1
|
Razavi ZS, Razavi FS, Alizadeh SS. Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem 2025; 287:117357. [PMID: 39947054 DOI: 10.1016/j.ejmech.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The blood-brain barrier (BBB) is a protective barrier that complicates the treatment of neurological disorders. Pharmaceutical compounds encounter significant challenges in crossing the central nervous system (CNS). Nanoparticles (NPs) are promising candidates for treating neurological conditions as they help facilitate drug delivery. This review explores the diverse characteristics and mechanisms of inorganic NPs (INPs), including metal-based, ferric-oxide, and carbon-based nanoparticles, which facilitate their passage through the BBB. Emphasis is placed on the physicochemical properties of NPs such as size, shape, surface charge, and surface modifications and their role in enhancing drug delivery efficacy, reducing immune clearance, and improving BBB permeability. Specific synthesis approaches are demonstrated, with an emphasis on the influence of each one on NP property, biological activity and the capability of an NP for its intended application. As for the advances in the field, the review emphasizes those characterized the NP formulation and surface chemistry that conquered the BBB and tested the need for its alteration. Current findings indicate that NP therapy can in the future enable effective targeting of specific brain disorders and eventually evolve this drug delivery system, which would allow for lower doses with less side effects.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
2
|
Liu Y, Bi S, Song Z, Song Z, Xu C, Xian M, Jin M. Recombinant Escherichia coli Utilizes Mild Hydrogen Sources for the Targeted Intracellular Synthesis of Palladium Nanoparticles and Whole-Cell-Catalyzed Aromatic Aldehyde Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17238-17250. [PMID: 40040249 DOI: 10.1021/acsami.4c21429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Metal-enzyme cascade catalysis effectively combines the broad reactivity of chemical catalysis with the high selectivity of biocatalysis, improving reaction efficiency and simplifying the process flow through multiple sequential reactions in the same system. The introduction of exogenous palladium nanoparticles (Pd NPs) into Escherichia coli (E. coli) cells can significantly broaden the range of catalytic reactions facilitated by biological enzymes. Additionally, the targeted cytoplasmic synthesis of Pd NPs enhances their utilization efficiency in intracellular catalytic reactions while also eliminating the need for separating and purifying metals and enzymes. However, current methods largely enable the intracellular synthesis of Pd NPs in the periplasmic space and outer membrane. Moreover, the hydrogen sources commonly used in these methods─such as hydrogen (H2) and sodium borohydride (NaBH4)─carry safety risks. In this study, the mechanism of targeted synthesis of Pd NPs on the cytoplasmic side and its process were deeply investigated using a mild hydrogen source, sodium formate, in combination with genetic engineering and preparation conditions. And the constructed functional cell (Pd@E. coli) could catalyze benzaldehyde hydrogenation, with a conversion rate of 41.41% and benzyl alcohol yield of 17.68%, demonstrating considerable catalytic and loading stability. This study provides a reference for constructing catalytic systems for intracellular metal-enzyme cascades. Thus, it could bolster the development opportunities in the areas of non-natural products and drug development and provide ideas for addressing the drawbacks of existing biosynthetic technologies.
Collapse
Affiliation(s)
- Yu Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyue Bi
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110004, China
| | - Zhanxin Song
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Ziyi Song
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Chao Xu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Jin
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Campaña Perilla AL, Gomez-Bolivar J, Merroun ML, Joudeh N, Saragliadis A, Røyne A, Linke D, Mikheenko P. Characterization of Bimetallic Pd-Fe Nanoparticles Synthesized in Escherichia coli. ACS APPLIED BIO MATERIALS 2024; 7:8573-8589. [PMID: 39621443 PMCID: PMC11653405 DOI: 10.1021/acsabm.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Biologically mediated nanoparticle (NP) synthesis offers a reliable and sustainable alternative route for metal NP production. Compared with conventional chemical and physical production methods that require hazardous materials and considerable energy expenditure, some microorganisms can reduce metal ions into NPs during standard metabolic processes. However, to be considered a feasible commercial option, the properties and inherent activity of bio-NPs still need to be significantly improved. In this work, we present an Escherichia coli-mediated synthesis method for catalytically active Pd-Fe NPs. The produced biogenic Pd-Fe NPs with varying Fe content were characterized using complementary analytical techniques to assess their size, composition, and structural properties. In addition, their catalytic performance was assessed by using standardized chemical reactions. We demonstrate that the combination of Pd with Fe leads to synergistic effects that enhance the catalytic performance of Pd NPs and make biogenic Pd-Fe NPs excellent potential substitutes for currently used catalysts. Briefly, the apparent rates for the model reaction of 4-nitrophenol reduction to 4-aminophenol catalyzed by Pd-based nanoparticles were as high as 0.1312 min-1 using bimetallic Pd-Fe NPs, which is far superior to the rates of monometallic Pd NPs counterparts. This study provides a feasible strategy for the synthesis of multimetallic Pd-based NPs using common microbial processes. It emphasizes the potential of biogenic Pd-Fe NPs as efficient and sustainable catalysts for hydrogenation reactions, offering an environmentally friendly synthesis for various applications, including wastewater treatment and the production of fine chemicals.
Collapse
Affiliation(s)
- Ana Lucía Campaña Perilla
- Department
of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
- Department
of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway
| | - Jaime Gomez-Bolivar
- Department
of Microbiology, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Mohamed L. Merroun
- Department
of Microbiology, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Nadeem Joudeh
- Department
of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Athanasios Saragliadis
- Department
of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Anja Røyne
- Department
of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway
| | - Dirk Linke
- Department
of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Pavlo Mikheenko
- Department
of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway
| |
Collapse
|
4
|
Rasheed S, Khushnood RA, Raza A, Ahmed S, Kanwal M. Development of biological techniques to prevent corrosion of reinforcing steel bars. Heliyon 2024; 10:e37966. [PMID: 39323773 PMCID: PMC11422142 DOI: 10.1016/j.heliyon.2024.e37966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024] Open
Abstract
The electrochemical corrosive processes compromise the passivity of reinforcing steel, potentially leading to structural integrity loss and, in extreme cases, concrete infrastructure failures. While bio-inspired concretes show promise in mitigating strength degradation and enabling self-healing of concrete flaws, their interaction with steel reinforcement remains underexplored. Thus, this investigation aimed to establish a protective strategy by fostering biofilm growth on rebar surfaces. To achieve this, Bacillus subtilis and Escherichia coli bacteria were utilized as biofilm-forming agents, aided by magnetic iron oxide and zeolite micro-nano particles. The study encompassed a thorough assessment of split tensile strength, corrosion resistance of bio-treated embedded steel bars, and a comprehensive biofilm characterization, along with a meticulous examination of the microstructure at the steel-concrete interface. The findings underscored a significant improvement in split tensile strength, demonstrating a remarkable 84.2 % increase when bacterial species were combined with iron oxide nanoparticles, in contrast to the control specimens. Furthermore, the bio-treated bars exhibited an impressive corrosion inhibition potential of 78.5 % relative to their unaltered counterparts. These outcomes are attributed to the discernible refinement of microstructural features surrounding the steel reinforcement and the heightened densification of the inter-transitional zone between steel and concrete.
Collapse
Affiliation(s)
- Sajid Rasheed
- NUST Institute of Civil Engineering (NICE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H/12 Campus, Islamabad, 44000, Pakistan
| | - Rao Arslan Khushnood
- NUST Institute of Civil Engineering (NICE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H/12 Campus, Islamabad, 44000, Pakistan
| | - Ali Raza
- NUST Institute of Civil Engineering (NICE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H/12 Campus, Islamabad, 44000, Pakistan
- School of Civil and Environmental Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Sajjad Ahmed
- University College of Engineering and Technology, Bahauddin Zakaria University, Multan, Pakistan
| | - Maria Kanwal
- NUST Institute of Civil Engineering (NICE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H/12 Campus, Islamabad, 44000, Pakistan
| |
Collapse
|
5
|
Gupta S, Sharma A, Sharma A, Singh J. Fungus mediated synthesis of biogenic palladium catalyst for degradation of azo dye. World J Microbiol Biotechnol 2024; 40:310. [PMID: 39190163 DOI: 10.1007/s11274-024-04117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Dyes are the coloured substances that are applied on different substrates such as textiles, leather and paper products, etc. Azo dyes release from the industries are toxic and recalcitrant wastewater pollutants, therefore it is necessary to degrade these pollutants from water. In this study, the palladium (0) nanoparticles (PdNPs) were generated through the biological process and exhibited for the catalytic degradation of azo dye. The palladium nanoparticles (PdNPs) were synthesized by using the cell-free approach i.e. extract of fungal strain Rhizopus sp. (SG-01), which significantly degrade the azo dye (methyl orange). The amount of catalyst was optimized by varying the concentration of PdNPs (1 mg/mL to 4 mg/mL) for 10 mL of 50 ppm methyl orange (MO) dye separately. The time dependent study demonstrates the biogenic PdNPs could effectively degrade the methyl orange dye up to 98.7% with minimum concentration (3 mg/mL) of PdNPs within 24 h of reaction. The long-term stability and effective catalytic potential up to five repeated cycles of biogenic PdNPs have good significance for acceleration the degradation of azo dyes. Thus, the use of biogenic palladium nanoparticles for dye degradation as outlined in the present study can provide an alternative and economical method for the synthesis of PdNPs as well as degradation of azo dyes present in wastewater and is helpful to efficiently remediate textile effluent.
Collapse
Affiliation(s)
- Shraddha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Anirudh Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | - Ashma Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Jasdeep Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| |
Collapse
|
6
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
7
|
Morriss CE, Cheung CK, Nunn E, Parmeggiani F, Powell NA, Kimber RL, Haigh SJ, Lloyd JR. Biosynthesis Parameters Control the Physicochemical and Catalytic Properties of Microbially Supported Pd Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311016. [PMID: 38461530 DOI: 10.1002/smll.202311016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan Morriss
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Casey K Cheung
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elliot Nunn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, Milan, 20133, Italy
| | | | - Richard L Kimber
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
8
|
Lin S, Wu F, Zhang Y, Chen H, Guo H, Chen Y, Liu J. Surface-modified bacteria: synthesis, functionalization and biomedical applications. Chem Soc Rev 2023; 52:6617-6643. [PMID: 37724854 DOI: 10.1039/d3cs00369h] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a great leap forward in bacteria-based living agents, including imageable probes, diagnostic reagents, and therapeutics, by virtue of their unique characteristics, such as genetic manipulation, rapid proliferation, colonization capability, and disease site targeting specificity. However, successful translation of bacterial bioagents to clinical applications remains challenging, due largely to their inherent susceptibility to environmental insults, unavoidable toxic side effects, and limited accumulation at the sites of interest. Cell surface components, which play critical roles in shaping bacterial behaviors, provide an opportunity to chemically modify bacteria and introduce different exogenous functions that are naturally unachievable. With the help of surface modification, a wide range of functionalized bacteria have been prepared over the past years and exhibit great potential in various biomedical applications. In this article, we mainly review the synthesis, functionalization, and biomedical applications of surface-modified bacteria. We first introduce the approaches of chemical modification based on the bacterial surface structure and then highlight several advanced functions achieved by modifying specific components on the surface. We also summarize the advantages as well as limitations of surface chemically modified bacteria in the applications of bioimaging, diagnosis, and therapy and further discuss the current challenges and possible solutions in the future. This work will inspire innovative design thinking for the development of chemical strategies for preparing next-generation biomedical bacterial agents.
Collapse
Affiliation(s)
- Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
9
|
Giráldez-Pérez RM, Grueso EM, Carbonero A, Álvarez Márquez J, Gordillo M, Kuliszewska E, Prado-Gotor R. Synergistic Antibacterial Effects of Amoxicillin and Gold Nanoparticles: A Therapeutic Option to Combat Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1275. [PMID: 37627696 PMCID: PMC10451730 DOI: 10.3390/antibiotics12081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier. Two nanocomplexes with different compositions and structures, denoted NS1 and NS2, were prepared, the first involving external Au@16-mph-16 binding and the second partial intercalation. The Ni and NSi nanosystems obtained were characterized via transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) techniques to measure their charge, aggregation state and hydrodynamic size, and to verify their presence inside the bacteria. From these studies, it was concluded that the zeta potential values for gold nanoparticles, NS1, and NS2 nanosystems were 67.8, -36.7, and -45.1 mV. Moreover, the particle size distribution of the Au@16-mph-16 gold nanoparticles and NS2 nanoformulation was found to be 2.6 nm and 69.0 nm, respectively. However, for NS1 nanoformulation, a bimodal size distribution of 44 nm (95.5%) and 205 nm (4.5%) was found. Minimal inhibitory concentration (MIC) values were determined for the bacteria studied using a microdilution plates assay. The effect on Escherichia coli bacteria was notable, with MIC values of 17 µM for both the NS1 and NS2 nanosystems. The Staphylococcus aureus chart shows a greater inhibition effect of NS2 and NP2 in non-diluted wells, and clearly reveals a great effect on Streptococcus pneumoniae, reaching MIC values of 0.53 µM in more diluted wells. These results are in good agreement with TEM internalization studies of bacteria that reveal significant internalization and damage in Streptococcus pneumoniae. In all the treatments carried out, the antibiotic capacity of gold nanosystems as enhancers of amoxicillin was demonstrated, causing both the precursors and the nanosystems to act very quickly, and thus favoring microbial death with a small amount of antibiotic. Therefore, these gold nanosystems may constitute an effective therapy to combat resistance to antibiotics, in addition to avoiding the secondary effects derived from the administration of high doses of antibiotics.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Elia M. Grueso
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| | - Alfonso Carbonero
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | - Juan Álvarez Márquez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Mirian Gordillo
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
10
|
Joudeh N, Saragliadis A, Koster G, Mikheenko P, Linke D. Synthesis methods and applications of palladium nanoparticles: A review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1062608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Palladium (Pd) is a key component of many catalysts. Nanoparticles (NPs) offer a larger surface area than bulk materials, and with Pd cost increasing 5-fold in the last 10 years, Pd NPs are in increasing demand. Due to novel or enhanced physicochemical properties that Pd NPs exhibit at the nanoscale, Pd NPs have a wide range of applications not only in chemical catalysis, but also for example in hydrogen sensing and storage, and in medicine in photothermal, antibacterial, and anticancer therapies. Pd NPs, on the industrial scale, are currently synthesized using various chemical and physical methods. The physical methods require energy-intensive processes that include maintaining high temperatures and/or pressure. The chemical methods usually involve harmful solvents, hazardous reducing or stabilizing agents, or produce toxic pollutants and by-products. Lately, more environmentally friendly approaches for the synthesis of Pd NPs have emerged. These new approaches are based on the use of the reducing ability of phytochemicals and other biomolecules to chemically reduce Pd ions and form NPs. In this review, we describe the common physical and chemical methods used for the synthesis of Pd NPs and compare them to the plant- and bacteria-mediated biogenic synthesis methods. As size and shape determine many of the unique properties of Pd NPs on the nanoscale, special emphasis is given to the control of these parameters, clarifying how they impact current and future applications of this exciting nanomaterial.
Collapse
|
11
|
Zhang Z, Asefaw BK, Xiong Y, Chen H, Tang Y. Evidence and Mechanisms of Selenate Reduction to Extracellular Elemental Selenium Nanoparticles on the Biocathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16259-16270. [PMID: 36239462 DOI: 10.1021/acs.est.2c05145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intracellular selenium nanoparticles (SeNPs) production is a roadblock to the recovery of selenium from biological water treatment processes because it is energy intensive to break microbial cells and then separate SeNPs. This study provided evidence of significantly more extracellular SeNP production on the biocathode (97-99%) compared to the conventional reactors (1-90%) using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. The cathodic microbial community analysis showed that relative abundance of Azospira oryzae, Desulfovibrio, Stenotrophomonas, and Rhodocyclaceae was <1% in the inoculum but enriched to 10-21% for each group when the bioelectrochemical reactor reached a steady state. These four groups of microorganisms simultaneously produce intracellular and extracellular SeNPs in conventional biofilm reactors per literature review but prefer to produce extracellular SeNPs on the cathode. This observation may be explained by the cellular energetics: by producing extracellular SeNPs on the biocathode, microbes do not need to transfer selenate and the electrons from the cathode into the cells, thereby saving energy. Extracellular SeNP production on the biocathode is feasible since we found high concentrations of C-type cytochrome, which is well known for its ability to transfer electrons from electrodes to microbial cells and reduce selenate to SeNPs on the cell membrane.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Benhur K Asefaw
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Yi Xiong
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida32310, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| |
Collapse
|
12
|
Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T, Chattopadhyay S, El-Zahaby SA, Alexiou A, Koshy EP, Kumar V, Malik S, Dey A, Proćków J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 2022; 155:113658. [PMID: 36162370 DOI: 10.1016/j.biopha.2022.113658] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Doiwala, Dehradun 248016, India
| | - Subham Preetam
- Institute of Technical Education and Research, Siksha O Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Samudra Bhaumik
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Sihi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Pal
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata 700013, West Bengal, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW2770, Australia & AFNP Med, Wien 1030, Austria
| | - Eapen P Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
13
|
Kaur M, Gautam A, Guleria P, Singh K, Kumar V. Green synthesis of metal nanoparticles and their environmental applications. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100390. [DOI: 10.1016/j.coesh.2022.100390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
14
|
Law CKY, Bolea‐Fernandez E, Liu T, Bonin L, Wallaert E, Verbeken K, De Gusseme B, Vanhaecke F, Boon N. The influence of
H
2
partial pressure on biogenic palladium nanoparticle production assessed by single‐cell
ICP
‐mass spectrometry. Microb Biotechnol 2022; 16:901-914. [PMID: 36106503 PMCID: PMC10128129 DOI: 10.1111/1751-7915.14140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022] Open
Abstract
The production of biogenic palladium nanoparticles (bio-Pd NPs) is widely studied due to their high catalytic activity, which depends on the size of nanoparticles (NPs). Smaller NPs (here defined as <100 nm) are more efficient due to their higher surface/volume ratio. In this work, inductively coupled plasma-mass spectrometry (ICP-MS), flow cytometry (FCM) and transmission electron microscopy (TEM) were combined to obtain insight into the formation of these bio-Pd NPs. The precipitation of bio-Pd NPs was evaluated on a cell-per-cell basis using single-cell ICP-MS (SC-ICP-MS) combined with TEM images to assess how homogenously the particles were distributed over the cells. The results provided by SC-ICP-MS were consistent with those provided by "bulk" ICP-MS analysis and FCM. It was observed that heterogeneity in the distribution of palladium over an entire cell population is strongly dependent on the Pd2+ concentration, biomass and partial H2 pressure. The latter three parameters affected the particle size, ranging from 15.6 to 560 nm, and exerted a significant impact on the production of the bio-Pd NPs. The TEM combined with SC-ICP-MS revealed that the mass distribution for bacteria with high Pd content (144 fg Pd cell-1 ) indicated the presence of a large number of very small NPs (D50 = 15.6 nm). These results were obtained at high cell density (1 × 105 ± 3 × 104 cells μl-1 ) and H2 partial pressure (180 ml H2 ). In contrast, very large particles (D50 = 560 nm) were observed at low cell density (3 × 104 ± 10 × 102 cells μl-1 ) and H2 partial pressure (10-100 ml H2 ). The influence of the H2 partial pressure on the nanoparticle size and the possibility of size-tuned nanoparticles are presented.
Collapse
Affiliation(s)
- Cindy Ka Y. Law
- Center for Microbial Ecology and Technology (CMET) Ghent University Ghent Belgium
- Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE) Ghent Belgium
| | - Eduardo Bolea‐Fernandez
- Atomic & Mass Spectrometry (A&MS) Research Group, Department of Chemistry Ghent University Ghent Belgium
| | - Tong Liu
- Atomic & Mass Spectrometry (A&MS) Research Group, Department of Chemistry Ghent University Ghent Belgium
| | - Luiza Bonin
- Center for Microbial Ecology and Technology (CMET) Ghent University Ghent Belgium
- Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE) Ghent Belgium
| | - Elien Wallaert
- Sustainable Materials Science (SMS), Department of Materials, Textiles and Chemical Engineering Ghent University Ghent Belgium
| | - Kim Verbeken
- Sustainable Materials Science (SMS), Department of Materials, Textiles and Chemical Engineering Ghent University Ghent Belgium
| | - Bart De Gusseme
- Center for Microbial Ecology and Technology (CMET) Ghent University Ghent Belgium
- Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE) Ghent Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry (A&MS) Research Group, Department of Chemistry Ghent University Ghent Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET) Ghent University Ghent Belgium
- Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE) Ghent Belgium
| |
Collapse
|
15
|
Egan-Morriss C, Kimber RL, Powell NA, Lloyd JR. Biotechnological synthesis of Pd-based nanoparticle catalysts. NANOSCALE ADVANCES 2022; 4:654-679. [PMID: 35224444 PMCID: PMC8805459 DOI: 10.1039/d1na00686j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 06/02/2023]
Abstract
Palladium metal nanoparticles are excellent catalysts used industrially for reactions such as hydrogenation and Heck and Suzuki C-C coupling reactions. However, the global demand for Pd far exceeds global supply, therefore the sustainable use and recycling of Pd is vital. Conventional chemical synthesis routes of Pd metal nanoparticles do not meet sustainability targets due to the use of toxic chemicals, such as organic solvents and capping agents. Microbes are capable of bioreducing soluble high oxidation state metal ions to form metal nanoparticles at ambient temperature and pressure, without the need for toxic chemicals. Microbes can also reduce metal from waste solutions, revalorising these waste streams and allowing the reuse of precious metals. Pd nanoparticles supported on microbial cells (bio-Pd) can catalyse a wide array of reactions, even outperforming commercial heterogeneous Pd catalysts in several studies. However, to be considered a viable commercial option, the intrinsic activity and selectivity of bio-Pd must be enhanced. Many types of microorganisms can produce bio-Pd, although most studies so far have been performed using bacteria, with metal reduction mediated by hydrogenase or formate dehydrogenase enzymes. Dissimilatory metal-reducing bacteria (DMRB) possess additional enzymes adapted for extracellular electron transport that potentially offer greater control over the properties of the nanoparticles produced. A recent and important addition to the field are bio-bimetallic nanoparticles, which significantly enhance the catalytic properties of bio-Pd. In addition, systems biology can integrate bio-Pd into biocatalytic processes, and processing techniques may enhance the catalytic properties further, such as incorporating additional functional nanomaterials. This review aims to highlight aspects of enzymatic metal reduction processes that can be bioengineered to control the size, shape, and cellular location of bio-Pd in order to optimise its catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan-Morriss
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| | - Richard L Kimber
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna 1090 Vienna Austria
| | | | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| |
Collapse
|
16
|
Wu C, Zhou L, Zhou C, Zhou Y, Xia S, Rittmann BE. Co-removal of 2,4-dichlorophenol and nitrate using a palladized biofilm: Denitrification-promoted microbial mineralization following catalytic dechlorination. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126916. [PMID: 34425432 DOI: 10.1016/j.jhazmat.2021.126916] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The effects of nitrate on 2,4-dichlorophenol (2,4-DCP) dechlorination and biodegradation in a hydrogen (H2)-based palladized membrane biofilm reactor (Pd-MBfR) were studied. The Pd-MBfR was created by synthesizing palladium nanoparticle (Pd0NPs) that spontaneously associated with the biofilm to form a Pd0-biofilm. Without input of nitrate, the Pd-MBfR had rapid and stable catalytic hydrodechlorination: 93% of the 100-μM influent 2,4-DCP was continuously converted to phenol, part of which was then fermented via acetogenesis and methanogenesis. Introduction of nitrate enabled phenol mineralization via denitrification with only a minor decrease in catalytic hydrodechlorination. Phenol-degrading bacteria capable of nitrate respiration were enriched in the Pd0-biofilm, which was dominated by the heterotrophic genera Thauera and Azospira. Because the heterotrophic denitrifiers had greater yields than autotrophic denitrifiers, phenol was a more favorable electron donor than H2 for denitrification. This feature facilitated phenol mineralization and ameliorated denitrification inhibition of catalytic dechlorination through competition for H2. Increased nitrite loading eventually led to deterioration of the dechlorination flux and selectivity toward phenol. This study documents simultaneous removal of 2,4-DCP and nitrate in the Pd-MBfR and interactions between the two reductions.
Collapse
Affiliation(s)
- Chengyang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Luman Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Yun Zhou
- Huazhong Agricultural University, Wuhan, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
17
|
S, Misra M, Ghosh Sachan S. Nanobioremediation of heavy metals: Perspectives and challenges. J Basic Microbiol 2021. [DOI: 10.1002/jobm.202100384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Sunanda
- Department of Bioengineering and Biotechnology Birla Institute of Technology, Mesra Ranchi Jharkhand India
| | - Modhurima Misra
- Department of Bioengineering and Biotechnology Birla Institute of Technology, Mesra Ranchi Jharkhand India
| | - Shashwati Ghosh Sachan
- Department of Bioengineering and Biotechnology Birla Institute of Technology, Mesra Ranchi Jharkhand India
| |
Collapse
|
18
|
Joudeh N, Saragliadis A, Schulz C, Voigt A, Almaas E, Linke D. Transcriptomic Response Analysis of Escherichia coli to Palladium Stress. Front Microbiol 2021; 12:741836. [PMID: 34690987 PMCID: PMC8533678 DOI: 10.3389/fmicb.2021.741836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Palladium (Pd), due to its unique catalytic properties, is an industrially important heavy metal especially in the form of nanoparticles. It has a wide range of applications from automobile catalytic converters to the pharmaceutical production of morphine. Bacteria have been used to biologically produce Pd nanoparticles as a new environmentally friendly alternative to the currently used energy-intensive and toxic physicochemical methods. Heavy metals, including Pd, are toxic to bacterial cells and cause general and oxidative stress that hinders the use of bacteria to produce Pd nanoparticles efficiently. In this study, we show in detail the Pd stress-related effects on E. coli. Pd stress effects were measured as changes in the transcriptome through RNA-Seq after 10 min of exposure to 100 μM sodium tetrachloropalladate (II). We found that 709 out of 3,898 genes were differentially expressed, with 58% of them being up-regulated and 42% of them being down-regulated. Pd was found to induce several common heavy metal stress-related effects but interestingly, Pd causes unique effects too. Our data suggests that Pd disrupts the homeostasis of Fe, Zn, and Cu cellular pools. In addition, the expression of inorganic ion transporters in E. coli was found to be massively modulated due to Pd intoxication, with 17 out of 31 systems being affected. Moreover, the expression of several carbohydrate, amino acid, and nucleotide transport and metabolism genes was vastly changed. These results bring us one step closer to the generation of genetically engineered E. coli strains with enhanced capabilities for Pd nanoparticles synthesis.
Collapse
Affiliation(s)
- Nadeem Joudeh
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Christian Schulz
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - André Voigt
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Wang J, Lin W, Chen Y, Hu Y, Luo Q. Prompting the FDH/Hases-based electron transfers during Pt(IV) reduction mediated by bio-Pd(0). JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126090. [PMID: 34020357 DOI: 10.1016/j.jhazmat.2021.126090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Due to the excellent hydrogen affinity and high conductivity, palladium nanoparticles (Pd NPs) were considered as a potential strategy to regulate bacterial electron transfer and energy metabolism. Herein, Citrobacter freundii JH, capable of in-situ biosynthesizing Pd(0) NPs, was employed to promote Pt(IV) reduction. The results showed that the Pt(IV) reduction to Pt(II) was accomplished mainly via the flavins-mediated extracellular electron transfer (EET) process, while Pt(II) reduction to Pt(0) was limit step, and proceeded via two intracellular respiratory chains, including FDH/Hases-based short chain (S-chain) and typical CoQ-involved long respiratory chain (L-chain). Noteworthily, the incorporation of Pd(0) NPs mainly diverted the electrons to S-chain (as high as 71.7%-73.4%) by improving the hydrogenases (Hases) activity. Furthermore, Pd(0) NPs could stimulate the secreting of flavins and the combination between flavins and cytochrome c (c-Cyt), which converted electron transfer manner of L-chain. Additionally, Pd(0) NPs might also act as alternative proton channels to improve the energy metabolism. These findings provided significant insights into the promotion by Pd(0) NPs in terms of electron generation, electron consumption and proton translocation.
Collapse
Affiliation(s)
- Jinghao Wang
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wenmin Lin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qijin Luo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, MEE, Guangzhou, 510006, China
| |
Collapse
|
20
|
Synthesis and antimicrobial activity assessment of calcium and iron phosphate nanoparticles prepared by a facile and cost-effective method. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Macaskie LE, Collins J, Mikheenko IP, Gomez‐Bolivar J, Merroun ML, Bennett JA. Enhanced hydrogenation catalyst synthesized by Desulfovibrio desulfuricans exposed to a radio frequency magnetic field. Microb Biotechnol 2021; 14:2041-2058. [PMID: 34216193 PMCID: PMC8449679 DOI: 10.1111/1751-7915.13878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/13/2021] [Indexed: 11/27/2022] Open
Abstract
Desulfovibrio desulfuricans reduces Pd(II) to Pd(0)-nanoparticles (Pd-NPs) which are catalytically active in 2-pentyne hydrogenation. To make Pd-NPs, resting cells are challenged with Pd(II) ions (uptake), followed by addition of electron donor to promote bioreduction of cell-bound Pd(II) to Pd(0) (bio-Pd). Application of radiofrequency (RF) radiation to prepared 5 wt% bio-Pd catalyst (60 W power, 60 min) increased the hydrogenation rate by 70% with no adverse impact on selectivity to cis-2-pentene. Such treatment of a 5 wt% Pd/carbon commercial catalyst did not affect the conversion rate but reduced the selectivity. Lower-dose RF radiation (2-8 W power, 20 min) was applied to the bacteria at various stages before and during synthesis of the bio-scaffolded Pd-NPs. The reaction rate (μ mol 2-pentyne converted s-1 ) was increased by ~threefold by treatment during bacterial catalyst synthesis. Application of RF radiation (2 or 4 W power) to resting cells prior to Pd(II) exposure affected the catalyst made subsequently, increasing the reaction rate by 50% as compared to untreated cells, while nearly doubling selectivity for cis 2-pentene. The results are discussed with respect to published and related work which shows altered dispersion of the Pd-NPs made following or during RF exposure.
Collapse
Affiliation(s)
- Lynne E. Macaskie
- School of BiosciencesUniversity of BirminghamEdgbaston, BirminghamB15 2TTUK
| | - John Collins
- C‐Tech Innovation Ltd. Capenhurst Technology ParkCapenhurstCH1 6EHUK
| | - Iryna P. Mikheenko
- School of BiosciencesUniversity of BirminghamEdgbaston, BirminghamB15 2TTUK
| | - Jaime Gomez‐Bolivar
- Department of MicrobiologyFaculty of SciencesUniversity of GranadaCampus FuentenuevaGranada18071Spain
| | - Mohamed L. Merroun
- Department of MicrobiologyFaculty of SciencesUniversity of GranadaCampus FuentenuevaGranada18071Spain
| | - James A. Bennett
- School of BiosciencesUniversity of BirminghamEdgbaston, BirminghamB15 2TTUK
| |
Collapse
|
22
|
Matsena MT, Chirwa EMN. Comparative analysis of biological versus chemical synthesis of palladium nanoparticles for catalysis of chromium (VI) reduction. Sci Rep 2021; 11:16674. [PMID: 34404829 PMCID: PMC8371006 DOI: 10.1038/s41598-021-96024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
The discharge of hexavalent chromium [Cr(VI)] from several anthropogenic activities leads to environmental pollution. In this study, we explore a simple yet cost effective method for the synthesis of palladium (Pd) nanoparticles for the treatment of Cr(VI). The presence of elemental Pd [Pd(0)] was confirmed by scanning electron microscope (SEM), electron dispersive spectroscopy and X-ray diffraction (XRD). We show here that the biologically synthesized nanoparticles (Bio-PdNPs) exhibit improved catalytic reduction of Cr(VI) due to their size being smaller and also being highly dispersed as compared to chemically synthesized nanoparticles (Chem-PdNPs). The Langmuir–Hinshelwood mechanism was successfully used to model the kinetics. Using this model, the Bio-PdNPs were shown to perform better than Chem-PdNPs due to the rate constant (kbio = 6.37 mmol s−1 m−2) and Cr(VI) adsorption constant (KCr(VI),bio = 3.11 × 10−2 L mmol−1) of Bio-PdNPs being higher than the rate constant (kchem = 3.83 mmol s−1 m−2) and Cr(VI) adsorption constant (KCr(VI),chem = 1.14 × 10−2 L mmol−1) of Chem-PdNPs. In addition, product inhibition by trivalent chromium [Cr(III)] was high in Chem-PdNPs as indicated by the high adsorption constant of Cr(III) in Chem-PdNPs of KCr(III),chem = 52.9 L mmol−1 as compared to the one for Bio-PdNPs of KCr(III),bio = 2.76 L mmol−1.
Collapse
Affiliation(s)
- Mpumelelo T Matsena
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
| | - Evans M N Chirwa
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
23
|
Yuan J, Cao J, Yu F, Ma J, Zhang D, Tang Y, Zheng J. Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: design strategies, fundamental mechanisms, and future opportunities. J Mater Chem B 2021; 9:6491-6506. [PMID: 34296734 DOI: 10.1039/d1tb01000j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomanufacturing metal/metallic nanomaterials with ordered micro/nanostructures and controllable functions is of great importance in both fundamental studies and practical applications due to their low toxicity, lower pollution production, and energy conservation. Microorganisms, as efficient biofactories, have a significant ability to biomineralize and bioreduce metal ions that can be obtained as nanocrystals of varying morphologies and sizes. The development of nanoparticle biosynthesis maximizes the safety and sustainability of the nanoparticle preparation. Significant efforts and progress have been made to develop new green and environmentally friendly methods for biocompatible metal/metallic nanomaterials. In this review, we mainly focus on the microbial biomanufacture of different metal/metallic nanomaterials due to their unique advantages of wide availability, environmental acceptability, low cost, and circular sustainability. Specifically, we summarize recent and important advances in the synthesis strategies and mechanisms for different types of metal/metallic nanomaterials using different microorganisms. Finally, we highlight the current challenges and future research directions in this growing multidisciplinary field of biomaterials science, nanoscience, and nanobiotechnology.
Collapse
Affiliation(s)
- Jianhua Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Al-khattaf FS. Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi J Biol Sci 2021; 28:3624-3631. [PMID: 34121906 PMCID: PMC8176005 DOI: 10.1016/j.sjbs.2021.03.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Metal nanoparticles were being used in different processes of developmental sectors like agriculture, industry, medical and pharmaceuticals. Nano-biotechnology along with sustainable organic chemistry has immense potential to reproduce innovative and key components of the systems to support surrounding environment, human health, and industry sustainably. Different unconventional methods were being used in green chemistry to synthesize gold and silver nanoparticles from various microbes. So, we reviewed different biological processes for green synthesis of metal nanoparticles. We also studied the mechanism of the synthesis process and procedures to characterize them. Some metallic nanoparticles have shown their potential to act as antimicrobial agent against plant pathogens. Here, we outlined green nanoparticles synthesized from microbes and highlighted their role against plant disease management.
Collapse
Affiliation(s)
- Fatimah S. Al-khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Matsena MT, Tichapondwa SM, Chirwa EM. Improved chromium (VI) reduction performance by bacteria in a biogenic palladium nanoparticle enhanced microbial fuel cell. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Matsumoto T, Kamino M, Yamada R, Konishi Y, Ogino H. Identification of genes responsible for reducing palladium ion in Escherichia coli. J Biotechnol 2020; 324:7-10. [PMID: 32971180 DOI: 10.1016/j.jbiotec.2020.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022]
Abstract
Palladium (Pd) is commonly used as a catalyst for automobiles and electronic devices, and a reliable source of Pd is required for continued commercial applications. Biomineralization has attracted attention as an inexpensive and eco-friendly recycling approach for a continued supply of Pd. Escherichia coli is one of the best hosts for collecting Pd because it grows rapidly and requires an inexpensive minimal medium. Although E. coli can reduce Pd ions, the mechanism of reduction has not been thoroughly investigated. In this study, we investigated the genes involved in the reduction of Pd ions in E. coli. A gene responsible for the reduction of Pd ions was identified from approximately 4000 genes, other than essential genes, by using the single-gene-knockout library. The rate of reducing Pd ions by E. coli cells was evaluated. Among the investigated single-gene-knockout strains, 7 strains including the gene related to membrane transport, transcriptional regulation, and metabolic enzyme promote the reduction of Pd ions, and 73 strains including the genes related to formate metabolism and molybdopterin synthesis repress the reduction of Pd ions. Our results may provide a new perspective for the improvement of the bioreduction of minor metals.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Mizuho Kamino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yasuhiro Konishi
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
27
|
Yang ZN, Hou YN, Zhang B, Cheng HY, Yong YC, Liu WZ, Han JL, Liu SJ, Wang AJ. Insights into palladium nanoparticles produced by Shewanella oneidensis MR-1: Roles of NADH dehydrogenases and hydrogenases. ENVIRONMENTAL RESEARCH 2020; 191:110196. [PMID: 32919957 DOI: 10.1016/j.envres.2020.110196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Biologically synthesized palladium nanoparticles (bio-Pd) have attracted considerable interest as promising green catalysts for environmental remediation. However, the mechanisms by which microorganisms produce bio-Pd remain unclear. In the present study, we investigated the roles of Shewanella oneidensis MR-1 and its NADH dehydrogenases and hydrogenases (HydA and HyaB) in bio-Pd production using formate as the electron donor. The roles of NADH dehydrogenases and hydrogenases were studied by inhibiting NADH dehydrogenases and using hydrogenase mutants (ΔhydA, ΔhyaB, and ΔhydAΔhyaB), respectively. The results showed ~97% reduction of palladium by S. oneidensis MR-1 after 24 h using 250 μM palladium and 500 μM formate. Electron microscopy images showed the presence of bio-Pd on both the outer and cytoplasmic membranes of S. oneidensis MR-1. However, the inhibition of NADH dehydrogenases in S. oneidensis MR-1 resulted in only ~61% reduction of palladium after 24 h, and bio-Pd were not found on the outer membrane. The mutants lacking one or two hydrogenases removed 91-96% of palladium ions after 24 h and showed more cytoplasmic bio-Pd but less periplasmic bio-Pd. To the best of our knowledge, this is the first study to demonstrate the role of NADH dehydrogenases of S. oneidensis MR-1 in the formation of bio-Pd on the outer membrane. It also demonstrates that the hydrogenases (especially HyaB) of S. oneidensis MR-1 contribute to the formation of bio-Pd in the periplasmic space. This study provides mechanistic insights into the production of biogenic metal nanoparticles towards their possible use in industrial and environmental applications.
Collapse
Affiliation(s)
- Zhen-Ni Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Hou
- China Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Bo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuang-Jiang Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
28
|
Zheng Z, Xiao Y, Cao H, Tian X, Wu R, Zhang J, Ulstrup J, Zhao F. Effect of Copper and Phosphate on the Biosynthesis of Palladium Nanoparticles by
Shewanella oneidensis
MR‐1. ChemElectroChem 2020. [DOI: 10.1002/celc.202001151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhiyong Zheng
- Department of Chemistry Technical University of Denmark Kemitorvet, Building 207, Kongens Lyngby, DK 2800 Denmark
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion Institute of Urban Environment Chinese Academy of Sciences 1799 Jimei Road Xiamen 361021 China
| | - Huili Cao
- Department of Chemistry Technical University of Denmark Kemitorvet, Building 207, Kongens Lyngby, DK 2800 Denmark
| | - Xiaochun Tian
- CAS Key Laboratory of Urban Pollutant Conversion Institute of Urban Environment Chinese Academy of Sciences 1799 Jimei Road Xiamen 361021 China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Jingdong Zhang
- Department of Chemistry Technical University of Denmark Kemitorvet, Building 207, Kongens Lyngby, DK 2800 Denmark
| | - Jens Ulstrup
- Department of Chemistry Technical University of Denmark Kemitorvet, Building 207, Kongens Lyngby, DK 2800 Denmark
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion Institute of Urban Environment Chinese Academy of Sciences 1799 Jimei Road Xiamen 361021 China
| |
Collapse
|
29
|
Tan L, Ray Jones T, Poitras J, Xie J, Liu X, Southam G. Biochemical synthesis of palladium nanoparticles: The influence of chemical fixatives used in electron microscopy on nanoparticle formation and catalytic performance. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122945. [PMID: 32516730 DOI: 10.1016/j.jhazmat.2020.122945] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Palladium nanoparticles (PdNPs) can catalyse a range of reductive chemical reactions transforming both organic and inorganic environmental pollutants. PdNPs that ranged from <2 to 2-40 nm were synthesized using chemical methods, and bacterial biomass with/without chemical fixatives. PdNP formation was enhanced by adsorption of Pd(II) to bacterial biomass, followed by fixation with formate or glutaraldehyde. TEM-SAED analyses confirmed that the cell associated PdNPs were polycrystalline with a face-centered cubic structure. Chemically formed PdNPs possessed a higher Pd(0):Pd(II) ratio and produced structurally similar nanoparticles as the biotic systems. These PdNPs were employed to catalyze two, reductive chemical reactions, transforming 4-nitrophenol (4-NP) and hexavalent chromium [Cr(VI)], into 4-aminophenol and Cr(IV), respectively. In the reduction of 4-NP, the catalytic performance was directly proportional to PdNP surface area, i.e., the smallest PdNPs in formate-PdCH34 cells had the fastest rate of reaction. The mass of Pd(0) as PdNPs was the main contributor to Cr(VI) reduction; the chemically synthesized PdNPs showed the highest removal efficiency with 96% at 20 min. The use of glutaraldehyde enhanced the reduction of Pd(II) and promoted PdNPs formation, i.e., creating an artefact of fixation; however, this treatment also enhanced the catalytic performance of these PdNPs.
Collapse
Affiliation(s)
- Ling Tan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083 China; School of Earth & Environmental Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia.
| | - Thomas Ray Jones
- School of Earth & Environmental Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Jordan Poitras
- School of Earth & Environmental Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Jianping Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083 China
| | - Xinxing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083 China
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
30
|
Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front Chem 2020; 8:799. [PMID: 33195027 PMCID: PMC7658653 DOI: 10.3389/fchem.2020.00799] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Nanoparticle synthesis using microorganisms and plants by green synthesis technology is biologically safe, cost-effective, and environment-friendly. Plants and microorganisms have established the power to devour and accumulate inorganic metal ions from their neighboring niche. The biological entities are known to synthesize nanoparticles both extra and intracellularly. The capability of a living system to utilize its intrinsic organic chemistry processes in remodeling inorganic metal ions into nanoparticles has opened up an undiscovered area of biochemical analysis. Nanotechnology in conjunction with biology gives rise to an advanced area of nanobiotechnology that involves living entities of both prokaryotic and eukaryotic origin, such as algae, cyanobacteria, actinomycetes, bacteria, viruses, yeasts, fungi, and plants. Every biological system varies in its capabilities to supply metallic nanoparticles. However, not all biological organisms can produce nanoparticles due to their enzymatic activities and intrinsic metabolic processes. Therefore, biological entities or their extracts are used for the green synthesis of metallic nanoparticles through bio-reduction of metallic particles leading to the synthesis of nanoparticles. These biosynthesized metallic nanoparticles have a range of unlimited pharmaceutical applications including delivery of drugs or genes, detection of pathogens or proteins, and tissue engineering. The effective delivery of drugs and tissue engineering through the use of nanotechnology exhibited vital contributions in translational research related to the pharmaceutical products and their applications. Collectively, this review covers the green synthesis of nanoparticles by using various biological systems as well as their applications.
Collapse
Affiliation(s)
| | | | | | | | - Guang-wei Zhang
- Department of Cardiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Kalia A, Singh S. Myco-decontamination of azo dyes: nano-augmentation technologies. 3 Biotech 2020; 10:384. [PMID: 32802726 PMCID: PMC7415790 DOI: 10.1007/s13205-020-02378-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
Effluents of textile, paper, and related industries contain significant amounts of synthetic dyes which has serious environmental and health implications. Remediation of dyes through physical and chemical techniques has specific limitations. Augmented biological decontamination strategies 'microbial remediation' may involve ring-opening of dye molecules besides the reduction of constituent metal ions. Both bacterial and fungal genera are known to exhibit metabolic versatility which can be harnessed for effective bio-removal of the toxic dye contaminants. Ascomycetous/basidiomycetes fungi can effectively decontaminate azo dyes through laccase/peroxidase enzyme-mediated catalysis. The extent, efficacy, and range of fungal dye decontamination can be enhanced by the conjugated application of nanomaterials, including nanoparticles (NPs) and their composites. Fungal cell-enabled NP synthesis- 'myco-farmed NPs', is a low-cost strategy for scaled-up fabrication of a variety of metal, metal oxide, non-metal oxide NPs through oxidation/reduction of dissolved ions/molecules by extracellular biomolecules. Augmented and rapid decontamination of azo dyes at high concentrations can be achieved by the use of myco-farmed NPs, NPs adsorbed fungal biomass, and nano-immobilized fungi-derived bio-catalytical agents. This manuscript will explore the opportunities and benefits of mycoremediation and application of fungus-NP bionanoconjugate to remediate dye pollutants in wastewaters and land contaminated with the effluent of textile industries.
Collapse
Affiliation(s)
- Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Swarnjeet Singh
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
32
|
Synthesis of Biogenic Palladium Nanoparticles Using Citrobacter sp. for Application as Anode Electrocatalyst in a Microbial Fuel Cell. Catalysts 2020. [DOI: 10.3390/catal10080838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Palladium (Pd) is a cheap and effective electrocatalyst that is capable of replacing platinum (Pt) in various applications. However, the problem in using chemically synthesized Pd nanoparticles (PdNPs) is that they are mostly fabricated using toxic chemicals under severe conditions. In this study, we present a more environmentally-friendly process in fabricating biogenic Pd nanoparticles (Bio-PdNPs) using Citrobacter sp. isolated from wastewater sludge. Successful fabrication of Bio-PdNPs was achieved under anaerobic conditions at pH six and a temperature of 30 °C using sodium formate (HCOONa) as an electron donor. Citrobacter sp. showed biosorption capabilities with no enzymatic contribution to Pd(II) uptake during absence of HCOONa in both live and dead cells. Citrobacter sp. live cells also displayed high enzymatic contribution to the removal of Pd(II) by biological reduction. This was confirmed by Scanning Electron Microscope (SEM), Electron Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization, which revealed the presence Bio-PdNPs deposited on the bacterial cells. The bio-PdNPs successfully enhanced the anode performance of the Microbial Fuel Cell (MFC). The MFC with the highest Bio-PdNPs loading (4 mg Bio-PdNP/cm2) achieved a maximum power density of 539.3 mW/m3 (4.01 mW/m2) and peak voltage of 328.4 mV.
Collapse
|
33
|
Wei X, Zhu N, Huang X, Kang N, Wu P, Dang Z. Efficient degradation of sodium diclofenac via heterogeneous Fenton reaction boosted by Pd/Fe@Fe 3O 4 nanoparticles derived from bio-recovered palladium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110072. [PMID: 32090815 DOI: 10.1016/j.jenvman.2020.110072] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Dehalogenation of emerging pollutants has attracted worldwide attention. In this study, novel bio-Pd/Fe@Fe3O4 nanoparticles (NPs) were proposed to boost the heterogeneous Fenton reaction for degradation of sodium diclofenac (DCF). Specifically, Enterococcus faecalis (E. faecalis) was employed to achieve bio-recovered palladium (bio-Pd). Results showed that expected preparation of bio-Pd/Fe@Fe3O4 NPs was confirmed by various characterization techniques. The prepared bio-Pd/Fe@Fe3O4 NPs were spherical morphology with average size of 9 nm. Under the optimum conditions, the removal efficiency of 10 mg/L DCF in 20 min and 40 min reached as high as 94.69% and 99.65%, respectively. The dechlorination and mineralization efficiencies of DCF were 85.16% and 59.21% in 120 min, respectively. The main degradation pathway of DCF was complete mineralization with the final products CO2, chloride ions and H2O. The improvement of dechlorination efficiency was ascribed to the accelerated corrosion of nano zero valent iron (nZVI) by Pd/Fe galvanic effect and the rise of active hydrogen. Meanwhile, more ferrous ions were released into this solution, resulting in the higher heterogeneous Fenton reaction rate driven by bio-Pd/Fe@Fe3O4 NPs. Therefore, the findings suggested that bio-Pd/Fe@Fe3O4 NPs were effective catalysts for DCF dechlorination and mineralization. The work provided a novel strategy for degradation of halogen-containing environmental pollutants.
Collapse
Affiliation(s)
- Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Xixian Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Naixin Kang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| |
Collapse
|
34
|
Scaria J, Nidheesh PV, Kumar MS. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110011. [PMID: 32072958 DOI: 10.1016/j.jenvman.2019.110011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 05/07/2023]
Abstract
Bimetallic nanoparticles are the complex combination of two different metal constituents in nanoscale. Water and wastewater treatment utilizing bimetallic particles is an emerging research area. When two metals are combined, it can show not only the properties of its constituents but also new and enhanced properties derived by the synergy of the combination. These properties of bimetallic nanoparticles inevitably depend on the size, structure, and morphology of the particles. Thus the adopting synthesis strategy is very crucial to achieve desired results. Here in this review, the various bimetallic synthesis strategies are compared. The bimetallic nanoparticles decontaminate water through adsorption and/or catalysis mechanism. The various degradation pathways, specifically, adsorption, reduction, oxidation, and advanced oxidation processes are discussed in detail in this review.
Collapse
Affiliation(s)
- Jaimy Scaria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
35
|
Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing conditions reveals new key cytochromes involved. Appl Microbiol Biotechnol 2020; 104:4059-4069. [DOI: 10.1007/s00253-020-10502-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/15/2023]
|
36
|
Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-44176-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
He P, Mao T, Wang A, Yin Y, Shen J, Chen H, Zhang P. Enhanced reductive removal of ciprofloxacin in pharmaceutical wastewater using biogenic palladium nanoparticles by bubbling H2. RSC Adv 2020; 10:26067-26077. [PMID: 35519754 PMCID: PMC9055312 DOI: 10.1039/d0ra03783d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 11/25/2022] Open
Abstract
To treat waste with waste and efficiently remove the organic pollutant, waste palladiums(ii) were adsorbed and reduced on microorganism surface to catalyze the reductive removal of ciprofloxacin in pharmaceutical wastewater. By optimizing conditions such as pH and temperature, the amount of biogenic palladium adsorbed and reduced on E. coli reached 139.48 mg g−1 (Pd/microorganisms). Moreover, most of the Pd(ii) was reduced to nanometer-sized Pd(0) as characterized by TEM and SEM with EDXA. Using the obtained biogenic palladium, the reductive removal of ciprofloxacin is up to 87.70% at 25 °C, 3.03 folds of that achieved in the absence of H2. The results show that waste E. coli microorganisms can efficiently adsorb and remove waste Pd(ii) and produce Bio-Pd nanoparticle catalysts in the presence of H2. This biogenic palladium presents high catalytic activity and great advantages in the reductive degradation of ciprofloxacin. Our method can also be applied to other waste metal ions to prepare the biogenic metals, facilitate their recovery and reuse in degrading organic pollutants in wastewater to achieve “treating waste using waste”. A solution has been successfully introduced to three key challenges from the wastewater containing waste microorganisms, metal and ciprofloxacin, respectively.![]()
Collapse
Affiliation(s)
- Peipei He
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Tianyu Mao
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Youcheng Yin
- Holistic Integrative Pharmacy Institutes
- College of Medicine
- Hangzhou Normal University
- Hangzhou
- China
| | - Jinying Shen
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Haoming Chen
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Pengfei Zhang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| |
Collapse
|
38
|
Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101174] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Gomez-Bolivar J, Mikheenko IP, Orozco RL, Sharma S, Banerjee D, Walker M, Hand RA, Merroun ML, Macaskie LE. Synthesis of Pd/Ru Bimetallic Nanoparticles by Escherichia coli and Potential as a Catalyst for Upgrading 5-Hydroxymethyl Furfural Into Liquid Fuel Precursors. Front Microbiol 2019; 10:1276. [PMID: 31281292 PMCID: PMC6595500 DOI: 10.3389/fmicb.2019.01276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli cells support the nucleation and growth of ruthenium and ruthenium-palladium nanoparticles (Bio-Ru and Bio-Pd/Ru NPs). We report a method for the synthesis of these monometallic and bimetallic NPs and their application in the catalytic upgrading of 5-hydroxymethyl furfural (5-HMF) to 2,5 dimethylfuran (DMF). Examination using high resolution transmission electron microscopy with energy dispersive X-ray microanalysis (EDX) and high angle annular dark field (HAADF) showed Ru NPs located mainly at the cell surface using Ru(III) alone but small intracellular Ru-NPs (size ∼1-2 nm) were visible only in cells that had been pre-"seeded" with Pd(0) (5 wt%) and loaded with equimolar Ru. Pd(0) NPs were distributed between the cytoplasm and cell surface. Cells bearing 5% Pd/5% Ru showed some co-localization of Pd and Ru but chance associations were not ruled out. Cells loaded to 5 wt% Pd/20 wt% Ru showed evidence of core-shell structures (Ru core, Pd shell). Examination of this cell surface material using X-ray photoelectron spectroscopy (XPS) showed Pd(0) and Pd(II) and Ru(IV) and Ru(III), with confirmation by analysis of bulk material using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses. Both Bio-Ru NPs and Bio-Pd/Ru NPs were active in the conversion of 5-HMF into 2,5-DMF but commercial Ru on carbon catalyst outperformed 5 wt% bio-Ru by fourfold. While 5 wt% Pd/20 wt% Ru achieved 20% yield of DMF the performance of the 5 wt% Pd/5 wt% Ru bio-catalyst was higher and comparable to the commercial 5 wt% Ru/C catalyst in a test reaction using commercial 5-HMF (>50% selectivity). 5-HMF was prepared by thermochemical hydrolysis of starch and cellulose with solvent extraction of 5-HMF into methyltetrahydrofuran (MTHF). Here, with MTHF as the reaction solvent the commercial Ru/C catalyst had little activity (100% conversion, negligible selectivity to DMF) whereas the 5 wt% Pd/5 wt% Ru bio-bimetallic gave 100% conversion and 14% selectivity to DMF from material extracted from hydrolyzates. The results indicate a potential green method for realizing increased energy potential from biomass wastes as well as showing a bio-based pathway to manufacturing a scarcely described bimetallic material.
Collapse
Affiliation(s)
- Jaime Gomez-Bolivar
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Iryna P Mikheenko
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rafael L Orozco
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Surbhi Sharma
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Dipanjan Banerjee
- Dutch-Belgian Beamline, European Synchrotron Radiation Facility, Grenoble, France.,Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | - Rachel A Hand
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Lynne E Macaskie
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
Kitjanukit S, Sasaki K, Okibe N. Production of highly catalytic, archaeal Pd(0) bionanoparticles using Sulfolobus tokodaii. Extremophiles 2019; 23:549-556. [PMID: 31218490 DOI: 10.1007/s00792-019-01106-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/09/2019] [Indexed: 01/25/2023]
Abstract
The thermo-acidophilic archaeon, Sulfolobus tokodaii, was utilized for the production of Pd(0) bionanoparticles from acidic Pd(II) solution. Use of active cells was essential to form well-dispersed Pd(0) nanoparticles located on the cell surface. The particle size could be manipulated by modifying the concentration of formate (as electron donor; e-donor) and by addition of enzymatic inhibitor (Cu2+) in the range of 14-63 nm mean size. Since robust Pd(II) reduction progressed in pre-grown S. tokodaii cells even in the presence of up to 500 mM Cl-, it was possible to conversely utilize the effect of Cl- to produce even finer and denser particles in the range of 8.7-15 nm mean size. This effect likely resulted from the increasing stability of anionic Pd(II)-chloride complex at elevated Cl- concentrations, eventually allowing involvement of greater number of initial Pd(0) crystal nucleation sites (enzymatic sites). The catalytic activity [evaluated based on Cr(VI) reduction reaction] of Pd(0) bionanoparticles of varying particle size formed under different conditions were compared. The finest Pd(0) bionanoparticles obtained at 50 mM Cl- (mean 8.7 nm; median 5.6 nm) exhibited the greatest specific Cr(VI) reduction rate, with four times higher catalytic activity compared to commercial Pd/C. The potential applicability of S. tokodaii cells in the recovery of highly catalytic Pd(0) nanoparticles from actual acidic chloride leachate was, thus, suggested.
Collapse
Affiliation(s)
- Santisak Kitjanukit
- Department of Earth Resource Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resource Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naoko Okibe
- Department of Earth Resource Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
41
|
Gomez-Bolivar J, Mikheenko IP, Macaskie LE, Merroun ML. Characterization of Palladium Nanoparticles Produced by Healthy and Microwave-Injured Cells of Desulfovibrio desulfuricans and Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E857. [PMID: 31195655 PMCID: PMC6630224 DOI: 10.3390/nano9060857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
Numerous studies have focused on the bacterial synthesis of palladium nanoparticles (bio-Pd NPs), via uptake of Pd (II) ions and their enzymatically-mediated reduction to Pd (0). Cells of Desulfovibrio desulfuricans (obligate anaerobe) and Escherichia coli (facultative anaerobe, grown anaerobically) were exposed to low-dose radiofrequency (RF) radiation(microwave (MW) energy) and the biosynthesized Pd NPs were compared. Resting cells were exposed to microwave energy before Pd (II)-challenge. MW-injured Pd (II)-treated cells (and non MW-treated controls) were contacted with H2 to promote Pd(II) reduction. By using scanning transmission electron microscopy (STEM) associated with a high-angle annular dark field (HAADF) detector and energy dispersive X-ray (EDX) spectrometry, the respective Pd NPs were compared with respect to their mean sizes, size distribution, location, composition, and structure. Differences were observed following MWinjury prior to Pd(II) exposure versus uninjured controls. With D. desulfuricans the bio-Pd NPs formed post-injury showed two NP populations with different sizes and morphologies. The first, mainly periplasmically-located, showed polycrystalline Pd nano-branches with different crystal orientations and sizes ranging between 20 and 30 nm. The second NPpopulation, mainly located intracellularly, comprised single crystals with sizes between 1 and 5 nm. Bio-Pd NPs were produced mainly intracellularly by injured cells of E. coli and comprised single crystals with a size distribution between 1 and 3 nm. The polydispersity index was reduced in the bio-Pd made by injured cells of E. coli and D. desulfuricans to 32% and 39%, respectively, of the values of uninjured controls, indicating an increase in NP homogeneity of 30-40% as a result of the prior MWinjury. The observations are discussed with respect to the different locations of Pd(II)-reducing hydrogenases in the two organisms and with respect to potential implications for the catalytic activity of the produced NPs following injury-associated altered NP patterning.
Collapse
Affiliation(s)
- Jaime Gomez-Bolivar
- Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain.
| | - Iryna P Mikheenko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Lynne E Macaskie
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain.
| |
Collapse
|
42
|
Mikheenko IP, Gomez-Bolivar J, Merroun ML, Macaskie LE, Sharma S, Walker M, Hand RA, Grail BM, Johnson DB, Orozco RL. Upconversion of Cellulosic Waste Into a Potential "Drop in Fuel" via Novel Catalyst Generated Using Desulfovibrio desulfuricans and a Consortium of Acidophilic Sulfidogens. Front Microbiol 2019; 10:970. [PMID: 31134018 PMCID: PMC6523789 DOI: 10.3389/fmicb.2019.00970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/17/2019] [Indexed: 11/13/2022] Open
Abstract
Biogas-energy is marginally profitable against the "parasitic" energy demands of processing biomass. Biogas involves microbial fermentation of feedstock hydrolyzate generated enzymatically or thermochemically. The latter also produces 5-hydroxymethyl furfural (5-HMF) which can be catalytically upgraded to 2, 5-dimethyl furan (DMF), a "drop in fuel." An integrated process is proposed with side-stream upgrading into DMF to mitigate the "parasitic" energy demand. 5-HMF was upgraded using bacterially-supported Pd/Ru catalysts. Purpose-growth of bacteria adds additional process costs; Pd/Ru catalysts biofabricated using the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans were compared to those generated from a waste consortium of acidophilic sulfidogens (CAS). Methyl tetrahydrofuran (MTHF) was used as the extraction-reaction solvent to compare the use of bio-metallic Pd/Ru catalysts to upgrade 5-HMF to DMF from starch and cellulose hydrolyzates. MTHF extracted up to 65% of the 5-HMF, delivering solutions, respectively, containing 8.8 and 2.2 g 5-HMF/L MTHF. Commercial 5% (wt/wt) Ru-carbon catalyst upgraded 5-HMF from pure solution but it was ineffective against the hydrolyzates. Both types of bacterial catalyst (5wt%Pd/3-5wt% Ru) achieved this, bio-Pd/Ru on the CAS delivering the highest conversion yields. The yield of 5-HMF from starch-cellulose thermal treatment to 2,5 DMF was 224 and 127 g DMF/kg extracted 5-HMF, respectively, for CAS and D. desulfuricans catalysts, which would provide additional energy of 2.1 and 1.2 kWh/kg extracted 5-HMF. The CAS comprised a mixed population with three patterns of metallic nanoparticle (NP) deposition. Types I and II showed cell surface-localization of the Pd/Ru while type III localized NPs throughout the cell surface and cytoplasm. No metallic patterning in the NPs was shown via elemental mapping using energy dispersive X-ray microanalysis but co-localization with sulfur was observed. Analysis of the cell surfaces of the bulk populations by X-ray photoelectron spectroscopy confirmed the higher S content of the CAS bacteria as compared to D. desulfuricans and also the presence of Pd-S as well as Ru-S compounds and hence a mixed deposit of PdS, Pd(0), and Ru in the form of various +3, +4, and +6 oxidation states. The results are discussed in the context of recently-reported controlled palladium sulfide ensembles for an improved hydrogenation catalyst.
Collapse
Affiliation(s)
- Iryna P Mikheenko
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jaime Gomez-Bolivar
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Lynne E Macaskie
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Surbhi Sharma
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | - Rachel A Hand
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Barry M Grail
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| | | | - Rafael L Orozco
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Chen Y, Hu K, Chen Y. The effect of biotic and abiotic environmental factors on Pd(II) adsorption and reduction by Bacillus megaterium Y-4. CHEMOSPHERE 2019; 220:1058-1066. [PMID: 33395792 DOI: 10.1016/j.chemosphere.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 06/12/2023]
Abstract
In this study, we screened a new aerobic bacterium (Bacillus megaterium Y-4) that can efficiently reduce Pd(II) with different electron donors. The best electron donor was sodium formate and the best reduction of Pd(II) were by log growth phase cells. The high removal capacity of Pd(II) (1658.3 mg/g) was obtained with 30 mg/L dry cell weight and 50 mg/L Pd (II) in the presence of 5 mM sodium formate. The removal amount of Pd(II) increased with initial Pd(II) concentrations ranging from 50 to 200 mg/L with 100 mg/L Pd(II) being completely removed by 148 mg/L dry cell weight in 6 h. The cell wall, periplasmic space and intracellular contents of B. megaterium Y-4 contains different kinds of enzymes for reducing Pd(II). In addition, the activity of extracellular and periplasmic enzymes was more sensitive to temperature than intracellular enzymes. XRD and XPS analysis revealed that the enzyme for reducing Pd(II) in B. megaterium Y-4 can tolerate a broad range of temperatures (20-60 °C) and pH (2.0-7.0) but was sensitive to oxygen. TEM analysis showed that biogenic palladium nanoparticles (Pd-NPs) were mainly distributed evenly in the periplasmic space of the live cells and were released from cells into aqueous solution, which reduced the toxicity of Pd(II), allowing Pd-NP recovery without cell destruction. B. megaterium Y-4 is a potential bacterium for efficient treatment and reclamation of Pd(II) pollution and formation of Pd-NPs.
Collapse
Affiliation(s)
- Yuan Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China.
| | - Keqiang Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China.
| |
Collapse
|
44
|
Naushad M, Rajendran S, Gracia F, Thangarajan S, Balasubramanian J, Li Y, Gajendran B. Nanoparticles: Antimicrobial Applications and Its Prospects. ADVANCED NANOSTRUCTURED MATERIALS FOR ENVIRONMENTAL REMEDIATION 2019; 25. [PMCID: PMC7123839 DOI: 10.1007/978-3-030-04477-0_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays, nanomaterials [NPs; size, 1–100 nm] have emerged as unique antimicrobial agents. Specially, several classes of antimicrobial NPs and nanosized carriers for antibiotic delivery have proven their efficacy for handling infectious diseases, including antibiotic-resistant ones, in vitro as well as in animal models, which can offer better therapy than classical drugs due to their high surface area-to-volume ratio, resulting in appearance of new mechanical, chemical, electrical, optical, magnetic, electro-optical, and magneto-optical properties, unlike from their bulk properties. Thus, scientifically NPs have been validated to be fascinating in fighting bacteria. In this chapter, we will discuss precise properties of microorganisms and their modifications among each strain specifically. The toxicity mechanisms vary from one stain to another. Even the NP’s efficacy to treat against bacteria and drug-resistant bacteria and their defense mechanisms change according to strains in particular composition of cell walls, the enzymic composition, and so on. Thus, we provide an outlook on NPs in the microbial world and mechanism to overcome the drug resistance by tagging antibiotics in NPs and its future prospects for the scientific world.
Collapse
Affiliation(s)
- Mu. Naushad
- grid.56302.320000 0004 1773 5396Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saravanan Rajendran
- grid.412182.c0000 0001 2179 0636Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Arica, Chile
| | - Francisco Gracia
- grid.443909.30000 0004 0385 4466Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
45
|
Metallic Nanoparticles Obtained via “Green” Synthesis as a Platform for Biosensor Construction. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040720] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel nanomaterials, including metallic nanoparticles obtained via green synthesis (gNPs), have a great potential for application in biotechnology, industry and medicine. The special role of gNPs is related to antibacterial agents, fluorescent markers and carriers for drug delivery. However, application of gNPs for construction of amperometric biosensors (ABSs) is not well documented. The aim of the current research was to study potential advantages of using gNPs in biosensorics. The extracellular metabolites of the yeast Ogataea polymorpha were used as reducing agents for obtaining gNPs from the corresponding inorganic ions. Several gNPs were synthesized, characterized and tested as enzyme carriers on the surface of graphite electrodes (GEs). The most effective were Pd-based gNPs (gPdNPs), and these were studied further and applied for construction of laccase- and alcohol oxidase (AO)-based ABSs. AO/GE, AO-gPdNPs/GE, laccase/GE and laccase-gPdNPs/GE were obtained, and their analytical characteristics were studied. Both gPdNPs-modified ABSs were found to have broader linear ranges and higher storage stabilities than control electrodes, although they are less sensitive toward corresponding substrates. We thus conclude that gPdNPs may be promising for construction of ABSs for enzymes with very high affinities to their substrates.
Collapse
|
46
|
Teng Y, Xu Y, Wang X, Christie P. Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation. Front Microbiol 2019; 10:106. [PMID: 30837956 PMCID: PMC6383490 DOI: 10.3389/fmicb.2019.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Hydrogen (H2) metabolism has attracted considerable interest because the activities of H2-producing and consuming microbes shape the global H2 cycle and may have vital relationships with the global cycling of other elements. There are many pathways of microbial H2 emission and consumption which may affect the structure and function of microbial communities. A wide range of microbial groups employ H2 as an electron donor to catalyze the reduction of pollutants such as organohalides, azo compounds, and trace metals. Syntrophy coupled mutualistic interaction between H2-producing and H2-consuming microorganisms can transfer H2 and be accompanied by the removal of toxic compounds. Moreover, hydrogenases have been gradually recognized to have a key role in the progress of pollutant degradation. This paper reviews recent advances in elucidating role of H2 metabolism involved in syntrophy and hydrogenases in environmental bioremediation. Further investigations should focus on the application of bioenergy in bioremediation to make microbiological H2 metabolism a promising remediation strategy.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
47
|
Dundas CM, Graham AJ, Romanovicz DK, Keitz BK. Extracellular Electron Transfer by Shewanella oneidensis Controls Palladium Nanoparticle Phenotype. ACS Synth Biol 2018; 7:2726-2736. [PMID: 30396267 DOI: 10.1021/acssynbio.8b00218] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The relative scarcity of well-defined genetic and metabolic linkages to material properties impedes biological production of inorganic materials. The physiology of electroactive bacteria is intimately tied to inorganic transformations, which makes genetically tractable and well-studied electrogens, such as Shewanella oneidensis, attractive hosts for material synthesis. Notably, this species is capable of reducing a variety of transition-metal ions into functional nanoparticles, but exact mechanisms of nanoparticle biosynthesis remain ill-defined. We report two key factors of extracellular electron transfer by S. oneidensis, the outer membrane cytochrome, MtrC, and soluble redox shuttles (flavins), that affect Pd nanoparticle formation. Changes in the expression and availability of these electron transfer components drastically modulated particle synthesis rate and phenotype, including their structure and cellular localization. These relationships may serve as the basis for biologically tailoring Pd nanoparticle catalysts and could potentially be used to direct the biogenesis of other metal nanomaterials.
Collapse
|
48
|
Chen Y, Chen Y, Wu J, Zhang J. The effect of biotic and abiotic environmental factors on Pd(II) adsorption and reduction by Bacillus wiedmannii MSM. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:546-553. [PMID: 30029100 DOI: 10.1016/j.ecoenv.2018.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we found a bacteria (Bacillus wiedmannii MSM) that could not only culture quickly under aerobic condition, but also can biological reduction of Pd (II) under both aerobic and anaerobic conditions. For reducing Pd (II) by Bacillus wiedmannii MSM, the best electron donor was sodium formate and the best growth time was 24 h (mid-log growth phase cells). TEM indicated that a lot of palladium nanoparticles (Pd-NPs) were mainly located in the periplasmic space of the live cells. However, the autoclaved cells could not synthesize Pd-NPs, which proved the role of enzyme in the reduction of Pd (II). A few of Pd-NPs were only formed on the surface of Cu2+-treated cells, which proved the main but not the only role of periplasmic hydrogenase in the reduction of Pd (II). XRD and XPS also proved that Pd-NPs could be synthesized by live cells over broad ranges of temperature (20-40 °C) and pH (pH 3.0-7.0). This may be especially useful for in situ reduction and remediation of Pd (II) for both anaerobic and aerobic wastewater.
Collapse
Affiliation(s)
- Yuan Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, People's Republic of China.
| | - Jingyi Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| | - Jianyi Zhang
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, People's Republic of China
| |
Collapse
|
49
|
Wang PT, Song YH, Fan HC, Yu L. Bioreduction of azo dyes was enhanced by in-situ biogenic palladium nanoparticles. BIORESOURCE TECHNOLOGY 2018; 266:176-180. [PMID: 29966927 DOI: 10.1016/j.biortech.2018.06.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 05/24/2023]
Abstract
Biogenic nanoparticles are promising materials for their green synthesis method and good performance in stimulation on reduction of environmental contaminants. In this study, Pd(0) nanoparticles (bio-Pd) were generated by Klebsiella oxytoca GS-4-08 in fermentative condition and in-situ improved the azo dye reduction. The bio-Pd was mainly located on cell membrane with a size range of 5-20 nm by TEM and XRD data analyses. Anthraquinone-2-disulfonate (AQS) greatly increased the reduction rate of Pd(II) with a reduction efficiency as high as 96.54 ± 0.23% in 24 h. The quinone respiration theory, glucose metabolism and the biohydrogen pathway were used to explain the enhancement mechanism of the in-situ generated bio-Pd on azo dye reduction. These results indicate that the in-situ generated bio-Pd by K. oxytoca strain is efficient for azo dye reduction without complex preparation processes, which is of great significance for the removal and subsequent safe disposal of hazardous environmental compounds.
Collapse
Affiliation(s)
- Peng-Tao Wang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-Hang Song
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Cheng Fan
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China; Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
50
|
Mitra S, Das A, Sen S, Mahanty B. Potential of metabolic engineering in bacterial nanosilver synthesis. World J Microbiol Biotechnol 2018; 34:138. [DOI: 10.1007/s11274-018-2522-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|