1
|
Sarkar R, Choudhury SM, Kanneganti TD. Classical apoptotic stimulus, staurosporine, induces lytic inflammatory cell death, PANoptosis. J Biol Chem 2024; 300:107676. [PMID: 39151726 PMCID: PMC11418131 DOI: 10.1016/j.jbc.2024.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
Innate immunity is the body's first line of defense against disease, and regulated cell death is a central component of this response that balances pathogen clearance and inflammation. Cell death pathways are generally categorized as non-lytic and lytic. While non-lytic apoptosis has been extensively studied in health and disease, lytic cell death pathways are also increasingly implicated in infectious and inflammatory diseases and cancers. Staurosporine (STS) is a well-known inducer of non-lytic apoptosis. However, in this study, we observed that STS also induces lytic cell death at later timepoints. Using biochemical assessments with genetic knockouts, pharmacological inhibitors, and gene silencing, we identified that STS triggered PANoptosis via the caspase-8/RIPK3 axis, which was mediated by RIPK1. PANoptosis is a lytic, innate immune cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes. Deletion of caspase-8 and RIPK3, core components of the PANoptosome complex, protected against STS-induced lytic cell death. Overall, our study identifies STS as a time-dependent inducer of lytic cell death, PANoptosis. These findings emphasize the importance of understanding trigger- and time-specific activation of distinct cell death pathways to advance our understanding of the molecular mechanisms of innate immunity and cell death for clinical translation.
Collapse
Affiliation(s)
- Roman Sarkar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sk Mohiuddin Choudhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
2
|
Blanco CM, de Souza HADS, Martins PDC, Almeida-Silva J, Suarez-Fontes AM, Chaves YO, Vannier-Santos MA, Pratt-Riccio LR, Daniel-Ribeiro CT, Lopes SCP, Totino PRR. Cell Death of P. vivax Blood Stages Occurs in Absence of Classical Apoptotic Events and Induces Eryptosis of Parasitized Host Cells. Pathogens 2024; 13:673. [PMID: 39204273 PMCID: PMC11357032 DOI: 10.3390/pathogens13080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Elucidation of pathways regulating parasite cell death is believed to contribute to identification of novel therapeutic targets for protozoan diseases, and in this context, apoptosis-like cell death has been reported in different groups of protozoa, in which metacaspases seem to play a role. In the genus Plasmodium, apoptotic markers have been detected in P. falciparum and P. berghei, and no study focusing on P. vivax cell death has been reported so far. In the present study, we investigated the susceptibility of P. vivax to undergo apoptotic cell death after incubating mature trophozoites with the classical apoptosis inducer staurosporine. As assessed by flow cytometry assays, staurosporine inhibited parasite intraerythrocytic development, which was accompanied by a decrease in cell viability, evidenced by reduced plasmodial mitochondrial activity. However, typical signs of apoptosis, such as DNA fragmentation, chromatin condensation, and nuclear segregation, were not detected in the parasites induced to cell death, and no significant alteration in metacaspase gene expression (PvMCA1) was observed under cell death stimulus. Interestingly, dying parasites positively modulated cell death (eryptosis) of host erythrocytes, which was marked by externalization of phosphatidylserine and cell shrinkage. Our study shows for the time that P. vivax blood stages may not be susceptible to apoptosis-like processes, while they could trigger eryptosis of parasitized cells by undergoing cell death. Further studies are required to elucidate the cellular machinery involved in cell death of P. vivax parasites as well as in the modulation of host cell death.
Collapse
Affiliation(s)
- Carolina Moreira Blanco
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Hugo Amorim dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Priscilla da Costa Martins
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Juliana Almeida-Silva
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Ana Marcia Suarez-Fontes
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus 69057-070, Brazil; (Y.O.C.); (S.C.P.L.)
| | - Marcos André Vannier-Santos
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Stefanie Costa Pinto Lopes
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus 69057-070, Brazil; (Y.O.C.); (S.C.P.L.)
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| |
Collapse
|
3
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
4
|
Mei X, Wei L, Su C, Yang Z, Tian X, Zhang Z, Wang S. Advances in the axenic isolation methods of Blastocystis sp. and their applications. Parasitology 2024; 151:125-134. [PMID: 38087868 PMCID: PMC10941048 DOI: 10.1017/s0031182023001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Blastocystis sp. is a prevalent protistan parasite found globally in the gastrointestinal tract of humans and various animals. This review aims to elucidate the advancements in research on axenic isolation techniques for Blastocystis sp. and their diverse applications. Axenic isolation, involving the culture and isolation of Blastocystis sp. free from any other organisms, necessitates the application of specific media and a series of axenic treatment methods. These methods encompass antibiotic treatment, monoclonal culture, differential centrifugation, density gradient separation, micromanipulation and the combined use of culture media. Critical factors influencing axenic isolation effectiveness include medium composition, culture temperature, medium characteristics, antibiotic type and dosage and the subtype (ST) of Blastocystis sp. Applications of axenic isolation encompass exploring pathogenicity, karyotype and ST analysis, immunoassay, characterization of surface chemical structure and lipid composition and understanding drug treatment effects. This review serves as a valuable reference for clinicians and scientists in selecting appropriate axenic isolation methods.
Collapse
Affiliation(s)
- Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Lai Wei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Changwei Su
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Zhenke Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
5
|
Sebastian S, Hoffmann MK, Howard D, Young C, Washington J, Unterweger H, Alexiou C, Turnbull T, D’Andrea R, Hoffmann P, Kempson I. Kinetic Effects of Transferrin-Conjugated Gold Nanoparticles on the Antioxidant Glutathione-Thioredoxin Pathway. Antioxidants (Basel) 2023; 12:1617. [PMID: 37627612 PMCID: PMC10451790 DOI: 10.3390/antiox12081617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Nanoparticle-based therapeutics are being clinically translated for treating cancer. Even when thought to be biocompatible, nanoparticles are being increasingly identified as altering cell regulation and homeostasis. Antioxidant pathways are important for maintaining cell redox homeostasis and play important roles by maintaining ROS levels within tolerable ranges. Here, we sought to understand how a model of a relatively inert nanoparticle without any therapeutic agent itself could antagonize a cancer cell lines' antioxidant mechanism. A label-free protein expression approach was used to assess the glutathione-thioredoxin antioxidative pathway in a prostate cancer cell line (PC-3) after exposure to gold nanoparticles conjugated with a targeting moiety (transferrin). The impact of the nanoparticles was also corroborated through morphological analysis with TEM and classification of pro-apoptotic cells by way of the sub-G0/G1 population via the cell cycle and annexin V apoptosis assay. After a two-hour exposure to nanoparticles, major proteins associated with the glutathione-thioredoxin antioxidant pathway were downregulated. However, this response was acute, and in terms of protein expression, cells quickly recovered within 24 h once nanoparticle exposure ceased. The impact on PRDX-family proteins appears as the most influential factor in how these nanoparticles induced an oxidative stress response in the PC-3 cells. An apparent adaptive response was observed if exposure to nanoparticles continued. Acute exposure was observed to have a detrimental effect on cell viability compared to continuously exposed cells. Nanoparticle effects on cell regulation likely provide a compounding therapeutic advantage under some circumstances, in addition to the action of any cytotoxic agents; however, any therapeutic advantage offered by nanoparticles themselves with regard to vulnerabilities specific to the glutathione-thioredoxin antioxidative pathway is highly temporal.
Collapse
Affiliation(s)
- Sonia Sebastian
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
| | - Manuela Klingler Hoffmann
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Douglas Howard
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| | - Clifford Young
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jenni Washington
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.U.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.U.); (C.A.)
| | - Tyron Turnbull
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| | - Richard D’Andrea
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia;
| | - Peter Hoffmann
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| |
Collapse
|
6
|
Blastocystis hominis undergoing programmed cell death via cytotoxic gamma irradiation. Exp Parasitol 2022; 240:108341. [DOI: 10.1016/j.exppara.2022.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
|
7
|
Bustamante HA, Ehrich MF, Klein BG. Intracellular potassium depletion enhances apoptosis induced by staurosporine in cultured trigeminal satellite glial cells. Somatosens Mot Res 2021; 38:194-201. [PMID: 34187291 DOI: 10.1080/08990220.2021.1941843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Satellite glial cells (SGC) surrounding neurons in sensory ganglia can buffer extracellular potassium, regulating the excitability of injured neurons and possibly influencing a shift from acute to neuropathic pain. SGC apoptosis may be a key component in this process. This work evaluated induction or enhancement of apoptosis in cultured trigeminal SGC following changes in intracellular potassium [K]ic. MATERIALS AND METHODS We developed SGC primary cultures from rat trigeminal ganglia (TG). Purity of our cultures was confirmed using immunofluorescence and western blot analysis for the presence of the specific marker of SGC, glutamine synthetase (GS). SGC [K]ic was depleted using hypo-osmotic shock and 4 mM bumetanide plus 10 mM ouabain. [K]ic was measured using the K+ fluorescent indicator potassium benzofuran isophthalate (PBFI-AM). RESULTS SGC tested positive for GS and hypo-osmotic shock induced a significant decrease in [K]ic at every evaluated time. Cells were then incubated for 5 h with either 2 mM staurosporine (STS) or 20 ng/ml of TNF-α and evaluated for early apoptosis and late apoptosis/necrosis by flow cytometry using annexin V and propidium iodide. A significant increase in early apoptosis, from 16 to 38%, was detected in SGC with depleted [K]ic after incubation with STS. In contrast, TNF-α did not increase early apoptosis in normal or [K]ic depleted SGC. CONCLUSION Hypo-osmotic shock induced a decrease in intracellular potassium in cultured trigeminal SGC and this enhanced apoptosis induced by STS that is associated with the mitochondrial pathway. These results suggest that K+ dysregulation may underlie apoptosis in trigeminal SGC.
Collapse
Affiliation(s)
- Hedie A Bustamante
- Faculty of Veterinary Sciences, Veterinary Clinical Sciences Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Marion F Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bradley G Klein
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
8
|
Kong R, Sun Q, Cheng S, Fu J, Liu W, Letcher RJ, Liu C. Uptake, excretion and toxicity of titanate nanotubes in three stains of free-living ciliates of the genus Tetrahymena. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105790. [PMID: 33662879 DOI: 10.1016/j.aquatox.2021.105790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The potential exposure of titanate nanotubes (TNTs) to wildlife and humans may occur as a result of increased use and application as functional nanomaterials. However, there is a dearth of knowledge regarding the pathways of uptake and excretion of TNTs and their toxicity in cells. In this study, three strains of the Tetrahymena genus of free-living ciliates, including a wild type strain (SB210) and two mutant strains (SB255: mucocyst-deficient; NP1: temperature-sensitive "mouthless''), were used to study the pathways of uptake and excretion and evaluate the cytotoxicity of TNTs. The three Tetrahymena strains were separately exposed to 0, 0.01, 0.1, 1 or 10 mg/L of TNTs, and cells were collected at different time points for quantification of intracellular TNTs (e.g., 5, 10, 20, 40, 60, 90 and 120 min) and evaluation of cytotoxicity (12 and 24 h). TNT contents in NP1 and SB255 were greater or comparable to the contents in SB210 while exposure to 10 mg/L TNTs in 120 min. Furthermore, exposure to 10 mg/L TNTs for 24 h caused greater decreases in cell density of NP1 (38.2 %) and SB255 (36.8 %) compared with SB210 (26.5 %) and upregulated the expression of caspase 15 in SB210. Taken together, our results suggested that TNT uptake by pinocytosis and excretion by exocytosis in Tetrahymena, and the exposure could cause cytotoxicity which can offer novel insights into the accumulation kinetics of nanotubes and even nanomaterials in single cell.
Collapse
Affiliation(s)
- Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyang Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Centre for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
9
|
Cartuche L, Sifaoui I, López-Arencibia A, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Lorenzo-Morales J, Piñero JE, Díaz-Marrero AR, Fernández JJ. Antikinetoplastid Activity of Indolocarbazoles from Streptomyces sanyensis. Biomolecules 2020; 10:biom10040657. [PMID: 32344693 PMCID: PMC7226613 DOI: 10.3390/biom10040657] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease and leishmaniasis are neglected tropical diseases caused by kinetoplastid parasites of Trypanosoma and Leishmania genera that affect poor and remote populations in developing countries. These parasites share similar complex life cycles and modes of infection. It has been demonstrated that the particular group of phosphorylating enzymes, protein kinases (PKs), are essential for the infective mechanisms and for parasite survival. The natural indolocarbazole staurosporine (STS, 1) has been extensively used as a PKC inhibitor and its antiparasitic effects described. In this research, we analyze the antikinetoplastid activities of three indolocarbazole (ICZs) alkaloids of the family of staurosporine STS, 2-4, and the commercial ICZs rebeccamycin (5), K252a (6), K252b (7), K252c (8), and arcyriaflavin A (9) in order to establish a plausive approach to the mode of action and to provide a preliminary qualitative structure-activity analysis. The most active compound was 7-oxostaurosporine (7OSTS, 2) that showed IC50 values of 3.58 ± 1.10; 0.56 ± 0.06 and 1.58 ± 0.52 µM against L. amazonensis; L. donovani and T. cruzi, and a Selectivity Index (CC50/IC50) of 52 against amastigotes of L. amazonensis compared to the J774A.1 cell line of mouse macrophages.
Collapse
Affiliation(s)
- Luis Cartuche
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Departamento de Química y Ciencias Exactas, Sección Química Básica y Aplicada, Universidad Técnica Particular de Loja (UTPL), San Cayetano alto s/n, A.P. 1101608, Loja, Ecuador
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| |
Collapse
|
10
|
Hoffman E, Murnane D, Hutter V. Investigating the Suitability of High Content Image Analysis as a Tool to Assess the Reversibility of Foamy Alveolar Macrophage Phenotypes In Vitro. Pharmaceutics 2020; 12:pharmaceutics12030262. [PMID: 32183061 PMCID: PMC7150967 DOI: 10.3390/pharmaceutics12030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
Many potential inhaled medicines fail during development due to the induction of a highly vacuolated or “foamy” alveolar macrophage phenotype response in pre-clinical studies. There is limited understanding if this response to an inhaled stimulus is adverse or adaptive, and additionally if it is a transient or irreversible process. The aim of this study was to evaluate whether high content image analysis could distinguish between different drug-induced foamy macrophage phenotypes and to determine the extent of the reversibility of the foamy phenotypes by assessing morphological changes over time. Alveolar-like macrophages derived from the human monocyte cell line U937 were exposed for 24 h to compounds known to induce a foamy macrophage phenotype (amiodarone, staurosporine) and control compounds that are not known to cause a foamy macrophage phenotype in vitro (fluticasone and salbutamol). Following drug stimulation, the cells were rested in drug-free media for the subsequent 24 or 48 h. Cell morphometric parameters (cellular and nuclear area, vacuoles numbers and size) and phospholipid content were determined using high content image analysis. The foamy macrophage recovery was dependent on the mechanism of action of the inducer compound. Amiodarone toxicity was associated with phospholipid accumulation and morphometric changes were reversed when the stimulus was removed from culture environment. Conversely cells were unable to recover from exposure to staurosporine which initiates the apoptosis pathway. This study shows that high content analysis can discriminate between different phenotypes of foamy macrophages and may contribute to better decision making in the process of new drug development.
Collapse
|
11
|
Cartuche L, Reyes-Batlle M, Sifaoui I, Arberas-Jiménez I, Piñero JE, Fernández JJ, Lorenzo-Morales J, Díaz-Marrero AR. Antiamoebic Activities of Indolocarbazole Metabolites Isolated from Streptomyces sanyensis Cultures. Mar Drugs 2019; 17:md17100588. [PMID: 31627366 PMCID: PMC6836125 DOI: 10.3390/md17100588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Indolocarbazoles are a family of natural alkaloids characterized by their potent protein kinase and topoisomerase I inhibitory activity. Among them, staurosporine (1) has exhibited promising inhibitory activity against parasites. Based on new insights on the activity and mechanism of action of STS in Acanthamoeba parasites, this work reports the isolation, identification, and the anti-Acanthamoeba activity of the minor metabolites 7-oxostaurosporine (2), 4′-demethylamino-4′-oxostaurosporine (3), and streptocarbazole B (4), isolated from cultures of the mangrove strain Streptomyces sanyensis. A clear correlation between the antiparasitic activities and the structural elements and conformations of the indolocarbazoles 1–4 was observed. Also, the study reveals that 7-oxostaurosporine (2) affects membrane permeability and causes mitochondrial damages on trophozoites of A. castellanii Neff.
Collapse
Affiliation(s)
- Luis Cartuche
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain.
- Departamento de Química y Ciencias Exactas, Sección Química Básica y Aplicada, Universidad Técnica Particular de Loja (UTPL), San Cayetano alto s/n, A.P. 1101608 Loja, Ecuador.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain.
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
12
|
Assessment of Apoptosis Induction by Methanol Extract of Sea Cucumber in Blastocystis hominis Isolated from Human Samples Using Flow Cytometry and DNA Fragmentation Test. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.13959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
Santos FC, Lobo GM, Fernandes AS, Videira A, de Almeida RFM. Changes in the Biophysical Properties of the Cell Membrane Are Involved in the Response of Neurospora crassa to Staurosporine. Front Physiol 2018; 9:1375. [PMID: 30364194 PMCID: PMC6193110 DOI: 10.3389/fphys.2018.01375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Neurospora crassa is a non-pathogenic filamentous fungus widely used as a multicellular eukaryotic model. Recently, the biophysical properties of the plasma membrane of N. crassa conidia were thoroughly characterized. They evolve during conidial germination at a speed that depends on culture conditions, suggesting an important association between membrane remodeling and the intense membrane biogenesis that takes place during the germinative process. Staurosporine (STS) is a drug used to induce programmed cell death in various organisms. In N. crassa, STS up-regulates the expression of the ABC transporter ABC-3, which localizes at the plasma membrane and pumps STS out. To understand the role of plasma membrane biophysical properties in the fungal drug response, N. crassa was subjected to STS treatment during early and late conidial development stages. Following 1 h treatment with STS, there is an increase in the abundance of the more ordered, sphingolipid-enriched, domains in the plasma membrane of conidia. This leads to higher fluidity in other membrane regions. The global order of the membrane remains thus practically unchanged. Significant changes in sphingolipid-enriched domains were also observed after 15 min challenge with STS, but they were essentially opposite to those verified for the 1 h treatment, suggesting different types of drug responses. STS effects on membrane properties that are more dependent on ergosterol levels also depend on the developmental stage. There were no alterations on 2 h-grown cells, clearly contrasting to what happens at longer growth times. In this case, the differences were more marked for longer STS treatment, and rationalized considering that the drug prevents the increase in the ergosterol/glycerophospholipid ratio that normally takes place at the late conidial stage/transition to the mycelial stage. This could be perceived as a drug-induced development arrest after 5 h growth, involving ergosterol, and pointing to a role of lipid rafts possibly related with an up-regulated expression of the ABC-3 transporter. Overall, our results suggest the involvement of membrane ordered domains in the response mechanisms to STS in N. crassa.
Collapse
Affiliation(s)
- Filipa C Santos
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| | - Gerson M Lobo
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| | - Andreia S Fernandes
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Arnaldo Videira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rodrigo F M de Almeida
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| |
Collapse
|
14
|
Domínguez-Fernández T, Rodríguez MA, Sánchez Monroy V, Gómez García C, Medel O, Pérez Ishiwara DG. A Calpain-Like Protein Is Involved in the Execution Phase of Programmed Cell Death of Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:339. [PMID: 30319995 PMCID: PMC6167430 DOI: 10.3389/fcimb.2018.00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
Oxygen or nitrogen oxidative species and chemical stress induce the programmed cell death (PCD) of Entamoeba histolytica trophozoites. PCD caused by the aminoglycoside G418 is reduced by incubation with the cysteine protease inhibitor E-64; however, no typical caspases or metacaspases have been detected in this parasite. Calpain, a cysteine protease activated by calcium, has been suggested to be part of a specific PCD pathway in this parasite because the specific calpain inhibitor Z-Leu-Leu-Leu-al diminishes the PCD of trophozoites. Here, we predicted the hypothetical 3D structure of a calpain-like protein of E. histolytica and produced specific antibodies against it. We detected the protein in the cytoplasm and near the nucleus. Its expression gradually increased during incubation with G418, with the highest level after 9 h of treatment. In addition, a specific calpain-like siRNA sequence reduced the cell death rate by 65%. All these results support the hypothesis that the calpain-like protein is one of the proteases involved in the execution phase of PCD in E. histolytica. The hypothetical interactome of the calpain-like protein suggests that it may activate or regulate other proteins that probably participate in PCD, including those with EF-hand domains or other calcium-binding sites.
Collapse
Affiliation(s)
| | | | - Virginia Sánchez Monroy
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Consuelo Gómez García
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Olivia Medel
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - David Guillermo Pérez Ishiwara
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
15
|
Monroy VS, Flores OM, García CG, Maya YC, Fernández TD, Pérez Ishiwara DG. Calpain-like: A Ca(2+) dependent cystein protease in Entamoeba histolytica cell death. Exp Parasitol 2015; 159:245-51. [PMID: 26496790 DOI: 10.1016/j.exppara.2015.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 09/08/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica programmed cell death (PCD) induced by G418 is characterized by the release of important amounts of intracellular calcium from reservoirs. Nevertheless, no typical caspases have been detected in the parasite, the PCD phenotype is inhibited by the cysteine protease inhibitor E-64. These results strongly suggest that Ca(2+)-dependent proteases could be involved in PCD. In this study, we evaluate the expression and activity of a specific dependent Ca(2+) protease, the calpain-like protease, by real-time quantitative PCR (RTq-PCR), Western blot assays and a enzymatic method during the induction of PCD by G418. Alternatively, using cell viability and TUNEL assays, we also demonstrated that the Z-Leu-Leu-Leu-al calpain inhibitor reduced the rate of cell death. The results demonstrated 4.9-fold overexpression of calpain-like gene 1.5 h after G418 PCD induction, while calpain-like protein increased almost two-fold with respect to basal calpain-like expression after 3 h of induction, and calpain activity was found to be approximately three-fold higher 6 h after treatment compared with untreated trophozoites. Taken together, these results suggest that this Ca(2+)-dependent protease could be involved in the executory phase of PCD.
Collapse
Affiliation(s)
- Virginia Sánchez Monroy
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico; Laboratorio Multidisciplinario de Investigación, Escuela Militar de Graduados de Sanidad, UDEFA, Lomas de San Isidro, DF, CP 11620, Mexico
| | - Olivia Medel Flores
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - Consuelo Gómez García
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - Yesenia Chávez Maya
- Facultad de Estudios Superiores Cuautitlán Izcalli, UNAM, Cuautitlán Izcalli, Estado de México CP.54740, Mexico
| | - Tania Domínguez Fernández
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico
| | - D Guillermo Pérez Ishiwara
- Laboratorio de Biomedicina Molecular I, Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera No.239, Fracc. La Escalera, Col. Ticomán, D.F, C.P.07320, Mexico; Centro de Investigación en Ciencia Aplicada. Instituto Politécnico Nacional, Tepetitla de Lardizabal, Tlaxcala, Doctorado en Biotecnología, Red de Investigación en Biotecnología IPN, Mexico.
| |
Collapse
|
16
|
Vandecandelaere I, Depuydt P, Nelis HJ, Coenye T. Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms. Pathog Dis 2014; 70:321-31. [PMID: 24436195 DOI: 10.1111/2049-632x.12133] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/31/2022] Open
Abstract
Due to the resistance of Staphylococcus aureus to several antibiotics, treatment of S. aureus infections is often difficult. As an alternative to conventional antibiotics, the field of bacterial interference is investigated. Staphylococcus epidermidis produces a serine protease (Esp) which inhibits S. aureus biofilm formation and which degrades S. aureus biofilms. In this study, we investigated the protease production of 114 S. epidermidis isolates, obtained from biofilms on endotracheal tubes (ET). Most of the S. epidermidis isolates secreted a mixture of serine, cysteine and metalloproteases. We found a link between high protease production by S. epidermidis and the absence of S. aureus in ET biofilms obtained from the same patient. Treating S. aureus biofilms with the supernatant (SN) of the most active protease producing S. epidermidis isolates resulted in a significant biomass decrease compared to untreated controls, while the number of metabolically active cells was not affected. The effect on the biofilm biomass was mainly due to serine proteases. Staphylococcus aureus biofilms treated with the SN of protease producing S. epidermidis were thinner with almost no extracellular matrix. An increased survival of Caenorhabditis elegans, infected with S. aureus Mu50, was observed when the SN of protease positive S. epidermidis was added.
Collapse
|
17
|
Bruges G, Betancourt M, March M, Sanchez E, Mijares A. Apoptotic-like activity of staurosporine in axenic cultures of Trypanosoma evansi. Rev Inst Med Trop Sao Paulo 2012; 54:103-8. [PMID: 22499424 DOI: 10.1590/s0036-46652012000200008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/20/2011] [Indexed: 05/26/2023] Open
Abstract
Trypanosoma evansi is a blood protozoan parasite of the genus Trypanosoma which is responsible for surra (Trypanosomosis) in domestic and wild animals. This study addressed apoptotic-like features in Trypanosoma evansi in vitro. The mechanism of parasite death was investigated using staurosporine as an inducing agent. We evaluated its effects through several cytoplasmic features of apoptosis, including cell shrinkage, phosphatidylserine exposure, maintenance of plasma membrane integrity, and mitochondrial trans-membrane potential. For access to these features we have used the flow cytometry and fluorescence microscopy with cultures in the stationary phase and adjusted to a density of 10(6) cells/mL. The apoptotic effect of staurosporine in T. evansi was evaluated at 20 nM final concentration. There was an increase of phosphatidylserine exposure, whereas mitochondrial potential was decreased. Moreover, no evidence of cell permeability increasing with staurosporine was observed in this study, suggesting the absence of a necrotic process. Additional studies are needed to elucidate the possible pathways associated with this form of cell death in this hemoparasite.
Collapse
Affiliation(s)
- Gustavo Bruges
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | | | |
Collapse
|
18
|
Jiménez-Ruiz A, Alzate JF, Macleod ET, Lüder CGK, Fasel N, Hurd H. Apoptotic markers in protozoan parasites. Parasit Vectors 2010; 3:104. [PMID: 21062457 PMCID: PMC2993696 DOI: 10.1186/1756-3305-3-104] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022] Open
Abstract
The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Collapse
Affiliation(s)
- Antonio Jiménez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|