1
|
Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM. Microbiol Mol Biol Rev 2022; 86:e0010621. [PMID: 35727025 PMCID: PMC9491170 DOI: 10.1128/mmbr.00106-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that exhibit characteristic acclimation and developmental responses to dynamic changes in the external light environment. Photomorphogenesis is the tuning of cellular physiology, development, morphology, and metabolism in response to external light cues. The tuning of photosynthetic pigmentation, carbon fixation capacity, and cellular and filament morphologies to changes in the prevalent wavelengths and abundance of light have been investigated to understand the regulation and fitness implications of different aspects of cyanobacterial photomorphogenesis. Chromatic acclimation (CA) is the most common form of photomorphogenesis that has been explored in cyanobacteria. Multiple types of CA in cyanobacteria have been reported, and insights gained into the regulatory pathways and networks controlling some of these CA types. I examine the recent expansion of CA types that occur in nature and provide an overview of known regulatory factors involved in distinct aspects of cyanobacterial photomorphogenesis. Additionally, I explore lessons for cultivating success in scientific communities that can be drawn from a reflection on existing knowledge of and approaches to studying CA.
Collapse
|
2
|
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annu Rev Microbiol 2020; 73:407-433. [PMID: 31500538 DOI: 10.1146/annurev-micro-020518-115738] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the Cyanobacteria phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.
Collapse
Affiliation(s)
- Joseph E Sanfilippo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA;
| | - Laurence Garczarek
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - Frédéric Partensky
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
3
|
Gale GAR, Schiavon Osorio AA, Mills LA, Wang B, Lea-Smith DJ, McCormick AJ. Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology. Microorganisms 2019; 7:E409. [PMID: 31569579 PMCID: PMC6843473 DOI: 10.3390/microorganisms7100409] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Recent advances in synthetic biology and an emerging algal biotechnology market have spurred a prolific increase in the availability of molecular tools for cyanobacterial research. Nevertheless, work to date has focused primarily on only a small subset of model species, which arguably limits fundamental discovery and applied research towards wider commercialisation. Here, we review the requirements for uptake of new strains, including several recently characterised fast-growing species and promising non-model species. Furthermore, we discuss the potential applications of new techniques available for transformation, genetic engineering and regulation, including an up-to-date appraisal of current Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein (CRISPR/Cas) and CRISPR interference (CRISPRi) research in cyanobacteria. We also provide an overview of several exciting molecular tools that could be ported to cyanobacteria for more advanced metabolic engineering approaches (e.g., genetic circuit design). Lastly, we introduce a forthcoming mutant library for the model species Synechocystis sp. PCC 6803 that promises to provide a further powerful resource for the cyanobacterial research community.
Collapse
Affiliation(s)
- Grant A R Gale
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - Alejandra A Schiavon Osorio
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
4
|
Agostoni M, Logan-Jackson AR, Heinz ER, Severin GB, Bruger EL, Waters CM, Montgomery BL. Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Front Microbiol 2018; 9:1121. [PMID: 29896182 PMCID: PMC5986932 DOI: 10.3389/fmicb.2018.01121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Second messengers are intracellular molecules regulated by external stimuli known as first messengers that are used for rapid organismal responses to dynamic environmental changes. Cyclic di-AMP (c-di-AMP) is a relatively newly discovered second messenger implicated in cell wall homeostasis in many pathogenic bacteria. C-di-AMP is synthesized from ATP by diadenylyl cyclases (DAC) and degraded by specific c-di-AMP phosphodiesterases (PDE). C-di-AMP DACs and PDEs are present in all sequenced cyanobacteria, suggesting roles for c-di-AMP in the physiology and/or development of these organisms. Despite conservation of these genes across numerous cyanobacteria, the functional roles of c-di-AMP in cyanobacteria have not been well-investigated. In a unique feature of cyanobacteria, phylogenetic analysis indicated that the broadly conserved DAC, related to CdaA/DacA, is always co-associated in an operon with genes critical for controlling cell wall synthesis. To investigate phenotypes regulated by c-di-AMP in cyanobacteria, we overexpressed native DAC (sll0505) and c-di-AMP PDE (slr0104) genes in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) to increase and decrease intracellular c-di-AMP levels, respectively. DAC- and PDE-overexpression strains, showed abnormal aggregation phenotypes, suggesting functional roles for regulating c-di-AMP homeostasis in vivo. As c-di-AMP may be implicated in osmotic responses in cyanobacteria, we tested whether sorbitol and NaCl stresses impacted expression of sll0505 and slr0104 or intracellular c-di-AMP levels in Synechocystis. Additionally, to determine the range of cyanobacteria in which c-di-AMP may function, we assessed c-di-AMP levels in two unicellular cyanobacteria, i.e., Synechocystis and Synechococcus elongatus PCC 7942, and two filamentous cyanobacteria, i.e., Fremyella diplosiphon and Anabaena sp. PCC 7120. C-di-AMP levels responded differently to abiotic stress signals in distinct cyanobacteria strains, whereas salt stress uniformly impacted another second messenger cyclic di-GMP in cyanobacteria. Together, these results suggest regulation of c-di-AMP homeostasis in cyanobacteria and implicate a role for the second messenger in maintaining cellular fitness in response to abiotic stress.
Collapse
Affiliation(s)
- Marco Agostoni
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Alshaé R Logan-Jackson
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Emily R Heinz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Eric L Bruger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Christopher M Waters
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Montgomery BL. Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4079-4090. [PMID: 27217547 DOI: 10.1093/jxb/erw206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria.
Collapse
Affiliation(s)
- Beronda L Montgomery
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Hilton JA, Meeks JC, Zehr JP. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria. PLoS One 2016; 11:e0156034. [PMID: 27206019 PMCID: PMC4874684 DOI: 10.1371/journal.pone.0156034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/14/2016] [Indexed: 01/13/2023] Open
Abstract
Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria.
Collapse
Affiliation(s)
- Jason A. Hilton
- University of California Department of Ocean Sciences, Santa Cruz, California, United States of America
- * E-mail:
| | - John C. Meeks
- University of California Department of Microbiology and Molecular Genetics, Davis, California, United States of America
| | - Jonathan P. Zehr
- University of California Department of Ocean Sciences, Santa Cruz, California, United States of America
| |
Collapse
|
7
|
Busch AWU, Montgomery BL. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2015; 6:1393. [PMID: 26696996 PMCID: PMC4677103 DOI: 10.3389/fmicb.2015.01393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
The tryptophan-rich sensory protein (TSPO) is a membrane protein, which is a member of the 18 kDa translocator protein/peripheral-type benzodiazepine receptor (MBR) family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO. Accumulation of the FdTSPO transcript is upregulated by green light and in response to nutrient deficiency and stress. A F. diplosiphon TSPO deletion mutant (i.e., ΔFdTSPO) showed altered responses compared to the wild type (WT) strain under stress conditions, including salt treatment, osmotic stress, and induced oxidative stress. Under salt stress, the FdTSPO transcript is upregulated and a ΔFdTSPO mutant accumulates lower levels of reactive oxygen species (ROS) and displays increased growth compared to WT. In response to osmotic stress, FdTSPO transcript levels are upregulated and ΔFdTSPO mutant cells exhibit impaired growth compared to the WT. By comparison, methyl viologen-induced oxidative stress results in higher ROS levels in the ΔFdTSPO mutant compared to the WT strain. Taken together, our results provide support for the involvement of membrane-localized FdTSPO in mediating cellular responses to stress in F. diplosiphon and represent detailed functional analysis of a cyanobacterial TSPO. This study advances our understanding of the functional roles of TSPO homologs in vivo.
Collapse
Affiliation(s)
- Andrea W. U. Busch
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
| | - Beronda L. Montgomery
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| |
Collapse
|
8
|
Agostoni M, Waters CM, Montgomery BL. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria. Biotechnol Bioeng 2015; 113:311-9. [PMID: 26192200 DOI: 10.1002/bit.25712] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022]
Abstract
The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters.
Collapse
Affiliation(s)
- Marco Agostoni
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan.,Department of Energy Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, East Lansing, Michigan, 48824
| | - Christopher M Waters
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Beronda L Montgomery
- Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan. .,Department of Energy Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, East Lansing, Michigan, 48824. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
9
|
Walters KJ, Whitaker MJ, Singh SP, Montgomery BL. Light intensity and reactive oxygen species are centrally involved in photoregulatory responses during complementary chromatic adaptation inFremyella diplosiphon. Commun Integr Biol 2014. [DOI: 10.4161/cib.25005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
10
|
Singh SP, Montgomery BL. Morphogenes bolA and mreB mediate the photoregulation of cellular morphology during complementary chromatic acclimation in Fremyella diplosiphon. Mol Microbiol 2014; 93:167-82. [PMID: 24823920 DOI: 10.1111/mmi.12649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 11/29/2022]
Abstract
Photoregulation of pigmentation during complementary chromatic acclimation (CCA) is well studied in Fremyella diplosiphon; however, mechanistic insights into the CCA-associated morphological changes are still emerging. F. diplosiphon cells are rectangular under green light (GL), whereas cells are smaller and spherical under red light (RL). Here, we investigate the role of morphogenes bolA and mreB during CCA using gene expression and gene function analyses. The F. diplosiphon bolA gene is essential as its complete removal from the genome was unsuccessful. Depletion of bolA resulted in slow growth, morphological defects and the accumulation of high levels of reactive oxygen species in a partially segregated ΔbolA strain. Higher expression of bolA was observed under RL and was correlated with lower expression of mreB and mreC genes in wild type. In a ΔrcaE strain that lacks the red-/green-responsive RcaE photoreceptor, the expression of bolA and mre genes was altered under both RL and GL. Observed gene expression relationships suggest that mreB and mreC expression is controlled by RcaE-dependent photoregulation of bolA expression. Expression of F. diplosiphon bolA and mreB homologues in Escherichia coli demonstrated functional conservation of the encoded proteins. Together, these studies establish roles for bolA and mreB in RcaE-dependent regulation of cellular morphology.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Energy - Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 106, East Lansing, MI, 48824-1312, USA
| | | |
Collapse
|
11
|
Pattanaik B, Busch AWU, Hu P, Chen J, Montgomery BL. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon. Microbiology (Reading) 2014; 160:992-1005. [DOI: 10.1099/mic.0.075192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium Fremyella diplosiphon undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in F. diplosiphon. RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Andrea W. U. Busch
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Pingsha Hu
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Jin Chen
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Beronda L. Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Singh SP, Miller HL, Montgomery BL. Temporal dynamics of changes in reactive oxygen species (ROS) levels and cellular morphology are coordinated during complementary chromatic acclimation in Fremyella diplosiphon. PHOTOSYNTHESIS RESEARCH 2013; 118:95-104. [PMID: 24122367 DOI: 10.1007/s11120-013-9938-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Energy-Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 106, East Lansing, MI, 48824-1312, USA
| | | | | |
Collapse
|
13
|
Singh SP, Montgomery BL. Salinity impacts photosynthetic pigmentation and cellular morphology changes by distinct mechanisms in Fremyella diplosiphon. Biochem Biophys Res Commun 2013; 433:84-9. [DOI: 10.1016/j.bbrc.2013.02.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 11/29/2022]
|
14
|
Singh SP, Montgomery BL. Reactive oxygen species are involved in the morphology-determining mechanism of Fremyella diplosiphon cells during complementary chromatic adaptation. Microbiology (Reading) 2012; 158:2235-2245. [DOI: 10.1099/mic.0.060475-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shailendra P. Singh
- Department of Energy – Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 106, East Lansing, MI 48824-1312, USA
| | - Beronda L. Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, East Lansing, MI 48824, USA
- Department of Energy – Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 106, East Lansing, MI 48824-1312, USA
| |
Collapse
|
15
|
Pattanaik B, Whitaker MJ, Montgomery BL. Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon. Front Microbiol 2012; 3:170. [PMID: 22586424 PMCID: PMC3345613 DOI: 10.3389/fmicb.2012.00170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/17/2012] [Indexed: 11/13/2022] Open
Abstract
In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL), F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL-absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs), and the shape of cells are short and rounded. Conversely, under green light (GL), F. diplosiphon cells are red in color due to accumulation of GL-absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensities at increasing depths in the water column, which are generally also enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity, independent of whether it is light of green wavelengths.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Melissa J. Whitaker
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
16
|
Gutu A, Kehoe DM. Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. MOLECULAR PLANT 2012; 5:1-13. [PMID: 21772031 DOI: 10.1093/mp/ssr054] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chromatic acclimation (CA) provides many cyanobacteria with the ability to tailor the properties of their light-harvesting antennae to the spectral distribution of ambient light. CA was originally discovered as a result of its dramatic cellular phenotype in red and green light. However, discoveries over the past decade have revealed that many pairs of light colors, ranging from blue to infrared, can trigger CA responses. The capacity to undergo CA is widespread geographically, occurs in most habitats around the world, and is found within all major cyanobacterial groups. In addition, many other cellular activities have been found to be under CA control, resulting in distinct physiological and morphological states for cells under different light-color conditions. Several types of CA appear to be the result of convergent evolution, where different strategies are used to achieve the final goal of optimizing light-harvesting antenna composition to maximize photon capture. The regulation of CA has been found to occur primarily at the level of RNA abundance. The CA-regulatory pathways uncovered thus far are two-component systems that use phytochrome-class photoreceptors with sensor-kinase domains to control response regulators that function as transcription factors. However, there is also at least one CA-regulatory pathway that operates at the post-transcriptional level. It is becoming increasingly clear that large numbers of cyanobacterial species have the capacity to acclimate to a wide variety of light colors through the use of a range of different CA processes.
Collapse
Affiliation(s)
- Andrian Gutu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
17
|
Pattanaik B, Whitaker MJ, Montgomery BL. Convergence and divergence of the photoregulation of pigmentation and cellular morphology in Fremyella diplosiphon. PLANT SIGNALING & BEHAVIOR 2011; 6:2038-41. [PMID: 22112451 PMCID: PMC3337201 DOI: 10.4161/psb.6.12.18239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Photosynthetic pigment accumulation and cellular and filament morphology are regulated reversibly by green light (GL) and red light (RL) in the cyanobacterium Fremyella diplosiphon during complementary chromatic adaptation (CCA). The photoreceptor RcaE (regulator of chromatic adaptation), which appears to function as a light-responsive sensor kinase, controls both of these responses. Recent findings indicate that downstream of RcaE, the signaling pathways leading to light-dependent changes in morphology or pigment synthesis and/or accumulation branch, and utilize distinct molecular components. We recently reported that the regulation of the accumulation of the GL-absorbing photosynthetic accessory protein phycoerythrin (PE) and photoregulation of cellular morphology are largely independent, as many mutants with severe PE accumulation defects do not have major disruptions in the regulation of cellular morphology. Furthermore, morphology can be disrupted under GL without impacting GL-dependent PE accumulation. Most recently, however, we determined that the disruption of the cpeR gene, which encodes a protein that is known to function as an activator of PE synthesis under GL, results in disruption of cellular morphology under GL and RL. Thus, apart from RcaE, CpeR is only the second known regulator to impact morphology under both light conditions in F. diplosiphon.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| | - Melissa J. Whitaker
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| | - Beronda L. Montgomery
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| |
Collapse
|
18
|
Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 2011; 14:1655-70. [DOI: 10.1111/j.1462-2920.2011.02619.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Regulation of phycoerythrin synthesis and cellular morphology in Fremyella diplosiphon green mutants. Biochem Biophys Res Commun 2011; 413:182-8. [PMID: 21888899 DOI: 10.1016/j.bbrc.2011.08.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/11/2011] [Indexed: 11/20/2022]
Abstract
Light-dependent modification of photosynthetic pigmentation and cellular growth responses is commonly associated with increased fitness in photosynthetic organisms, including cyanobacteria. Prior analyses of pigmentation mutants in the freshwater cyanobacterium Fremyelladiplosiphon has resulted in the observation that RcaE is a photosensor responsible for regulating organismal responses to changes in red light (RL) and green light (GL). RcaE regulates both pigmentation and cellular morphology, yet previous investigations and the analysis of additional pigmentation mutants here show that the signaling pathways regulating pigmentation and morphology appear to branch downstream of RcaE. We provide evidence that a ΔcpeR mutant has altered regulation of cellular morphology in addition to a known disruption in phycoerythrin synthesis. This marks the first description of the association of a regulator with the control of cellular morphology under both RL and GL in F.diplosiphon, apart from RcaE. In addition to providing a link between CpeR and the photoregulation of morphology in F.diplosiphon, the isolation of a ΔcpeR::IS66 mutant in the UTEX 481 strain represents both the first isolation of an IS66-based gene disruption and verification of the existence of an IS66-related element in F. diplosiphon.
Collapse
|
20
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
21
|
Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol 2011; 19:278-85. [PMID: 21458273 DOI: 10.1016/j.tim.2011.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 02/04/2023]
Abstract
Similar to other bacteria, cyanobacteria exist in a wide-ranging diversity of shapes and sizes. However, three general shapes are observed most frequently: spherical, rod and spiral. Bacteria can also grow as filaments of cells. Some filamentous cyanobacteria have differentiated cell types that exhibit distinct morphologies: motile hormogonia, nitrogen-fixing heterocysts, and spore-like akinetes. Cyanobacterial cell shapes, which are largely controlled by the cell wall, can be regulated by developmental and/or environmental cues, although the mechanisms of regulation and the selective advantage(s) of regulating cellular shape are still being elucidated. In this review, recent insights into developmental and environmental regulation of cell shape in cyanobacteria and the relationship(s) of cell shape and differentiation to organismal fitness are discussed.
Collapse
|
22
|
Characterization of green mutants in Fremyella diplosiphon provides insight into the impact of phycoerythrin deficiency and linker function on complementary chromatic adaptation. Biochem Biophys Res Commun 2010; 404:52-6. [PMID: 21094137 DOI: 10.1016/j.bbrc.2010.11.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/14/2010] [Indexed: 11/24/2022]
Abstract
Functions of phycobiliprotein (PBP) linkers are less well studied than other PBP polypeptides that are structural components or required for the synthesis of the light-harvesting phycobilisome (PBS) complexes. Linkers serve both structural and functional roles in PBSs. Here, we report the isolation of a phycoerythrin (PE) rod-linker mutant and a novel PE-deficient mutant in Fremyella diplosiphon. We describe their phenotypic characterization, including light-dependent photosynthetic pigment accumulation and photoregulation of cellular morphology. PE-linker protein CpeE and a novel protein impact PE accumulation, and thus PBS function, primarily under green light conditions.
Collapse
|
23
|
Exploiting the autofluorescent properties of photosynthetic pigments for analysis of pigmentation and morphology in live Fremyella diplosiphon cells. SENSORS 2010; 10:6969-79. [PMID: 22163584 PMCID: PMC3231140 DOI: 10.3390/s100706969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 01/05/2023]
Abstract
Fremyella diplosiphon is a freshwater, filamentous cyanobacterium that exhibits light-dependent regulation of photosynthetic pigment accumulation and cellular and filament morphologies in a well-known process known as complementary chromatic adaptation (CCA). One of the techniques used to investigate the molecular bases of distinct aspects of CCA is confocal laser scanning microscopy (CLSM). CLSM capitalizes on the autofluorescent properties of cyanobacterial phycobiliproteins and chlorophyll a. We employed CLSM to perform spectral scanning analyses of F. diplosiphon strains grown under distinct light conditions. We report optimized utilization of CLSM to elucidate the molecular basis of the photoregulation of pigment accumulation and morphological responses in F. diplosiphon.
Collapse
|
24
|
Pattanaik B, Montgomery BL. A novel role for a TonB-family protein and photoregulation of iron acclimation in Fremyella diplosiphon. PLANT SIGNALING & BEHAVIOR 2010; 5:851-3. [PMID: 20495348 PMCID: PMC3115034 DOI: 10.4161/psb.5.7.11827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 03/21/2010] [Indexed: 05/25/2023]
Abstract
Photosynthetic organisms display adaptations to changes in light and nutrient availability. Iron, which is required for the function of photosynthetic photosystems and other important biochemical processes, is an essential mineral that consequently impacts not only overall photosynthetic efficiency, but also the physiology of organisms in general. Our recent study represents the first functional characterization of a cyanobacterial TonB protein. TonB proteins classically are membrane proteins that support the transport of iron and vitamin B12 into cells. TonB proteins thus generally serve a critical role in organismal iron acclimation. We recently identified FdTonB, a TonB-family protein, in the filamentous freshwater cyanobacterium Fremyella diplosiphon. FdTonB contains conserved TonB residues and domains, as well as novel protein domains. Our recent study, however, supports a novel function for this protein in the photoregulation of morphology, rather than iron acclimation, in F. diplosiphon. Our detailed investigations into the responses of SF33 wild-type and ΔtonB mutant strains did not support a role for FdTonB in organismal responses to iron limitation. However, close examination of our recent results did highlight a novel interaction between light and iron acclimation in F. diplosiphon.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|