1
|
Li Y, Guo Y, Niu F, Gao H, Wang Q, Xu M. Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum. World J Microbiol Biotechnol 2024; 40:267. [PMID: 39004689 DOI: 10.1007/s11274-024-04066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.
Collapse
Affiliation(s)
- Yueshu Li
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuanyi Guo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fangyuan Niu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532278. [PMID: 36993174 PMCID: PMC10054925 DOI: 10.1101/2023.03.13.532278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vertebrate host’s immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae , sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass-spectrometry-based profiling, metabolomics, expression assays and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular reactive sulfur species (RSS), specifically sulfane sulfur. We first present a comprehensive sequence similarity network analysis of the arsenic repressor (ArsR) superfamily of transcriptional regulators where RSS and reactive oxygen species (ROS) sensors segregate into distinct clusters. We show that HlyU, transcriptional activator of hlyA in V. cholerae , belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity and remaining DNA-bound following treatment with various ROS in vitro, including H 2 O 2 . Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA . However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M. Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A. Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|
3
|
Li B, Jo M, Liu J, Tian J, Canfield R, Bridwell-Rabb J. Structural and mechanistic basis for redox sensing by the cyanobacterial transcription regulator RexT. Commun Biol 2022; 5:275. [PMID: 35347217 PMCID: PMC8960804 DOI: 10.1038/s42003-022-03226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Organisms have a myriad of strategies for sensing, responding to, and combating reactive oxygen species, which are unavoidable consequences of aerobic life. In the heterocystous cyanobacterium Nostoc sp. PCC 7120, one such strategy is the use of an ArsR-SmtB transcriptional regulator RexT that senses H2O2 and upregulates expression of thioredoxin to maintain cellular redox homeostasis. Different from many other members of the ArsR-SmtB family which bind metal ions, RexT has been proposed to use disulfide bond formation as a trigger to bind and release DNA. Here, we present high-resolution crystal structures of RexT in the reduced and H2O2-treated states. These structures reveal that RexT showcases the ArsR-SmtB winged-helix-turn-helix fold and forms a vicinal disulfide bond to orchestrate a response to H2O2. The importance of the disulfide-forming Cys residues was corroborated using site-directed mutagenesis, mass spectrometry, and H2O2-consumption assays. Furthermore, an entrance channel for H2O2 was identified and key residues implicated in H2O2 activation were pinpointed. Finally, bioinformatics analysis of the ArsR-SmtB family indicates that the vicinal disulfide “redox switch” is a unique feature of cyanobacteria in the Nostocales order, presenting an interesting case where an ArsR-SmtB protein scaffold has been evolved to showcase peroxidatic activity and facilitate redox-based regulation. The DNA binding and H2O2 sensing mechanisms are revealed for RexT, a transcriptional regulator found in cyanobacteria of the Nostocales order.
Collapse
|
4
|
The thiol oxidation-based sensing and regulation mechanism for the OasR-mediated organic peroxide and antibiotic resistance in C. glutamicum. Biochem J 2021; 477:3709-3727. [PMID: 32926092 DOI: 10.1042/bcj20200533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Corynebacterium glutamicum, an important industrial and model microorganism, inevitably encountered stress environment during fermentative process. Therefore, the ability of C. glutamicum to withstand stress and maintain the cellular redox balance was vital for cell survival and enhancing fermentation efficiency. To robustly survive, C. glutamicum has been equipped with many types of redox sensors. Although cysteine oxidation-based peroxide-sensing regulators have been well described in C. glutamicum, redox sensors involving in multiple environmental stress response remained elusive. Here, we reported an organic peroxide- and antibiotic-sensing MarR (multiple antibiotics resistance regulators)-type regulator, called OasR (organic peroxide- and antibiotic-sensing regulator). The OasR regulator used Cys95 oxidation to sense oxidative stress to form S-mycothiolated monomer or inter-molecular disulfide-containing dimer, resulting in its dissociation from the target DNA promoter. Transcriptomics uncovered the strong up-regulation of many multidrug efflux pump genes and organic peroxide stress-involving genes in oasR mutant, consistent with the phenomenon that oasR mutant showed a reduction in sensitivity to antibiotic and organic peroxide. Importantly, the addition of stress-associated ligands such as cumene hydroperoxide and streptomycin induced oasR and multidrug efflux pump protein NCgl1020 expression in vivo. We speculated that cell resistance to antibiotics and organic peroxide correlated with stress response-induced up-regulation of genes expression. Together, the results revealed that OasR was a key MarR-type redox stress-responsive transcriptional repressor, and sensed oxidative stress generated through hydroxyl radical formation to mediate antibiotic resistance in C. glutamicum.
Collapse
|
5
|
Böhmer S, Marx C, Gómez-Baraibar Á, Nowaczyk MM, Tischler D, Hemschemeier A, Happe T. Evolutionary diverse Chlamydomonas reinhardtii Old Yellow Enzymes reveal distinctive catalytic properties and potential for whole-cell biotransformations. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
The osnR gene of Corynebacterium glutamicum plays a negative regulatory role in oxidative stress responses. ACTA ACUST UNITED AC 2019; 46:241-248. [DOI: 10.1007/s10295-018-02126-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
Abstract
Among the Corynebacterium glutamicum ORFs that have been implicated in stress responses, we chose ORF cg3230, designated osnR, and analyzed it further. Unlike the osnR-deleted strain (ΔosnR), the osnR-overexpressing strain (P180-osnR) developed growth defects and increased sensitivity to various oxidants including H2O2. Transcription in the P180-osnR strain of genes such as sodA (superoxide dismutase), ftn (ferritin biosynthesis), and ahpD (alkyl hydroperoxide reductase; cg2674), which are involved in the detoxification of reactive oxygen species, was only 40% that of the wild type. However, transcription of katA, encoding H2O2-detoxifying catalase, was unchanged in this strain. Genes such as trxB (thioredoxin reductase) and mtr (mycothiol disulfide reductase), which play roles in redox homeostasis, also showed decreased transcription in the strain. 2D-PAGE analysis indicated that genes involved in redox reactions were considerably affected by osnR overexpression. The NADPH/NADP+ ratio of the P180-osnR strain (1.35) was higher than that of the wild-type stain (0.78). Collectively, the phenotypes of the ΔosnR and P180-osnR strains suggest a global regulatory role as well as a negative role for the gene in stress responses, particularly in katA-independent oxidative stress responses.
Collapse
|
7
|
Hong EJ, Jeong H, Lee DS, Kim Y, Lee HS. TheahpDgene ofCorynebacterium glutamicumplays an important role in hydrogen peroxide-induced oxidative stress response. J Biochem 2018; 165:197-204. [DOI: 10.1093/jb/mvy097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si, Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si, Korea
| | - Dong-Seok Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si, Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyeong-ro, Jecheon-si, Chungbuk, Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si, Korea
| |
Collapse
|
8
|
Roy R, Samanta S, Patra S, Mahato NK, Saha RP. In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family. Metallomics 2018; 10:1476-1500. [PMID: 30191942 DOI: 10.1039/c8mt00082d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ArsR-SmtB family of proteins displays the greatest diversity among the bacterial metal-binding transcriptional regulators with regard to the variety of metal ions that they can sense. In the presence of increased levels of toxic heavy metals, these proteins dissociate from their cognate DNA upon the direct binding of metal ions to the appropriate sites, designated motifs on the proteins, either at the interface of the dimers or at the intra-subunit locations. In addition to the metal-mediated regulation, some proteins were also found to control transcription via redox reactions. In the present work, we have identified several new sequence motifs and expanded the knowledge base of metal binding sites in the ArsR-SmtB family of transcriptional repressors, and characterized them in terms of the ligands to the metal, distribution among different phyla of bacteria and archaea, amino acid propensities, protein length distributions and evolutionary interrelationships. We built structural models of the motifs to show the importance of specific residues in an individual motif. The wide abundance of these motifs in sequences of bacteria and archaea indicates the importance of these regulators in combating metal-toxicity within and outside of the hosts. We also show that by using residue composition, one can distinguish the ArsR-SmtB proteins from other metalloregulatory families. In addition, we show the importance of horizontal gene transfer in microorganisms, residing in similar habitats, on the evolution of the structural motifs in the family. Knowledge of the diverse metalloregulatory systems in microorganisms could enable us to manipulate specific genes that may result in a toxic metal-free environment.
Collapse
Affiliation(s)
- Rima Roy
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Saikat Samanta
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Surajit Patra
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Nav Kumar Mahato
- Department of Mathematics, School of Science, Adamas University, Kolkata 700 126, India
| | - Rudra P Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| |
Collapse
|
9
|
The crystal structure of XdpB, the bacterial old yellow enzyme, in an FMN-free form. PLoS One 2018; 13:e0195299. [PMID: 29630677 PMCID: PMC5891007 DOI: 10.1371/journal.pone.0195299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Old Yellow Enzymes (OYEs) are NAD(P)H dehydrogenases of not fully resolved physiological roles that are widespread among bacteria, plants, and fungi and have a great potential for biotechnological applications. We determined the apo form crystal structure of a member of the OYE class, glycerol trinitrate reductase XdpB, from Agrobacterium bohemicum R89-1 at 2.1 Å resolution. In agreement with the structures of the related bacterial OYEs, the structure revealed the TIM barrel fold with an N-terminal β-hairpin lid, but surprisingly, the structure did not contain its cofactor FMN. Its putative binding site was occupied by a pentapeptide TTSDN from the C-terminus of a symmetry related molecule. Biochemical experiments confirmed a specific concentration-dependent oligomerization and a low FMN content. The blocking of the FMN binding site can exist in vivo and regulates enzyme activity. Our bioinformatic analysis indicated that a similar self-inhibition could be expected in more OYEs which we designated as subgroup OYE C1. This subgroup is widespread among G-bacteria and can be recognized by the conserved sequence GxxDYP in proximity of the C termini. In proteobacteria, the C1 subgroup OYEs are typically coded in one operon with short-chain dehydrogenase. This operon is controlled by the tetR-like transcriptional regulator. OYEs coded in these operons are unlikely to be involved in the oxidative stress response as the other known members of the OYE family because no upregulation of XdpB was observed after exposing A. bohemicum R89-1 to oxidative stress.
Collapse
|
10
|
Díaz-Viraqué F, Chiribao ML, Trochine A, González-Herrera F, Castillo C, Liempi A, Kemmerling U, Maya JD, Robello C. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F 2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility. Front Immunol 2018; 9:456. [PMID: 29563916 PMCID: PMC5845897 DOI: 10.3389/fimmu.2018.00456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/20/2018] [Indexed: 01/26/2023] Open
Abstract
The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host-parasite interaction.
Collapse
Affiliation(s)
| | - María Laura Chiribao
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Andrea Trochine
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica - ICBM, Facultad de Medicina Universidad de Chile, Santiago de Chile, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica - ICBM, Facultad de Medicina Universidad de Chile, Santiago de Chile, Chile
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Saha RP, Samanta S, Patra S, Sarkar D, Saha A, Singh MK. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. Biometals 2017; 30:459-503. [PMID: 28512703 DOI: 10.1007/s10534-017-0020-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023]
Abstract
Bacterial infections cause severe medical problems worldwide, resulting in considerable death and loss of capital. With the ever-increasing rise of antibiotic-resistant bacteria and the lack of development of new antibiotics, research on metal-based antimicrobial therapy has now gained pace. Metal ions are essential for survival, but can be highly toxic to organisms if their concentrations are not strictly controlled. Through evolution, bacteria have acquired complex metal-management systems that allow them to acquire metals that they need for survival in different challenging environments while evading metal toxicity. Metalloproteins that controls these elaborate systems in the cell, and linked to key virulence factors, are promising targets for the anti-bacterial drug development. Among several metal-sensory transcriptional regulators, the ArsR-SmtB family displays greatest diversity with several distinct metal-binding and nonmetal-binding motifs that have been characterized. These prokaryotic metolloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of metal ions by directly binding to the regulatory regions of DNA, while derepression results from direct binding of metal ions by these homodimeric proteins. Many bacteria, e.g., Mycobacterium tuberculosis, Bacillus anthracis, etc., have evolved to acquire multiple metal-sensory motifs which clearly demonstrate the importance of regulating concentrations of multiple metal ions. Here, we discussed the mechanisms of how ArsR-SmtB family regulates the intracellular bioavailability of metal ions both inside and outside of the host. Knowledge of the metal-challenges faced by bacterial pathogens and their survival strategies will enable us to develop the next generation drugs.
Collapse
Affiliation(s)
- Rudra P Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Saikat Samanta
- Department of Microbiology, School of Science, Adamas University, Kolkata, 700126, India
| | - Surajit Patra
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Diganta Sarkar
- Department of Biotechnology, Techno India University, Kolkata, 700091, India
| | - Abinit Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Manoj Kumar Singh
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| |
Collapse
|
12
|
Sheng X, Yan M, Xu L, Wei M. Identification and characterization of a novel Old Yellow Enzyme from Bacillus subtilis str.168. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Hong EJ, Kim P, Kim ES, Kim Y, Lee HS. Involvement of the osrR gene in the hydrogen peroxide-mediated stress response of Corynebacterium glutamicum. Res Microbiol 2015; 167:20-8. [PMID: 26433092 DOI: 10.1016/j.resmic.2015.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
A transcriptional profile of the H2O2-adapted Corynebacterium glutamicum HA strain reveals a list of upregulated regulatory genes. Among them, we selected ORF NCgl2298, designated osrR and analyzed its role in H2O2 adaptation. The osrR-deleted (ΔosrR) mutant had defective growth in minimal medium, which was even more pronounced in an osrR deletion mutant of an HA strain. The ΔosrR strain displayed increased sensitivity to H2O2. In addition to H2O2 sensitivity, the ΔosrR strain was found to be temperature-sensitive at 37 °C. 2D-PAGE analysis of the ΔosrR mutant found that MetE and several other proteins involved in redox metabolism were affected by the mutation. Accordingly, the NADPH/NADP(+) ratio of the ΔosrR strain (0.85) was much lower than that of the wild-type strain (2.01). In contrast, the NADH/NAD(+) ratio of the mutant (0.54) was considerably higher than that of the wild-type (0.21). Based on these findings, we propose that H2O2-detoxifying metabolic systems, excluding those involving catalase, are present in C. glutamicum and are regulated, in part, by osrR.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea.
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi 420-743, Republic of Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyeong-ro, Jecheon-si, Chungbuk 390-711, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea.
| |
Collapse
|
14
|
Yin B, Deng J, Lim L, Yuan YA, Wei D. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans. Biosci Biotechnol Biochem 2015; 79:410-21. [PMID: 25561169 DOI: 10.1080/09168451.2014.993355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We report the crystal structure of old yellow enzyme (OYE) family protein Gox0502 (a.a 1-315) in free form at 3.3 Å. Detailed structural analysis revealed the key residues involved in stereospecific determination of Gox0502, such as Trp66 and Trp100. Structure-based computational analysis suggested the bulky side chains of these tryptophan residues may play important roles in product stereoselectivity. The introduction of Ile or Phe or Tyr mutation significantly reduced the product diastereoselectivity. We hypothesized that less bulky side chains at these critical residues could create additional free space to accommodate intermediates with different conformations. Notably, the introduction of Phe mutation at residue Trp100 increased catalytic activity compared to wild-type Gox0502 toward a set of substrates tested, which suggests that a less bulky Phe side chain at residue W100F may facilitate product release. Therefore, Gox0502 structure could provide useful information to generate desirable OYEs suitable for biotechnological applications in industry.
Collapse
Affiliation(s)
- Bo Yin
- a State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology , East China University of Science and Technology , Shanghai , China
| | | | | | | | | |
Collapse
|
15
|
Xu MY, Pei XQ, Wu ZL. Identification and characterization of a novel “thermophilic-like” Old Yellow Enzyme from the genome of Chryseobacterium sp. CA49. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Kim J, Park W. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 2014; 98:6933-46. [PMID: 24957251 DOI: 10.1007/s00253-014-5883-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.
Collapse
Affiliation(s)
- Jisun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5Ga, Seungbuk-Ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
17
|
Peters C, Kölzsch R, Kadow M, Skalden L, Rudroff F, Mihovilovic MD, Bornscheuer UT. Identification, Characterization, and Application of Three Enoate Reductases fromPseudomonas putidain In Vitro Enzyme Cascade Reactions. ChemCatChem 2014. [DOI: 10.1002/cctc.201300957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Teramoto H, Inui M, Yukawa H. OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. FEBS J 2013; 280:3298-312. [PMID: 23621709 DOI: 10.1111/febs.12312] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/13/2022]
Abstract
OxyR, a LysR-type transcriptional regulator, has been established as a redox-responsive activator of antioxidant genes in bacteria. This study shows that OxyR acts as a transcriptional repressor of katA, dps, ftn and cydA in Corynebacterium glutamicum R. katA encodes H2O2-detoxifing enzyme catalase, dps and ftn are implicated in iron homeostasis and cydA encodes a subunit of cytochrome bd oxidase. Quantitative RT-PCR analyses revealed that expression of katA and dps, but not of ftn and cydA, was induced by H2O2. Disruption of the oxyR gene encoding OxyR resulted in a marked increase in katA and dps mRNAs to a level higher than that induced by H2O2, and the oxyR-deficient mutant showed a H2O2-resistant phenotype. This is in contrast to the conventional OxyR-dependent regulatory model. ftn and cydA were also upregulated by oxyR disruption but to a smaller extent. Electrophoretic mobility shift assays revealed that the OxyR protein specifically binds to all four upstream regions of the respective genes under reducing conditions. We observed that the oxidized form of OxyR similarly bound to not only the target promoter regions, but also nonspecific DNA fragments. Based on these findings, we propose that the transcriptional repression by OxyR is alleviated under oxidative stress conditions in a titration mechanism due to the decreased specificity of its DNA-binding activity. DNase I footprinting analyses revealed that the OxyR-binding site in the four target promoters is ~ 50 bp in length and has multiple T-N11-A motifs, a feature of LysR-type transcriptional regulators, but no significant overall sequence conservation.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | | | | |
Collapse
|
19
|
Mac Aogáin M, Mooij MJ, McCarthy RR, Plower E, Wang YP, Tian ZX, Dobson A, Morrissey J, Adams C, O'Gara F. The non-classical ArsR-family repressor PyeR (PA4354) modulates biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2012; 158:2598-2609. [PMID: 22820840 DOI: 10.1099/mic.0.058636-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PyeR (PA4354) is a novel member of the ArsR family of transcriptional regulators and modulates biofilm formation in Pseudomonas aeruginosa. Characterization of this regulator showed that it has negative autoregulatory properties and binds to a palindromic motif conserved among PyeR orthologues. These characteristics are in line with classical ArsR-family regulators, as is the fact that PyeR is part of an operon structure (pyeR-pyeM-xenB). However, PyeR also exhibits some atypical features in comparison with classical members of the ArsR family, as it does not harbour metal-binding motifs and does not appear to be involved in metal perception or resistance. Hence, PyeR belongs to a subgroup of non-classical ArsR-family regulators and is the second ArsR regulator shown to be involved in biofilm formation.
Collapse
Affiliation(s)
- M Mac Aogáin
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - M J Mooij
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - R R McCarthy
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - E Plower
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Y P Wang
- National Laboratory of Plant Engineering and Protein Genetic Engineering, College of Life Science, Peking University, Beijing, PR China
| | - Z X Tian
- National Laboratory of Plant Engineering and Protein Genetic Engineering, College of Life Science, Peking University, Beijing, PR China.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - A Dobson
- Department of Microbiology, University College Cork, Cork, Ireland.,Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - J Morrissey
- Department of Microbiology, University College Cork, Cork, Ireland.,Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - C Adams
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - F O'Gara
- Department of Microbiology, University College Cork, Cork, Ireland.,Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Stenuit BA, Agathos SN. Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 2010; 88:1043-64. [DOI: 10.1007/s00253-010-2830-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/06/2010] [Accepted: 08/08/2010] [Indexed: 12/11/2022]
|
21
|
Toogood H, Gardiner J, Scrutton N. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases. ChemCatChem 2010. [DOI: 10.1002/cctc.201000094] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|