1
|
Rozova ON, But SY, Melnikov OI, Shavkunov KS, Ekimova GA, Khmelenina VN, Mustakhimov II. Methanotroph Methylotuvimicrobium alcaliphilum 20Z-3E as a fumarate producer: transcriptomic analysis and the role of malic enzyme. Int Microbiol 2025:10.1007/s10123-025-00647-6. [PMID: 40035991 DOI: 10.1007/s10123-025-00647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/06/2025]
Abstract
The halotolerant obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z is a promising biotechnological strain that has been repeatedly tested as a producer of high-added-value polycarbon compounds. The mutant M. alcaliphilum 20Z-3E lacking two fumarases and a malic enzyme is a potential fumarate producer. The analysis of strand-specific 3'-end sequencing of mRNA did not reveal any effects of the mutations on the central metabolism of the methanotroph; however, it showed a dramatic change in the expression of putative iron transport genes, as well as some genes associated with stress response. When the strain 20Z-3E grows at low salinity under methane, some part of fumarate is formed from aspartate, since the increase in salinity results in the biosynthesis of ectoine and the decrease in fumarate concentration. However, when the strain grows on methanol, the fumarate pool is lower and does not depend on the salinity of the medium. Our results have shown that deletion of the mae gene encoding malic enzyme makes a significant contribution to the fumarate accumulation. The strain 20Z-2F with the deletion of only two genes, fumI and fumII, demonstrated delayed growth under methane in comparison with 20Z and 20Z-3E strains. The branching of the tricarboxylic acid cycle due to the adenylosuccinate shunt, as well as the presence of malic enzyme, provides metabolic flexibility to M. alcaliphilum, which allows the methanotroph to adapt to a variety of external conditions and, on the other hand, us to modify its genome to obtain valuable products.
Collapse
Affiliation(s)
- O N Rozova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | - S Y But
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - O I Melnikov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - K S Shavkunov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences,", Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - G A Ekimova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - V N Khmelenina
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - I I Mustakhimov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Wu P, Ong A, O’Brian MR. Bradyrhizobium japonicum HmuP is an RNA-binding protein that positively controls hmuR operon expression by suppression of a negative regulatory RNA element in the 5' untranslated region. Mol Microbiol 2024; 121:1217-1227. [PMID: 38725184 PMCID: PMC11176003 DOI: 10.1111/mmi.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Alasteir Ong
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Mark R. O’Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| |
Collapse
|
4
|
Soto MJ, Pérez J, Muñoz-Dorado J, Contreras-Moreno FJ, Moraleda-Muñoz A. Transcriptomic response of Sinorhizobium meliloti to the predatory attack of Myxococcus xanthus. Front Microbiol 2023; 14:1213659. [PMID: 37405170 PMCID: PMC10315480 DOI: 10.3389/fmicb.2023.1213659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Bacterial predation impacts microbial community structures, which can have both positive and negative effects on plant and animal health and on environmental sustainability. Myxococcus xanthus is an epibiotic soil predator with a broad range of prey, including Sinorhizobium meliloti, which establishes nitrogen-fixing symbiosis with legumes. During the M. xanthus-S. meliloti interaction, the predator must adapt its transcriptome to kill and lyse the target (predatosome), and the prey must orchestrate a transcriptional response (defensome) to protect itself against the biotic stress caused by the predatory attack. Here, we describe the transcriptional changes taking place in S. meliloti in response to myxobacterial predation. The results indicate that the predator induces massive changes in the prey transcriptome with up-regulation of protein synthesis and secretion, energy generation, and fatty acid (FA) synthesis, while down-regulating genes required for FA degradation and carbohydrate transport and metabolism. The reconstruction of up-regulated pathways suggests that S. meliloti modifies the cell envelop by increasing the production of different surface polysaccharides (SPSs) and membrane lipids. Besides the barrier role of SPSs, additional mechanisms involving the activity of efflux pumps and the peptide uptake transporter BacA, together with the production of H2O2 and formaldehyde have been unveiled. Also, the induction of the iron-uptake machinery in both predator and prey reflects a strong competition for this metal. With this research we complete the characterization of the complex transcriptional changes that occur during the M. xanthus-S. meliloti interaction, which can impact the establishment of beneficial symbiosis with legumes.
Collapse
Affiliation(s)
- María José Soto
- Departamento de Biotecnología y Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
5
|
Mihelj P, Abreu I, Moreyra T, González-Guerrero M, Raimunda D. Functional Characterization of the Co 2+ Transporter AitP in Sinorhizobium meliloti: A New Player in Fe 2+ Homeostasis. Appl Environ Microbiol 2023; 89:e0190122. [PMID: 36853042 PMCID: PMC10057888 DOI: 10.1128/aem.01901-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Co2+ induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N2-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co2+-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe2+ homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe2+-export systems. An insertional mutant of AitP showed Co2+ sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe2+ sensitivity, despite AitP being a bona fide low affinity Fe2+ exporter as demonstrated by the kinetic analyses of Fe2+ uptake into everted membrane vesicles. Suggesting concomitant Fe2+-dependent induced stress, Co2+ sensitivity was increased in strains carrying mutations in AitP and Fe2+ exporters which did not correlate with the Co2+ accumulation. Growth in the presence of sublethal Fe2+ and Co2+ concentrations suggested that free Fe-import might contribute to Co2+ toxicity. Supporting this, Co2+ induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe2+-export is likely counterbalanced via a nonfutile Fe2+-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co2+ was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co2+ sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. IMPORTANCE Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe2+, Co2+ induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co2+ exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co2+ content may be encountered.
Collapse
Affiliation(s)
- Paula Mihelj
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Tomás Moreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Raimunda
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| |
Collapse
|
6
|
Huo H, Zong L, Liu Y, Chen W, Chen J, Wei G. Rhizobial HmuS pSym as a heme-binding factor is required for optimal symbiosis between Mesorhizobium amorphae CCNWGS0123 and Robinia pseudoacacia. PLANT, CELL & ENVIRONMENT 2022; 45:2191-2210. [PMID: 35419804 DOI: 10.1111/pce.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Involvement of the hemP-hemA-smlt0796-smlt0797 Operon in Hemin Acquisition by Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0032122. [PMID: 35658602 PMCID: PMC9241770 DOI: 10.1128/spectrum.00321-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The hemin acquisition system of Stenotrophomonas maltophilia was elucidated in this study. To identify the TonB-dependent outer membrane receptor for hemin in S. maltophilia, the hemin acquisition systems of Pseudomonas aeruginosa were referenced. PhuR, HasA, and HxuA are three known TonB-dependent outer membrane receptors involved in hemin acquisition by P. aeruginosa. Thus, HemA (Smlt0795) and Smlt2937, the orthologs of PhuR and HasA/HxuA in S. maltophilia, were first considered. KJΔEnt, a stenobactin-null strain, was used as the parental strain for the hemin utilization assay. Deletion of hemA, but not Smlt2937, of KJΔEnt impaired hemin acquisition under iron-depleted conditions, indicating that HemA is the TonB-dependent receptor for hemin uptake. The hemA gene is a member of the hemP-hemA-smlt0796-smlt0797 operon, whose expression was upregulated in a fur mutant and under iron-depleted conditions. The contribution of the hemP-hemA-smlt0796-smlt0797 operon to hemin acquisition was investigated by in-frame deletion mutant construction and hemin utilization assays. Inactivation of hemP, smlt0796, and smlt0797 of KJΔEnt insignificantly affected hemin acquisition under iron-depleted conditions. However, hemP deletion in a fur mutant increased hemin acquisition under iron-depleted conditions. Collectively, we revealed that (i) HemA likely functions as the outer membrane receptor for hemin uptake; (ii) HemP, a predicted transcriptional factor, apparently functions as a repressor of the expression of the hemA transcript; and (iii) in a fur mutant, HemP has a negative impact on hemin acquisition under iron-depleted conditions. IMPORTANCEStenotrophomonas maltophilia is an emerging multidrug-resistant opportunistic pathogen, increasing the difficulty of treatment of this infection. Iron is a critical element for bacterial viability. Heme is the most abundant iron source in the human host; thus, heme is the major iron source for a pathogen in the infection niche. Blocking iron acquisition from heme can be an alternative strategy to control S. maltophilia infection. Although several hemin acquisition systems have been reported in various pathogens, very little is known about the hemin acquisition systems of S. maltophilia. By in-frame deletion mutant construction and hemin utilization assays, we demonstrated that HemA (Smlt0795) is the TonB-dependent outer membrane receptor for hemin uptake and that HemP (Smlt0794), a predicted transcriptional factor, had a negative impact on hemin acquisition in a fur mutant. The negative regulatory role of HemP in hemin acquisition is first reported.
Collapse
|
8
|
de Lima VM, Batista BB, da Silva Neto JF. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for Chromobacterium violaceum Virulence. Front Cell Infect Microbiol 2022; 12:873536. [PMID: 35646721 PMCID: PMC9131926 DOI: 10.3389/fcimb.2022.873536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Chromobacterium violaceum is an environmental Gram-negative beta-proteobacterium that causes systemic infections in humans. C. violaceum uses siderophore-based iron acquisition systems to overcome the host-imposed iron limitation, but its capacity to use other iron sources is unknown. In this work, we characterized ChuPRSTUV as a heme utilization system employed by C. violaceum to explore an important iron reservoir in mammalian hosts, free heme and hemoproteins. We demonstrate that the chuPRSTUV genes comprise a Fur-repressed operon that is expressed under iron limitation. The chu operon potentially encodes a small regulatory protein (ChuP), an outer membrane TonB-dependent receptor (ChuR), a heme degradation enzyme (ChuS), and an inner membrane ABC transporter (ChuTUV). Our nutrition growth experiments using C. violaceum chu deletion mutants revealed that, with the exception of chuS, all genes of the chu operon are required for heme and hemoglobin utilization in C. violaceum. The mutant strains without chuP displayed increased siderophore halos on CAS plate assays. Significantly, we demonstrate that ChuP connects heme and siderophore utilization by acting as a positive regulator of chuR and vbuA, which encode the TonB-dependent receptors for the uptake of heme (ChuR) and the siderophore viobactin (VbuA). Our data favor a model of ChuP as a heme-binding post-transcriptional regulator. Moreover, our virulence data in a mice model of acute infection demonstrate that C. violaceum uses both heme and siderophore for iron acquisition during infection, with a preference for siderophores over the Chu heme utilization system.
Collapse
|
9
|
Geiger O, Sohlenkamp C, Vera-Cruz D, Medeot DB, Martínez-Aguilar L, Sahonero-Canavesi DX, Weidner S, Pühler A, López-Lara IM. ExoS/ChvI Two-Component Signal-Transduction System Activated in the Absence of Bacterial Phosphatidylcholine. FRONTIERS IN PLANT SCIENCE 2021; 12:678976. [PMID: 34367203 PMCID: PMC8343143 DOI: 10.3389/fpls.2021.678976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Sinorhizobium meliloti contains the negatively charged phosphatidylglycerol and cardiolipin as well as the zwitterionic phosphatidylethanolamine (PE) and phosphatidylcholine (PC) as major membrane phospholipids. In previous studies we had isolated S. meliloti mutants that lack PE or PC. Although mutants deficient in PE are able to form nitrogen-fixing nodules on alfalfa host plants, mutants lacking PC cannot sustain development of any nodules on host roots. Transcript profiles of mutants unable to form PE or PC are distinct; they differ from each other and they are different from the wild type profile. For example, a PC-deficient mutant of S. meliloti shows an increase of transcripts that encode enzymes required for succinoglycan biosynthesis and a decrease of transcripts required for flagellum formation. Indeed, a PC-deficient mutant is unable to swim and overproduces succinoglycan. Some suppressor mutants, that regain swimming and form normal levels of succinoglycan, are altered in the ExoS sensor. Our findings suggest that the lack of PC in the sinorhizobial membrane activates the ExoS/ChvI two-component regulatory system. ExoS/ChvI constitute a molecular switch in S. meliloti for changing from a free-living to a symbiotic life style. The periplasmic repressor protein ExoR controls ExoS/ChvI function and it is thought that proteolytic ExoR degradation would relieve repression of ExoS/ChvI thereby switching on this system. However, as ExoR levels are similar in wild type, PC-deficient mutant and suppressor mutants, we propose that lack of PC in the bacterial membrane provokes directly a conformational change of the ExoS sensor and thereby activation of the ExoS/ChvI two-component system.
Collapse
Affiliation(s)
- Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Diana Vera-Cruz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniela B. Medeot
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - Stefan Weidner
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Isabel M. López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
10
|
Amarelle V, Koziol U, Fabiano E. Highly conserved nucleotide motifs present in the 5'UTR of the heme-receptor gene shmR are required for HmuP-dependent expression of shmR in Ensifer meliloti. Biometals 2019; 32:273-291. [PMID: 30810877 DOI: 10.1007/s10534-019-00184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 11/28/2022]
Abstract
Heme may represent a major iron-source for bacteria. In the symbiotic nitrogen-fixing bacterium Ensifer meliloti 1021, iron acquisition from heme depends on the outer-membrane heme-receptor ShmR. Expression of shmR gene is repressed by iron in a RirA dependent manner while under iron-limitation its expression requires the small protein HmuP. In this work, we identified highly conserved nucleotide motifs present upstream the shmR gene. These motifs are widely distributed among Alpha and Beta Proteobacteria, and correlate with the presence of HmuP coding sequences in bacterial genomes. According to data presented in this work, we named these new motifs as HmuP-responsive elements (HPREs). In the analyzed genomes, the HPREs were always present upstream of genes encoding putative heme-receptors. Moreover, in those Alpha and Beta Proteobacteria where transcriptional start sites for shmR homologs are known, HPREs were located in the 5'UTR region. In this work we show that in E. meliloti 1021, HPREs are involved in HmuP-dependent shmR expression. Moreover, we show that changes in sequence composition of the HPREs correlate with changes in a predicted RNA secondary structure element and affect shmR gene expression.
Collapse
Affiliation(s)
- Vanesa Amarelle
- Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Uriel Koziol
- Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Elena Fabiano
- Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
11
|
Chatterjee A, O'Brian MR. Rapid evolution of a bacterial iron acquisition system. Mol Microbiol 2018; 108:90-100. [PMID: 29381237 DOI: 10.1111/mmi.13918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Under iron limitation, bacteria scavenge ferric (Fe3+ ) iron bound to siderophores or other chelates from the environment to fulfill their nutritional requirement. In gram-negative bacteria, the siderophore uptake system prototype consists of an outer membrane transporter, a periplasmic binding protein and a cytoplasmic membrane transporter, each specific for a single ferric siderophore or siderophore family. Here, we show that spontaneous single gain-of-function missense mutations in outer membrane transporter genes of Bradyrhizobium japonicum were sufficient to confer on cells the ability to use synthetic or natural iron siderophores, suggesting that selectivity is limited primarily to the outer membrane and can be readily modified. Moreover, growth on natural or synthetic chelators required the cytoplasmic membrane ferrous (Fe2+ ) iron transporter FeoB, suggesting that iron is both dissociated from the chelate and reduced to the ferrous form within the periplasm prior to cytoplasmic entry. The data suggest rapid adaptation to environmental iron by facile mutation of selective outer membrane transporter genes and by non-selective uptake components that do not require mutation to accommodate new iron sources.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Room 4102, Buffalo, NY, 14203-1121, USA
| | - Mark R O'Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Room 4102, Buffalo, NY, 14203-1121, USA
| |
Collapse
|
12
|
The Small Protein HemP Is a Transcriptional Activator for the Hemin Uptake Operon in Burkholderia multivorans ATCC 17616. Appl Environ Microbiol 2017. [PMID: 28625994 DOI: 10.1128/aem.00479-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderiamultivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon.IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the role of HemP in betaproteobacterial species was elucidated for the first time, to our knowledge, in this study. The HemP protein was also found to have two additional properties that have not been reported for functional homologues in other species; one is that HemP is able to bind to the promoter-containing region of the hmu operon to directly activate its transcription, and the other is that HemP is also required for the expression of an unknown hemin uptake system.
Collapse
|
13
|
The Irr and RirA Proteins Participate in a Complex Regulatory Circuit and Act in Concert To Modulate Bacterioferritin Expression in Ensifer meliloti 1021. Appl Environ Microbiol 2017. [PMID: 28625986 DOI: 10.1128/aem.00895-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this work we found that the bfr gene of the rhizobial species Ensifer meliloti, encoding a bacterioferritin iron storage protein, is involved in iron homeostasis and the oxidative stress response. This gene is located downstream of and overlapping the smc03787 open reading frame (ORF). No well-predicted RirA or Irr boxes were found in the region immediately upstream of the bfr gene although two presumptive RirA boxes and one presumptive Irr box were present in the putative promoter of smc03787 We demonstrate that bfr gene expression is enhanced under iron-sufficient conditions and that Irr and RirA modulate this expression. The pattern of bfr gene expression as well as the response to Irr and RirA is inversely correlated to that of smc03787 Moreover, our results suggest that the small RNA SmelC759 participates in RirA- and Irr-mediated regulation of bfr expression and that additional unknown factors are involved in iron-dependent regulation.IMPORTANCEE. meliloti belongs to the Alphaproteobacteria, a group of bacteria that includes several species able to associate with eukaryotic hosts, from mammals to plants, in a symbiotic or pathogenic manner. Regulation of iron homeostasis in this group of bacteria differs from that found in the well-studied Gammaproteobacteria In this work we analyzed the effect of rirA and irr mutations on bfr gene expression. We demonstrate the effect of an irr mutation on iron homeostasis in this bacterial genus. Moreover, results obtained indicate a complex regulatory circuit where multiple regulators, including RirA, Irr, the small RNA SmelC759, and still unknown factors, act in concert to balance bfr gene expression.
Collapse
|
14
|
HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo. Biometals 2016; 29:333-47. [DOI: 10.1007/s10534-016-9919-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/20/2022]
|
15
|
Rosconi F, Trovero MF, de Souza EM, Fabiano E. Serobactins-mediated iron acquisition systems optimize competitive fitness of Herbaspirillum seropedicae inside rice plants. Environ Microbiol 2015; 18:2523-33. [PMID: 26715074 DOI: 10.1111/1462-2920.13202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/27/2015] [Indexed: 02/02/2023]
Abstract
Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Under iron-deficient conditions, this organism secretes serobactins, a suite of lipopetide siderophores. The role of siderophores in the interaction between endophytes and their plant hosts are not well understood. In this work, we aimed to determine the importance of serobactins-mediated iron acquisition systems in the interaction of H. seropedicae with rice plants. First we provide evidence, by using a combination of genome analysis, proteomic and genetic studies, that the Hsero_2345 gene encodes a TonB-dependent receptor involved in iron-serobactin complex internalization when iron bioavailability is low. Our results show that survival of the Hsero_2345 mutant inside rice plants was not significantly different from that of the wild-type strain. However, when plants were co-inoculated at equal ratios with the wild-type strain and with a double mutant defective in serobactins synthesis and internalization, recovery of mutant was significantly impaired after 8 days post-inoculation. These results demonstrate that serobactins-mediated iron acquisition contributes to competitive fitness of H. seropedicae inside host plants.
Collapse
Affiliation(s)
- Federico Rosconi
- Departamento de Bioquímica y Genómica Microbianas, IIBCE, Montevideo, Uruguay
| | - María F Trovero
- Departamento de Bioquímica y Genómica Microbianas, IIBCE, Montevideo, Uruguay
| | | | - Elena Fabiano
- Departamento de Bioquímica y Genómica Microbianas, IIBCE, Montevideo, Uruguay
| |
Collapse
|
16
|
Abstract
Iron is an essential nutrient, but it can also be toxic. Therefore, iron homeostasis must be strictly regulated. Transcriptional control of iron-dependent gene expression in the rhizobia and other taxa of the Alphaproteobacteria is fundamentally different from the Fur paradigm in Escherichia coli and other model systems. Rather than sense iron directly, the rhizobia employ the iron response regulator (Irr) to monitor and respond to the status of an iron-dependent process, namely, heme biosynthesis. This novel control mechanism allows iron homeostasis to be integrated with other cellular processes, and it permits differential control of iron regulon genes in a manner not readily achieved by Fur. Moreover, studies of Irr have defined a role for heme in conditional protein stability that has been subsequently described in eukaryotes. Finally, Irr-mediated control of iron metabolism may reflect a cellular strategy that accommodates a greater reliance on manganese.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, New York 14214;
| |
Collapse
|
17
|
Jaggavarapu S, O'Brian MR. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function. Mol Microbiol 2014; 92:609-24. [PMID: 24646221 DOI: 10.1111/mmi.12584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/26/2022]
Abstract
Bradyrhizobium japonicum Irr is a conditionally stable transcriptional activator and repressor that accumulates in cells under iron-limited, manganese-replete conditions, but degrades in a haem-dependent manner under high iron conditions, manganese limitation or upon exposure to H2 O2 . Here, we identified Irr-regulated genes that were relatively unresponsive to factors that promote Irr degradation. The promoters of those genes bound Irr with at least 200-fold greater affinity than promoters of the responsive genes, resulting in maintenance of promoter occupancy over a wide cellular Irr concentration range. For Irr-repressible genes, promoter occupancy correlated with transcriptional repression, resulting in differential levels of expression based on Irr affinity for target promoters. However, inactivation of positively controlled genes required neither promoter vacancy nor loss of DNA-binding activity by Irr. Thus, activation and repression functions of Irr may be uncoupled from each other under certain conditions. Abrogation of Irr activation function was haem-dependent, thus haem has two functionally separable roles in modulating Irr activity. The findings imply a greater complexity of control by Irr than can be achieved by conditional stability alone. We suggest that these regulatory mechanisms accommodate the differing needs for Irr regulon genes in response to the prevailing metabolic state of the cell.
Collapse
Affiliation(s)
- Siddharth Jaggavarapu
- Department of Biochemistry, State University of New York at Buffalo, 140 Farber Hall, Buffalo, NY, 14214, USA
| | | |
Collapse
|
18
|
Rosconi F, Davyt D, Martínez V, Martínez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E. Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyteHerbaspirillum seropedicae. Environ Microbiol 2013; 15:916-27. [DOI: 10.1111/1462-2920.12075] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022]
Affiliation(s)
| | - Danilo Davyt
- Cátedra de Química Farmacéutica; Facultad de Química; Montevideo; Uruguay
| | - Verónica Martínez
- Cátedra de Química Farmacéutica; Facultad de Química; Montevideo; Uruguay
| | | | | | - Hannah Zane
- Department of Chemistry and Biochemistry; UCSB; Santa Barbara; USA
| | - Alison Butler
- Department of Chemistry and Biochemistry; UCSB; Santa Barbara; USA
| | | | | |
Collapse
|
19
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
20
|
HmuP is a coactivator of Irr-dependent expression of heme utilization genes in Bradyrhizobium japonicum. J Bacteriol 2012; 194:3137-43. [PMID: 22505680 DOI: 10.1128/jb.00071-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Utilization of heme as an iron source by Bradyrhizobium japonicum involves induction of the outer membrane heme receptor gene hmuR and other genes within the heme utilization locus. Here, we discovered the hmuP gene located upstream of hmuR and transcribed divergently from it along with hmuTUV. hmuP encodes a small protein that accumulated under iron limitation and is transcriptionally controlled by the global iron-responsive regulator Irr, as were all genes within the heme utilization locus. Cross-linking and immunoprecipitation experiments showed that Irr occupies the hmuR-hmuP promoter in vivo. An hmuP mutant did not grow on heme as an iron source, but retained the ability to use ferric chloride. Correspondingly, induction of hmuR mRNA under iron limitation was severely diminished in an hmuP strain, but other genes within the Irr regulon were unaffected. HmuP occupied the hmuR-hmuP promoter, and thus it plays a direct regulatory role in gene expression. HmuP was not required for Irr occupancy, nor was ectopic expression of hmuP from an Irr-independent promoter sufficient to induce the hmuR gene. Thus, both HmuP and Irr occupancy are necessary for hmuR induction. We suggest that HmuP is a coactivator of Irr-dependent expression of hmuR.
Collapse
|