike other MutTs, the MutT1 hydrolyses the mutagenic 8-oxo-(d)GTP to the corresponding 8-oxo-(d)GDP. Nucleoside diphosphate kinase (NDK), a conserved protein, carries out reversible conversion of (d)NDPs to (d)NTPs through phospho-NDK (NDK-Pi) intermediate. Recently, we showed that NDK-Pi converts 8-oxo-dGDP to 8-oxo-dGTP and escalates A to C mutations in a MutT-deficient Escherichia coli. We now show that both Mycobacterium tuberculosis MutT1 and Mycobacterium smegmatis MutT1, through their NTD (Nudix hydrolase motifs) function as protein phosphatase to regulate the levels of NDK-Pi and prevent it from catalyzing conversion of (d)NDPs to (d)NTPs (including conversion of 8-oxo-dGDP to 8-oxo-dGTP). To corroborate this function, we show that MsmMutT1 decreases A to C mutations in E. coli under the conditions of EcoNDK overexpression.IMPORTANCEMutT proteins, having a Nudix box domain, hydrolyze the mutagenic 8-oxo-dGTP to 8-oxo-dGMP. However, mycobacterial MutT (MutT1) comprises an N-terminal domain (NTD) harboring a Nudix box, and a C-terminal domain (CTD) harboring an RHG histidine phosphatase. Unlike other MutTs, mycobacterial MutT1 hydrolyses 8-oxo-dGTP to 8-oxo-dGDP. Nucleoside diphosphate kinase (NDK), a conserved protein, converts 8-oxo-dGDP to 8-oxo-dGTP through phospho-NDK (NDK-Pi) intermediate and escalates A to C mutations. Here, we show that the mycobacterial MutT1 is unprecedented in that its NTD (Nudix box), functions as protein phosphatase to regulate NDK-Pi levels and prevents it from converting dNDPs to dNTPs (including 8-oxo-dGDP to 8-oxo-dGTP conversion). In addition, mycobacterial MutT1 decreases A to C mutations in Escherichia coli under the conditions of NDK overexpression.
Collapse
Affiliation(s)
| | - Koyel Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Deepak K. Saini
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
2
|
Molnár D, Surányi ÉV, Gálik N, Tóth J, Hirmondó R. Assessing the Impact of Bedaquiline, Clofazimine, and Linezolid on Mycobacterial Genome Integrity. Biomolecules 2024; 14:1451. [PMID: 39595627 PMCID: PMC11591709 DOI: 10.3390/biom14111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Tuberculosis (TB) presents significant medical challenges, largely due to the genetic diversity of Mycobacterium tuberculosis, which enhances the resilience and resistance of the pathogen to first-line treatments. In response to the global rise of drug-resistant TB, second-line antitubercular drugs like bedaquiline (BDQ), linezolid (LZD), and clofazimine (CFZ) have become critical treatment options. Understanding the molecular changes these drugs induce is essential for optimizing TB therapy. To contribute to this effort, we investigated their impact on genome maintenance and stability using Mycobacterium smegmatis as a model organism. Using mutation accumulation assays and whole-genome sequencing, we found that the second-line antibiotics did not significantly increase mutation rates, unlike the positive control UV treatment. However, upon BDQ treatment, we detected mutations in transporter proteins and transcription factors without any increase in the minimal inhibitory concentration. Additionally, BDQ and CFZ were found to alter DNA repair pathways and reduce cellular dNTP levels, particularly CFZ, which depleted dGTP, impacting DNA synthesis. CFZ also upregulated DNA repair enzymes, enhancing error-free repairs. Despite minimal mutagenic effects, both drugs displayed distinct impacts on cellular mechanisms, suggesting additional modes of action.
Collapse
Affiliation(s)
- Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Éva Viola Surányi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
| | - Nikoletta Gálik
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
| | - Judit Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
| | - Rita Hirmondó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary; (D.M.)
| |
Collapse
|
3
|
Grigorov AS, Skvortsova YV, Bychenko OS, Aseev LV, Koledinskaya LS, Boni IV, Azhikina TL. Dynamic Transcriptional Landscape of Mycobacterium smegmatis under Cold Stress. Int J Mol Sci 2023; 24:12706. [PMID: 37628885 PMCID: PMC10454040 DOI: 10.3390/ijms241612706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial adaptation to cold stress requires wide transcriptional reprogramming. However, the knowledge of molecular mechanisms underlying the cold stress response of mycobacteria is limited. We conducted comparative transcriptomic analysis of Mycobacterium smegmatis subjected to cold shock. The growth of M. smegmatis cultivated at 37 °C was arrested just after exposure to cold (acclimation phase) but later (by 24 h) was resumed at a much slower rate (adaptation phase). Transcriptomic analyses revealed distinct gene expression patterns corresponding to the two phases. During the acclimation phase, differential expression was observed for genes associated with cell wall remodeling, starvation response, and osmotic pressure stress, in parallel with global changes in the expression of transcription factors and the downregulation of ribosomal genes, suggesting an energy-saving strategy to support survival. At the adaptation phase, the expression profiles were recovered, indicating restoration of the processes repressed earlier. Comparison of transcriptional responses in M. smegmatis with those in other bacteria revealed unique adaptation strategies developed by mycobacteria. Our findings shed light on the molecular mechanisms underlying M. smegmatis survival under cold stress. Further research should clarify whether the discovered transcriptional mechanisms exist in other mycobacterial species, including pathogenic Mycobacterium tuberculosis, which could be important for transmission control.
Collapse
Affiliation(s)
- Artem S. Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | | | | | | - Tatyana L. Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
4
|
Naz S, Paritosh K, Sanyal P, Khan S, Singh Y, Varshney U, Nandicoori VK. GWAS and functional studies suggest a role for altered DNA repair in the evolution of drug resistance in Mycobacterium tuberculosis. eLife 2023; 12:75860. [PMID: 36695572 PMCID: PMC9876569 DOI: 10.7554/elife.75860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
The emergence of drug resistance in Mycobacterium tuberculosis (Mtb) is alarming and demands in-depth knowledge for timely diagnosis. We performed genome-wide association analysis using 2237 clinical strains of Mtb to identify novel genetic factors that evoke drug resistance. In addition to the known direct targets, we identified for the first time, a strong association between mutations in DNA repair genes and the multidrug-resistant phenotype. To evaluate the impact of variants identified in the clinical samples in the evolution of drug resistance, we utilized knockouts and complemented strains in Mycobacterium smegmatis and Mtb. Results show that variant mutations compromised the functions of MutY and UvrB. MutY variant showed enhanced survival compared with wild-type (Rv) when the Mtb strains were subjected to multiple rounds of ex vivo antibiotic stress. In an in vivo guinea pig infection model, the MutY variant outcompeted the wild-type strain. We show that novel variant mutations in the DNA repair genes collectively compromise their functions and contribute to better survival under antibiotic/host stress conditions.
Collapse
Affiliation(s)
- Saba Naz
- National Institute of ImmunologyNew DelhiIndia
- Centre for Cellular and Molecular BiologyHyderabadIndia
- Department of Zoology, University of DelhiDelhiIndia
| | - Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South CampusNew DelhiIndia
| | | | - Sidra Khan
- National Institute of ImmunologyNew DelhiIndia
| | | | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Vinay Kumar Nandicoori
- National Institute of ImmunologyNew DelhiIndia
- Centre for Cellular and Molecular BiologyHyderabadIndia
| |
Collapse
|
5
|
Pérez-Martínez DE, Bermúdez-Hernández GA, Madrazo-Moya CF, Cancino-Muñoz I, Montero H, Licona-Cassani C, Muñiz-Salazar R, Comas I, Zenteno-Cuevas R. SNPs in Genes Related to DNA Damage Repair in Mycobacterium Tuberculosis: Their Association with Type 2 Diabetes Mellitus and Drug Resistance. Genes (Basel) 2022; 13:genes13040609. [PMID: 35456415 PMCID: PMC9029044 DOI: 10.3390/genes13040609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Genes related to DNA damage repair in Mycobacterium tuberculosis are critical for survival and genomic diversification. The aim of this study is to compare the presence of SNPs in genes related to DNA damage repair in sensitive and drug-resistant M. tuberculosis genomes isolated from patients with and without type 2 diabetes mellitus (T2DM). We collected 399 M. tuberculosis L4 genomes from several public repositories; 224 genomes belonging to hosts without T2DM, of which 123 (54.9%) had drug sensitive tuberculosis (TB) and 101 (45.1%) had drug resistance (DR)-TB; and 175 genomes from individuals with T2DM, of which 100 (57.1%) had drug sensitive TB and 75 (42.9%) had DR-TB. The presence of SNPs in the coding regions of 65 genes related to DNA damage repair was analyzed and compared with the resistance profile and the presence/absence of T2DM in the host. The results show the phylogenetic relationships of some SNPS and L4 sub-lineages, as well as differences in the distribution of SNPs present in DNA damage repair-related genes related to the resistance profile of the infecting strain and the presence of T2DM in the host. Given these differences, it was possible to generate two discriminant functions to distinguish between drug sensitive and drug resistant genomes, as well as patients with or without T2DM.
Collapse
Affiliation(s)
- Damián E. Pérez-Martínez
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis, Dr. Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (D.E.P.-M.); (G.A.B.-H.)
| | - Gustavo A. Bermúdez-Hernández
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis, Dr. Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (D.E.P.-M.); (G.A.B.-H.)
| | - Carlos F. Madrazo-Moya
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
| | - Irving Cancino-Muñoz
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
- CIBER of Epidemiology and Public Health, 08908 Madrid, Spain
| | - Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa 91190, Mexico;
| | - Cuauhtemoc Licona-Cassani
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Division of Integrative Biology, The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Raquel Muñiz-Salazar
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Laboratorio de Epidemiología y Ecología Molecular, Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - Iñaki Comas
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
- CIBER of Epidemiology and Public Health, 08908 Madrid, Spain
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa 91190, Mexico;
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Correspondence:
| |
Collapse
|
6
|
|
7
|
Naz S, Dabral S, Nagarajan SN, Arora D, Singh LV, Kumar P, Singh Y, Kumar D, Varshney U, Nandicoori VK. Compromised base excision repair pathway in Mycobacterium tuberculosis imparts superior adaptability in the host. PLoS Pathog 2021; 17:e1009452. [PMID: 33740020 PMCID: PMC8011731 DOI: 10.1371/journal.ppat.1009452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets. Mutation in the genome of bacteria contributes to the acquisition of drug resistance. Mutations in bacteria can arise due to exposures to antibiotics, oxidative, reductive, and many other stresses that bacteria encounter in the host. Mtb has multiple DNA repair mechanisms, including a base excision repair pathway to restore the damaged genome. Here we set out to determine the impact of deleting the Uracil DNA base excision pathway on pathogen adaptability to both antibiotic and host induced stresses. Combinatorial mutant of Mtb UDGs showed higher spontaneous rates of mutations when subjected to antibiotic stress and showed higher survival levels in the guinea pig model of infection. Whole-genome sequence analysis showed significant accumulation of SNPs, suggesting that mutations providing survival advantage may have been positively selected. We also showed that double mutant of Mtb UDGs would be an excellent means to identify antibiotic targets in the bacteria. Competition experiments wherein we pitted wild type and double mutant against each other demonstrated that double mutant has a decisive edge over the wild type. Together, data suggest that the absence of a base excision repair pathway leads to higher mutations and provides a survival advantage under stress. They could be an invaluable tool for identifying targets of new antibiotics.
Collapse
Affiliation(s)
- Saba Naz
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Department of Zoology, University of Delhi, Delhi, India
| | - Shruti Dabral
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Divya Arora
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Lakshya Veer Singh
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pradeep Kumar
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Varshney
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
- * E-mail: (UV); (VKN)
| | - Vinay Kumar Nandicoori
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (UV); (VKN)
| |
Collapse
|
8
|
Raj P, Karthik S, Arif SM, Varshney U, Vijayan M. Plasticity, ligand conformation and enzyme action of Mycobacterium smegmatis MutT1. Acta Crystallogr D Struct Biol 2020; 76:982-992. [PMID: 33021500 DOI: 10.1107/s2059798320010992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Abstract
Mycobacterium smegmatis MutT1 (MsMutT1) is a sanitation enzyme made up of an N-terminal Nudix hydrolase domain and a C-terminal domain resembling a histidine phosphatase. It has been established that the action of MutT1 on 8-oxo-dGTP, 8-oxo-GTP and diadenosine polyphosphates is modulated by intermolecular interactions. In order to further explore this and to elucidate the structural basis of its differential action on 8-oxo-NTPs and unsubstituted NTPs, the crystal structures of complexes of MsMutT1 with 8-oxo-dGTP, GMPPNP and GMPPCP have been determined. Replacement soaking was used in order to ensure that the complexes were isomorphous to one another. Analysis of the structural data led to the elucidation of a relationship between the arrangements of molecules observed in the crystals, molecular plasticity and the action of the enzyme on nucleotides. The dominant mode of arrangement involving a head-to-tail sequence predominantly leads to the generation of NDPs. The other mode of packing arrangement appears to preferentially generate NMPs. This work also provides interesting insights into the dependence of enzyme action on the conformation of the ligand. The possibility of modulating the enzyme action through differences in intermolecular interactions and ligand conformations makes MsMutT1 a versatile enzyme.
Collapse
Affiliation(s)
- Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, India
| | - S Karthik
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, India
| | - S M Arif
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, India
| | - U Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560 012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560 012, India
| |
Collapse
|
9
|
A multilayered repair system protects the mycobacterial chromosome from endogenous and antibiotic-induced oxidative damage. Proc Natl Acad Sci U S A 2020; 117:19517-19527. [PMID: 32727901 DOI: 10.1073/pnas.2006792117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative damage to DNA is a threat to the genomic integrity and coding accuracy of the chromosomes of all living organisms. Guanine is particularly susceptible to oxidation, and 8-oxo-dG (OG), when produced in situ or incorporated by DNA polymerases, is highly mutagenic due to mispairing with adenine. In many bacteria, defense against OG depends on MutT enzymes, which sanitize OG in the nucleotide pool, and the MutM/Y system, which counteracts OG in chromosomal DNA. In Escherichia coli, antibiotic lethality has been linked to oxidative stress and the downstream consequences of OG processing. However, in mycobacteria, the role of these systems in genomic integrity and antibiotic lethality is not understood, in part because mycobacteria encode four MutT enzymes and two MutMs, suggesting substantial redundancy. Here, we definitively probe the role of OG handling systems in mycobacteria. We find that, although MutT4 is the only MutT enzyme required for resistance to oxidative stress, this effect is not due to OG processing. We find that the dominant system that defends against OG-mediated mutagenesis is MutY/MutM1, and this system is dedicated to in situ chromosomal oxidation rather than correcting OG incorporated by accessory polymerases (DinB1/DinB2/DinB3/DnaE2). In addition, we uncover that mycobacteria resist antibiotic lethality through nucleotide sanitization by MutTs, and in the absence of this system, accessory DNA polymerases and MutY/M contribute to antibiotic-induced lethality. These results reveal a complex, multitiered system of OG handling in mycobacteria with roles in oxidative stress resistance, mutagenesis, and antibiotic lethality.
Collapse
|
10
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
11
|
Minias A, Brzostek A, Dziadek J. Targeting DNA Repair Systems in Antitubercular Drug Development. Curr Med Chem 2019; 26:1494-1505. [DOI: 10.2174/0929867325666180129093546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
12
|
Takemoto N, Numata I, Su’etsugu M, Miyoshi-Akiyama T. Bacterial EndoMS/NucS acts as a clamp-mediated mismatch endonuclease to prevent asymmetric accumulation of replication errors. Nucleic Acids Res 2018; 46:6152-6165. [PMID: 29878158 PMCID: PMC6159521 DOI: 10.1093/nar/gky481] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 12/22/2022] Open
Abstract
Mismatch repair (MMR) systems based on MutS eliminate mismatches originating from replication errors. Despite extensive conservation of mutS homologues throughout the three domains of life, Actinobacteria and some archaea do not have genes homologous to mutS. Here, we report that EndoMS/NucS of Corynebacterium glutamicum is the mismatch-specific endonuclease that functions cooperatively with a sliding clamp. EndoMS/NucS function in MMR was fully dependent on physical interaction between EndoMS/NucS and sliding clamp. A combination of endoMS/nucS gene disruption and a mutation in dnaE, which reduced the fidelity of DNA polymerase, increased the mutation rate synergistically and confirmed the participation of EndoMS in replication error correction. EndoMS specifically cleaved G/T, G/G and T/T mismatches in vitro, and such substrate specificity was consistent with the mutation spectrum observed in genome-wide analyses. The observed substrate specificity of EndoMS, together with the effects of endoMS gene disruption, led us to speculate that the MMR system, regardless of the types of proteins in the system, evolved to address asymmetrically occurring replication errors in which G/T mismatches occur much more frequently than C/A mismatches.
Collapse
Affiliation(s)
- Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Itaru Numata
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masayuki Su’etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
13
|
Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 163:1740-1758. [PMID: 29171825 DOI: 10.1099/mic.0.000578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
14
|
Arif SM, Patil AG, Varshney U, Vijayan M. Biochemical and structural studies of Mycobacterium smegmatis MutT1, a sanitization enzyme with unusual modes of association. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:349-364. [PMID: 28375146 DOI: 10.1107/s2059798317002534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
Abstract
Mycobacterium smegmatis MutT1, which is made up of a Nudix domain (domain 1) and a histidine phosphatase domain (domain 2), efficiently hydrolyses 8-oxo-GTP and 8-oxo-dGTP to the corresponding nucleoside diphosphates and phosphate in the presence of magnesium ions. Domain 1 alone hydrolyses nucleoside triphosphates less efficiently. Under high concentrations and over long periods, the full-length enzyme as well as domain 1 catalyses the hydrolysis of the nucleoside triphosphates to the respective nucleoside monophosphates and pyrophosphate. The role of domain 2 appears to be limited to speeding up the reaction. Crystal structures of the apoenzyme and those of ligand-bound enzyme prepared in the presence of 8-oxo-GTP or 8-oxo-dGTP and different concentrations of magnesium were determined. In all of the structures except one, the molecules arrange themselves in a head-to-tail fashion in which domain 1 is brought into contact with domain 2 (trans domain 2) of a neighbouring molecule. The binding site for NTP (site A) is almost exclusively made up of residues from domain 1, while those for NDP (site B) and NMP (site C) are at the interface between domain 1 and trans domain 2 in an unusual instance of intermolecular interactions leading to binding sites. Protein-ligand interactions at site A lead to a proposal for the mechanism of hydrolysis of NTP to NDP and phosphate. A small modification in site A in the crystal which does not exhibit the head-to-tail arrangement appears to facilitate the production of NMP and pyrophosphate from NTP. The two arrangements could be in dynamic equilibrium in the cellular milieu.
Collapse
Affiliation(s)
- S M Arif
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - A G Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - U Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
15
|
Gupta R, Chatterjee D, Glickman MS, Shuman S. Division of labor among Mycobacterium smegmatis RNase H enzymes: RNase H1 activity of RnhA or RnhC is essential for growth whereas RnhB and RnhA guard against killing by hydrogen peroxide in stationary phase. Nucleic Acids Res 2016; 45:1-14. [PMID: 27899559 PMCID: PMC5224475 DOI: 10.1093/nar/gkw1046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/16/2016] [Accepted: 10/20/2016] [Indexed: 02/05/2023] Open
Abstract
RNase H enzymes sense the presence of ribonucleotides in the genome and initiate their removal by incising the ribonucleotide-containing strand of an RNA:DNA hybrid. Mycobacterium smegmatis encodes four RNase H enzymes: RnhA, RnhB, RnhC and RnhD. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of RnhA. We report that RnhA (like RnhC characterized previously) is an RNase H1-type magnesium-dependent endonuclease with stringent specificity for RNA:DNA hybrid duplexes. Whereas RnhA does not incise an embedded mono-ribonucleotide, it can efficiently cleave within tracts of four or more ribonucleotides in duplex DNA. We gained genetic insights to the division of labor among mycobacterial RNases H by deleting the rnhA, rnhB, rnhC and rnhD genes, individually and in various combinations. The salient conclusions are that: (i) RNase H1 activity is essential for mycobacterial growth and can be provided by either RnhC or RnhA; (ii) the RNase H2 enzymes RnhB and RnhD are dispensable for growth and (iii) RnhB and RnhA collaborate to protect M. smegmatis against oxidative damage in stationary phase. Our findings highlight RnhC, the sole RNase H1 in pathogenic mycobacteria, as a candidate drug discovery target for tuberculosis and leprosy.
Collapse
Affiliation(s)
- Richa Gupta
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Debashree Chatterjee
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA .,Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
16
|
de Faria RC, Vila-Nova LG, Bitar M, Resende BC, Arantes LS, Rebelato AB, Azevedo VAC, Franco GR, Machado CR, Santos LLD, de Oliveira Lopes D. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro. INFECTION GENETICS AND EVOLUTION 2016; 44:318-329. [PMID: 27456281 DOI: 10.1016/j.meegid.2016.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 01/30/2023]
Abstract
Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis, a disease that predominantly affects small ruminants, causing significant economic losses worldwide. As a facultative intracellular pathogen, this bacterium is exposed to an environment rich in reactive oxygen species (ROS) within macrophages. To ensure its genetic stability, C. pseudotuberculosis relies on efficient DNA repair pathways for excision of oxidative damage such as 8-oxoguanine, a highly mutagenic lesion. MutY is an adenine glycosylase involved in adenine excision from 8-oxoG:A mismatches avoiding genome mutation incorporation. The purpose of this study was to characterize MutY protein from C. pseudotuberculosis and determine its involvement with DNA repair. In vivo functional complementation assay employing mutY gene deficient Escherichia coli transformed with CpmutY showed a 13.5-fold reduction in the rate of spontaneous mutation, compared to cells transformed with empty vector. Also, under oxidative stress conditions, CpMutY protein favored the growth of mutY deficient E. coli, relative to the same strain in the absence of CpMutY. To demonstrate the involvement of this enzyme in recognition and excision of 8-oxoguanine lesion, an in vitro assay was performed. CpMutY protein was capable of recognizing and excising 8-oxoG:A but not 8-oxoG:C presenting evidences of glycosylase/AP lyase activity in vitro. In silico structural characterization revealed the presence of preserved motifs related to the MutY activity on DNA repair, such as catalytic residues involved in glycosylase/AP lyase activity and structural DNA-binding elements, such as the HhH motif and the [4Fe-4S] cluster. The three-dimensional structure of CpMutY, generated by comparative modeling, exhibits a catalytic domain very similar to that of E. coli MutY. Taken together, these results indicate that the CpmutY encodes a functional protein homologous to MutY from E. coli and is involved in the prevention of mutations and the repair of oxidative DNA lesions.
Collapse
Affiliation(s)
- Rafael Cançado de Faria
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Liliane Gonçalves Vila-Nova
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Mainá Bitar
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Bruno Carvalho Resende
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Larissa Sousa Arantes
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Arnaldo Basso Rebelato
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Vasco Ariston Carvalho Azevedo
- Laboratory of Cell and Molecular Genetics, Department of General Biology, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Glória Regina Franco
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Carlos Renato Machado
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Luciana Lara Dos Santos
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Débora de Oliveira Lopes
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| |
Collapse
|
17
|
Khanam T, Rai N, Ramachandran R. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp. Mol Microbiol 2015; 98:46-68. [PMID: 26103519 DOI: 10.1111/mmi.13102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 11/30/2022]
Abstract
The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| | - Niyati Rai
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| |
Collapse
|
18
|
Hassim F, Papadopoulos AO, Kana BD, Gordhan BG. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis. Mutat Res 2015; 779:24-32. [PMID: 26125998 DOI: 10.1016/j.mrfmmm.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Hydroxyl radical (OH) among reactive oxygen species cause damage to nucleobases with thymine being the most susceptible, whilst in contrast, the singlet oxygen ((1)02) targets only guanine bases. The high GC content of mycobacterial genomes predisposes these organisms to oxidative damage of guanine. The exposure of cellular DNA to OH and one-electron oxidants results in the formation of two main degradation products, the pro-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and the cytotoxic 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). These lesions are repaired through the base excision repair (BER) pathway and we previously, demonstrated a combinatorial role for the mycobacterial Endonuclease III (Nth) and the Nei family of DNA glycosylases in mutagenesis. In addition, the formamidopyrimidine (Fpg/MutM) and MutY DNA glycosylases have also been implicated in mutation avoidance and BER in mycobacteria. In this study, we further investigate the combined role of MutY and the Fpg/Nei DNA glycosylases in Mycobacterium smegmatis and demonstrate that deletion of mutY resulted in enhanced sensitivity to oxidative stress, an effect which was not exacerbated in Δfpg1 Δfpg2 or Δnei1 Δnei2 double mutant backgrounds. However, combinatorial loss of the mutY, fpg1 and fpg2 genes resulted in a significant increase in mutation rates suggesting interplay between these enzymes. Consistent with this, there was a significant increase in C → A mutations with a corresponding change in cell morphology of rifampicin resistant mutants in the Δfpg1 Δfpg2 ΔmutY deletion mutant. In contrast, deletion of mutY together with the nei homologues did not result in any growth/survival defects or changes in mutation rates. Taken together these data indicate that the mycobacterial mutY, in combination with the Fpg DNA N-glycosylases, plays an important role in controlling mutagenesis under oxidative stress.
Collapse
Affiliation(s)
- Farzanah Hassim
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Andrea O Papadopoulos
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
| | - Bhavna G Gordhan
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa.
| |
Collapse
|
19
|
Agrawal P, Miryala S, Varshney U. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis. PLoS One 2015; 10:e0122076. [PMID: 25874691 PMCID: PMC4395326 DOI: 10.1371/journal.pone.0122076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
Rifampicin (Rif) is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr) in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs). Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase) causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Δarr). The M. smegmatis Δarr strains show minimum inhibitory concentration (MIC) for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Δarr. The growth profiles and mutation spectrum of Δarr and, Δarr combined with ΔudgB (udgB encodes a DNA repair enzyme that excises uracil) strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of ΔfpgΔarr strain differed somewhat from that of the Δfpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G). Our studies suggest M. smegmatis Δarr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.
Collapse
Affiliation(s)
- Priyanka Agrawal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Sandeep Miryala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
- * E-mail:
| |
Collapse
|
20
|
Khanam T, Shukla A, Rai N, Ramachandran R. Critical determinants for substrate recognition and catalysis in the M. tuberculosis class II AP-endonuclease/3'-5' exonuclease III. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:505-16. [PMID: 25748880 DOI: 10.1016/j.bbapap.2015.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023]
Abstract
The Mycobacterium tuberculosis AP-endonuclease/3'-5' exodeoxyribonuclease (MtbXthA) is an important player in DNA base excision repair (BER). We demonstrate that the enzyme has robust apurinic/apyrimidinic (AP) endonuclease activity, 3'-5' exonuclease, phosphatase, and phosphodiesterase activities. The enzyme functions as an AP-endonuclease at high ionic environments, while the 3'-5'-exonuclease activity is predominant at low ionic environments. Our molecular modelling and mutational experiments show that E57 and D251 are critical for catalysis. Although nicked DNA and gapped DNA are fair substrates of MtbXthA, the gap-size did not affect the excision activity and furthermore, a substrate with a recessed 3'-end is preferred. To understand the determinants of abasic-site recognition, we examined the possible roles of (i) the base opposite the abasic site, (ii) the abasic ribose ring itself, (iii) local distortions in the AP-site, and (iv) conserved residues located near the active site. Our experiments demonstrate that the first three determinants do not play a role in MtbXthA, and in fact the enzyme exhibits robust endonucleolytic activity against single-stranded AP DNA also. Regarding the fourth determinant, it is known that the catalytic-site of AP endonucleases is surrounded by conserved aromatic residues and intriguingly, the exact residues that are directly involved in abasic site recognition vary with the individual proteins. We therefore, used a combination of mutational analysis, kinetic assays, and structure-based modelling, to identify that Y237, supported by Y137, mediates the formation of the MtbXthA-AP-DNA complex and AP-site incision.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Niyati Rai
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India.
| |
Collapse
|
21
|
Ordonez H, Shuman S. Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass. Nucleic Acids Res 2014; 42:12722-34. [PMID: 25352547 PMCID: PMC4227753 DOI: 10.1093/nar/gku1027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium smegmatis DinB2 is the founder of a clade of Y-family DNA polymerase that is naturally adept at utilizing rNTPs or dNTPs as substrates. Here we investigate the fidelity and lesion bypass capacity of DinB2. We report that DinB2 is an unfaithful DNA and RNA polymerase with a distinctive signature for misincorporation of dNMPs, rNMPs and oxoguanine nucleotides during templated synthesis in vitro. DinB2 has a broader mutagenic spectrum with manganese than magnesium, though low ratios of manganese to magnesium suffice to switch DinB2 to its more mutagenic mode. DinB2 discrimination against incorrect dNTPs in magnesium is primarily at the level of substrate binding affinity, rather than kpol. DinB2 can incorporate any dNMP or rNMP opposite oxo-dG in the template strand with manganese as cofactor, with a kinetic preference for synthesis of an A:oxo-dG Hoogsteen pair. With magnesium, DinB2 is adept at synthesizing A:oxo-dG or C:oxo-dG pairs. DinB2 effectively incorporates deoxyribonucleotides, but not ribonucleotides, opposite an abasic site, with kinetic preference for dATP as the substrate. We speculate that DinB2 might contribute to mycobacterial mutagenesis, oxidative stress and quiescence, and discuss the genetic challenges to linking the polymerase biochemistry to an in vivo phenotype.
Collapse
Affiliation(s)
- Heather Ordonez
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
22
|
Rex K, Kurthkoti K, Varshney U. Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: Implications of the DNA repair deficiencies in attenuation of mycobacteria. Mech Ageing Dev 2013; 134:516-22. [DOI: 10.1016/j.mad.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/07/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
|
23
|
McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2013; 69:292-302. [DOI: 10.1093/jac/dkt364] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
24
|
Puri RV, Singh N, Gupta RK, Tyagi AK. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage. PLoS One 2013; 8:e71535. [PMID: 23936515 PMCID: PMC3731287 DOI: 10.1371/journal.pone.0071535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/29/2013] [Indexed: 11/23/2022] Open
Abstract
During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3′→5′ exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg2+ and Ca2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3′→5′ exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.
Collapse
Affiliation(s)
- Rupangi Verma Puri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nisha Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rakesh K. Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
25
|
Patil AGG, Sang PB, Govindan A, Varshney U. Mycobacterium tuberculosis MutT1 (Rv2985) and ADPRase (Rv1700) proteins constitute a two-stage mechanism of 8-oxo-dGTP and 8-oxo-GTP detoxification and adenosine to cytidine mutation avoidance. J Biol Chem 2013; 288:11252-62. [PMID: 23463507 PMCID: PMC3630869 DOI: 10.1074/jbc.m112.442566] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/28/2013] [Indexed: 11/06/2022] Open
Abstract
Approximately one third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. A better understanding of the pathogen biology is crucial to develop new tools/strategies to tackle its spread and treatment. In the host macrophages, the pathogen is exposed to reactive oxygen species, known to damage dGTP and GTP to 8-oxo-dGTP and 8-oxo-GTP, respectively. Incorporation of the damaged nucleotides in nucleic acids is detrimental to organisms. MutT proteins, belonging to a class of Nudix hydrolases, hydrolyze 8-oxo-G nucleoside triphosphates/diphosphates to the corresponding nucleoside monophosphates and sanitize the nucleotide pool. Mycobacteria possess several MutT proteins. However, a functional homolog of Escherichia coli MutT has not been identified. Here, we characterized MtuMutT1 and Rv1700 proteins of M. tuberculosis. Unlike other MutT proteins, MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP, and 8-oxo-GTP to 8-oxo-GDP. Rv1700 then converts them to the corresponding nucleoside monophosphates. This observation suggests the presence of a two-stage mechanism of 8-oxo-dGTP/8-oxo-GTP detoxification in mycobacteria. MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP with a Km of ∼50 μM and Vmax of ∼0.9 pmol/min per ng of protein, and Rv1700 converts 8-oxo-dGDP to 8-oxo-dGMP with a Km of ∼9.5 μM and Vmax of ∼0.04 pmol/min per ng of protein. Together, MtuMutT1 and Rv1700 offer maximal rescue to E. coli for its MutT deficiency by decreasing A to C mutations (a hallmark of MutT deficiency). We suggest that the concerted action of MtuMutT1 and Rv1700 plays a crucial role in survival of bacteria against oxidative stress.
Collapse
Affiliation(s)
- Aravind Goud G. Patil
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India and
| | - Pau Biak Sang
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India and
| | - Ashwin Govindan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India and
| | - Umesh Varshney
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India and
- the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
26
|
Arif SM, Patil AG, Varshney U, Vijayan M. Crystallization and preliminary X-ray studies of MutT1 (MSMEG_2390) from Mycobacterium smegmatis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1214-6. [PMID: 23027750 PMCID: PMC3497982 DOI: 10.1107/s1744309112035804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/14/2012] [Indexed: 11/10/2022]
Abstract
MutT1 (MSMEG_2390) from Mycobacterium smegmatis has been crystallized and the crystals have been characterized using X-ray diffraction. The crystals belonged to space group P2(1)2(1)2(1). The Matthews coefficient suggested the possibility of one protein molecule in the asymmetric unit of the orthorhombic unit cell. Solution of the structure using the known three-dimensional structure of a bacterial MutT1 is anticipated.
Collapse
Affiliation(s)
- S. M. Arif
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - A. G. Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - U. Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
27
|
Base excision and nucleotide excision repair pathways in mycobacteria. Tuberculosis (Edinb) 2011; 91:533-43. [DOI: 10.1016/j.tube.2011.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/12/2011] [Indexed: 01/13/2023]
|
28
|
Kurthkoti K, Varshney U. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. Mech Ageing Dev 2011; 133:138-46. [PMID: 21982925 DOI: 10.1016/j.mad.2011.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/28/2011] [Accepted: 09/22/2011] [Indexed: 01/20/2023]
Abstract
About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages.
Collapse
Affiliation(s)
- Krishna Kurthkoti
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
29
|
Robles AG, Reid K, Roy F, Fletcher HM. Porphyromonas gingivalis mutY is involved in the repair of oxidative stress-induced DNA mispairing. Mol Oral Microbiol 2011; 26:175-86. [PMID: 21545695 DOI: 10.1111/j.2041-1014.2011.00605.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability for DNA mismatch repair, after oxidative stress-induced DNA damage, is critical for the persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket. Our previous report demonstrated that, in contrast to other organisms, the repair of oxidative stress-induced DNA damage involving 8-oxo-7,8-dihydroguanine (8-oxoG) may occur by a yet-to-be described mechanism in P. gingivalis. 8-oxoG does not block DNA replication; rather, it mispairs with adenine, which can be repaired by the MutY glycosylase. To determine the function of the P. gingivalis MutY homologue in DNA repair, it was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a mutY-deficient mutant (FLL147) by allelic exchange mutagenesis. FLL147 had an increased rate of spontaneous mutation and was more sensitive to hydrogen peroxide compared with the wild-type W83 strain. DNA oligomers containing a site-specific 8-oxoG:A mispair was repaired similarly in both the P. gingivalis mutY-defective mutant and wild-type strains. The P. gingivalis mutY homologue was shown to complement the mutY mutation in Escherichia coli. In a gel mobility shift assay, the purified recombinant MutY is able to bind an oligo containing an 8-oxoG:A mispair. Taken together, MutY may play the expected role in oxidative stress resistance in P. gingivalis. However, there may exist other redundant mechanism(s) for the removal of 8-oxoG:A mismatch in this organism.
Collapse
Affiliation(s)
- A G Robles
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
30
|
Detrimental effects of hypoxia-specific expression of uracil DNA glycosylase (Ung) in Mycobacterium smegmatis. J Bacteriol 2010; 192:6439-46. [PMID: 20971917 DOI: 10.1128/jb.00679-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is known to reside latently in a significant fraction of the human population. Although the bacterium possesses an aerobic mode of metabolism, it adapts to persistence under hypoxic conditions such as those encountered in granulomas. While in mammalian systems hypoxia is a recognized DNA-damaging stress, aspects of DNA repair in mycobacteria under such conditions have not been studied. We subjected Mycobacterium smegmatis, a model organism, to the Wayne's protocol of hypoxia. Analysis of the mRNA of a key DNA repair enzyme, uracil DNA glycosylase (Ung), by real-time reverse transcriptase PCR (RT-PCR) revealed its downregulation during hypoxia. However, within an hour of recovery of the culture under normal oxygen levels, the Ung mRNA was restored. Analysis of Ung by immunoblotting and enzyme assays supported the RNA analysis results. To understand its physiological significance, we misexpressed Ung in M. smegmatis by using a hypoxia-responsive promoter of narK2 from M. tuberculosis. Although the misexpression of Ung during hypoxia decreased C-to-T mutations, it compromised bacterial survival upon recovery at normal oxygen levels. RT-PCR analysis of other base excision repair gene transcripts (UdgB and Fpg) suggested that these DNA repair functions also share with Ung the phenomenon of downregulation during hypoxia and recovery with return to normal oxygen conditions. We discuss the potential utility of this phenomenon in developing attenuated strains of mycobacteria.
Collapse
|
31
|
DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci (Lond) 2010; 119:187-202. [PMID: 20522025 DOI: 10.1042/cs20100041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycobacteria, including most of all MTB (Mycobacterium tuberculosis), cause pathogenic infections in humans and, during the infectious process, are exposed to a range of environmental insults, including the host's immune response. From the moment MTB is exhaled by infected individuals, through an active and latent phase in the body of the new host, until the time they reach the reactivation stage, MTB is exposed to many types of DNA-damaging agents. Like all cellular organisms, MTB has efficient DNA repair systems, and these are believed to play essential roles in mycobacterial pathogenesis. As different stages of infection have great variation in the conditions in which mycobacteria reside, it is possible that different repair systems are essential for progression to specific phases of infection. MTB possesses homologues of DNA repair systems that are found widely in other species of bacteria, such as nucleotide excision repair, base excision repair and repair by homologous recombination. MTB also possesses a system for non-homologous end-joining of DNA breaks, which appears to be widespread in prokaryotes, although its presence is sporadic within different species within a genus. However, MTB does not possess homologues of the typical mismatch repair system that is found in most bacteria. Recent studies have demonstrated that DNA repair genes are expressed differentially at each stage of infection. In the present review, we focus on different DNA repair systems from mycobacteria and identify questions that remain in our understanding of how these systems have an impact upon the infection processes of these important pathogens.
Collapse
|
32
|
Malshetty VS, Jain R, Srinath T, Kurthkoti K, Varshney U. Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis. Microbiology (Reading) 2010; 156:940-949. [DOI: 10.1099/mic.0.034363-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The incorporation of dUMP during replication or the deamination of cytosine in DNA results in the occurrence of uracils in genomes. To maintain genomic integrity, uracil DNA glycosylases (UDGs) excise uracil from DNA and initiate the base-excision repair pathway. Here, we cloned, purified and biochemically characterized a family 5 UDG, UdgB, from Mycobacterium smegmatis to allow us to use it as a model organism to investigate the physiological significance of the novel enzyme. Studies with knockout strains showed that compared with the wild-type parent, the mutation rate of the udgB
− strain was approximately twofold higher, whereas the mutation rate of a strain deficient in the family 1 UDG (ung
−) was found to be ∼8.4-fold higher. Interestingly, the mutation rate of the double-knockout (ung
−/udgB
−) strain was remarkably high, at ∼19.6-fold. While CG to TA mutations predominated in the ung
− and ung
−/udgB
− strains, AT to GC mutations were enhanced in the udgB
− strain. The ung
−/udgB
− strain was notably more sensitive to acidified nitrite and hydrogen peroxide stresses compared with the single knockouts (ung
− or udgB
−). These observations reveal a synergistic effect of UdgB and Ung in DNA repair, and could have implications for the generation of attenuated strains of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vidyasagar S. Malshetty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ruchi Jain
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Thiruneelakantan Srinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Krishna Kurthkoti
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
33
|
The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair (Amst) 2009; 9:177-90. [PMID: 20031487 DOI: 10.1016/j.dnarep.2009.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 11/22/2022]
Abstract
The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from gamma-irradiated DNA. MtuFpg1 has substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products. The kinetic parameters of the MtuFpg1, MtuNei1 and MtuNth proteins on selected substrates were also determined and compared to those of their E. coli homologs.
Collapse
|