1
|
Malhotra V, Okon BP, Satsangi AT, Das S, Waturuocha UW, Vashist A, Clark-Curtiss JE, Saini DK. Mycobacterium tuberculosis PknK Substrate Profiling Reveals Essential Transcription Terminator Protein Rho and Two-Component Response Regulators PrrA and MtrA as Novel Targets for Phosphorylation. Microbiol Spectr 2022; 10:e0135421. [PMID: 35404097 PMCID: PMC9045387 DOI: 10.1128/spectrum.01354-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis protein kinase K regulates growth adaptation by facilitating mycobacterial survival in response to a variety of in vitro and in vivo stress conditions. Here, we further add that pknK transcription is responsive to carbon and nitrogen starvation signals. The increased survival of an M. tuberculosis ΔpknK mutant strain under carbon- and nitrogen-limiting growth conditions compared to the wild-type (WT) H37Rv suggests an integral role of PknK in regulating growth during metabolic stress. To identify the downstream targets of PknK-mediated signaling, we compared phosphoproteomic and transcription profiles of mycobacterial strains overexpressing WT and phosphorylation-defective PknK. Results implicate PknK as a signaling protein that can regulate several enzymes involved in central metabolism, transcription regulation, and signal transduction. A key finding of this study was the identification of two essential two-component response regulator (RR) proteins, PrrA and MtrA, and Rho transcription terminator, as unique targets for PknK. We confirm that PknK interacts with and phosphorylates PrrA, MtrA, and Rho in vivo. PknK-mediated phosphorylation of MtrA appears to increase binding of the RR to the cognate probe DNA. However, dual phosphorylation of MtrA and PrrA response regulators by PknK and their respective cognate sensor kinases in vitro showed nominal additive effect on the mobility of the protein-DNA complex, suggesting the presence of a potential fine-tuning of the signal transduction pathway which might respond to multiple cues. IMPORTANCE Networks of gene regulation and signaling cascades are fundamental to the pathogenesis of Mycobacterium tuberculosis in adapting to the continuously changing intracellular environment in the host. M. tuberculosis protein kinase K is a transcription regulator that responds to diverse environmental signals and facilitates stress-induced growth adaptation in culture and during infection. This study identifies multiple signaling interactions of PknK and provides evidence that PknK can change the transcriptional landscape during growth transitions by connecting distinctly different signal transduction and regulatory pathways essential for mycobacterial survival.
Collapse
Affiliation(s)
- Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Blessing P. Okon
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Akash T. Satsangi
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Sumana Das
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Uchenna Watson Waturuocha
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Josephine E. Clark-Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Naz S, Singh Y, Nandicoori VK. Deletion of serine/threonine-protein kinase pknL from Mycobacterium tuberculosis reduces the efficacy of isoniazid and ethambutol. Tuberculosis (Edinb) 2021; 128:102066. [PMID: 33690080 DOI: 10.1016/j.tube.2021.102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Serine/threonine-protein kinases in Mycobacterium tuberculosis (Mtb) form a preeminent regulatory system required to establish and maintain the infection in the host. Herein, we sought to decipher the biological role of PknL with the help of a gene replacement mutant RvΔpknL. Deletion of pknL results in the compromised growth under redox stress. The mutant showed significant survival defects in peritoneal macrophages, a significant decrease in the ability to establish infections and disseminate to the spleen in the murine model of infection. While the absence of pknL has no impact on either MIC or CFUs of ciprofloxacin and rifampicin treated bacilli, it increases the survival ~1.5-2.5 log fold upon isoniazid or ethambutol treatment. Collectively, data suggests that PknL aids in combating stress conditions in vitro, ex vivo, and in vivo and reduces the efficacy of isoniazid and ethambutol.
Collapse
Affiliation(s)
- Saba Naz
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | |
Collapse
|
3
|
Alsayed SSR, Beh CC, Foster NR, Payne AD, Yu Y, Gunosewoyo H. Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis. Curr Mol Pharmacol 2019; 12:27-49. [PMID: 30360731 DOI: 10.2174/1874467211666181025141114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human's, there have been some early drug discovery efforts towards developing potent and selective inhibitors. OBJECTIVE Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors. CONCLUSION Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Chau C Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Neil R Foster
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
4
|
Janczarek M, Vinardell JM, Lipa P, Karaś M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int J Mol Sci 2018; 19:ijms19102872. [PMID: 30248937 PMCID: PMC6213207 DOI: 10.3390/ijms19102872] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
5
|
Madacki J, Laval F, Grzegorzewicz A, Lemassu A, Záhorszká M, Arand M, McNeil M, Daffé M, Jackson M, Lanéelle MA, Korduláková J. Impact of the epoxide hydrolase EphD on the metabolism of mycolic acids in mycobacteria. J Biol Chem 2018; 293:5172-5184. [PMID: 29472294 DOI: 10.1074/jbc.ra117.000246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/16/2018] [Indexed: 01/09/2023] Open
Abstract
Mycolic acids are the hallmark of the cell envelope in mycobacteria, which include the important human pathogens Mycobacterium tuberculosis and Mycobacterium leprae Mycolic acids are very long C60-C90 α-alkyl β-hydroxy fatty acids having a variety of functional groups on their hydrocarbon chain that define several mycolate types. Mycobacteria also produce an unusually large number of putative epoxide hydrolases, but the physiological functions of these enzymes are still unclear. Here, we report that the mycobacterial epoxide hydrolase EphD is involved in mycolic acid metabolism. We found that orthologs of EphD from M. tuberculosis and M. smegmatis are functional epoxide hydrolases, cleaving a lipophilic substrate, 9,10-cis-epoxystearic acid, in vitro and forming a vicinal diol. The results of EphD overproduction in M. smegmatis and M. bovis BCG Δhma strains producing epoxymycolic acids indicated that EphD is involved in the metabolism of these forms of mycolates in both fast- and slow-growing mycobacteria. Moreover, using MALDI-TOF-MS and 1H NMR spectroscopy of mycolic acids and lipids isolated from EphD-overproducing M. smegmatis, we identified new oxygenated mycolic acid species that accumulated during epoxymycolate depletion. Disruption of the ephD gene in M. tuberculosis specifically impaired the synthesis of ketomycolates and caused accumulation of their precursor, hydroxymycolate, indicating either direct or indirect involvement of EphD in ketomycolate biosynthesis. Our results clearly indicate that EphD plays a role in metabolism of oxygenated mycolic acids in mycobacteria.
Collapse
Affiliation(s)
- Jan Madacki
- From the Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Françoise Laval
- the Tuberculosis & Infection Biology Department, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Anna Grzegorzewicz
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, and
| | - Anne Lemassu
- the Tuberculosis & Infection Biology Department, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Monika Záhorszká
- From the Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Michael Arand
- the Institute of Pharmacology and Toxicology, University of Zürich, CH-8057 Zürich, Switzerland
| | - Michael McNeil
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, and
| | - Mamadou Daffé
- the Tuberculosis & Infection Biology Department, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Mary Jackson
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, and
| | - Marie-Antoinette Lanéelle
- the Tuberculosis & Infection Biology Department, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Jana Korduláková
- From the Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia,
| |
Collapse
|
6
|
Richard-Greenblatt M, Av-Gay Y. Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0005-2015. [PMID: 28281439 PMCID: PMC11687473 DOI: 10.1128/microbiolspec.tbtb2-0005-2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/20/2023] Open
Abstract
Reversible protein phosphorylation is the most common type of epigenetic posttranslational modification in living cells used as a major regulation mechanism of biological processes. The Mycobacterium tuberculosis genome encodes for 11 serine/threonine protein kinases that are responsible for sensing environmental signals to coordinate a cellular response to ensure the pathogen's infectivity, survival, and growth. To overcome killing mechanisms generated within the host during infection, M. tuberculosis enters a state of nonreplicating persistence that is characterized by arrested growth, limited metabolic activity, and phenotypic resistance to antimycobacterial drugs. In this article we focus our attention on the role of M. tuberculosis serine/threonine protein kinases in sensing the host environment to coordinate the bacilli's physiology, including growth, cell wall components, and central metabolism, to establish a persistent infection.
Collapse
Affiliation(s)
- Melissa Richard-Greenblatt
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
7
|
Ganji R, Dhali S, Rizvi A, Rapole S, Banerjee S. Understanding HIV-Mycobacteria synergism through comparative proteomics of intra-phagosomal mycobacteria during mono- and HIV co-infection. Sci Rep 2016; 6:22060. [PMID: 26916387 PMCID: PMC4768096 DOI: 10.1038/srep22060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the most common co-infection in HIV patients and a serious co-epidemic. Apart from increasing the risk of reactivation of latent tuberculosis (TB), HIV infection also permits opportunistic infection of environmental non-pathogenic mycobacteria. To gain insights into mycobacterial survival inside host macrophages and identify mycobacterial proteins or processes that influence HIV propagation during co-infection, we employed proteomics approach to identify differentially expressed intracellular mycobacterial proteins during mono- and HIV co-infection of human THP-1 derived macrophage cell lines. Of the 92 proteins identified, 30 proteins were upregulated during mycobacterial mono-infection and 40 proteins during HIV-mycobacteria co-infection. We observed down-regulation of toxin-antitoxin (TA) modules, up-regulation of cation transporters, Type VII (Esx) secretion systems, proteins involved in cell wall lipid or protein metabolism, glyoxalate pathway and branched chain amino-acid synthesis during co-infection. The bearings of these mycobacterial factors or processes on HIV propagation during co-infection, as inferred from the proteomics data, were validated using deletion mutants of mycobacteria. The analyses revealed mycobacterial factors that possibly via modulating the host environment, increased viral titers during co-infection. The study provides new leads for investigations towards hitherto unknown molecular mechanisms explaining HIV-mycobacteria synergism, helping address diagnostics and treatment challenges for effective co-epidemic management.
Collapse
Affiliation(s)
- Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - Snigdha Dhali
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Arshad Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
8
|
Abstract
The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis.
Collapse
|
9
|
Zhang H, Zhou S, Xia L, Huang X, Huang Y, Cao J, Qin Q. Characterization of the VP39 envelope protein from Singapore grouper iridovirus. Can J Microbiol 2015; 61:924-37. [PMID: 26524136 DOI: 10.1139/cjm-2015-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Singapore grouper iridovirus (SGIV) is a major pathogen that causes heavy economic losses to the grouper aquaculture industry in China and Southeast Asian countries. In the present study, a viral envelope protein, VP39, encoded by SGIV ORF39L, was identified and characterized. SGIV ORF39L was found in all sequenced iridoviruses and is now considered to be a core gene of the family Iridoviridae. ORF39L was classified as a late gene during in vitro infection using reverse transcription–polymerase chain reaction, western blotting, and a drug inhibition analysis. An indirect immunofluorescence assay revealed that the VP39 protein was confined to the cytoplasm, especially at viral assembly sites. Western blot and matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry analyses suggested that VP39 is an envelope protein. Immunogold electron microscopy further confirmed that VP39 is a viral envelope protein. Furthermore, a mouse anti-VP39 polyclonal antibody exhibited SGIV-neutralizing activity in vitro, suggesting that VP39 is involved in SGIV infection. Taken together, the current data suggest that VP39 represents a conserved envelope protein of iridoviruses that contributes to viral infection.
Collapse
Affiliation(s)
- Honglian Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, People’s Republic of China
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, Guangdong, People’s Republic of China
| | - Sheng Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| | - Liqun Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, Guangdong, People’s Republic of China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| | - Jianhao Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, People’s Republic of China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| |
Collapse
|
10
|
Gautam US, Mehra S, Kaushal D. In-Vivo Gene Signatures of Mycobacterium tuberculosis in C3HeB/FeJ Mice. PLoS One 2015; 10:e0135208. [PMID: 26270051 PMCID: PMC4535907 DOI: 10.1371/journal.pone.0135208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/19/2015] [Indexed: 11/28/2022] Open
Abstract
Despite considerable progress in understanding the pathogenesis of Mycobacterium tuberculosis (Mtb), development of new therapeutics and vaccines against it has proven difficult. This is at least in part due to the use of less than optimal models of in-vivo Mtb infection, which has precluded a study of the physiology of the pathogen in niches where it actually persists. C3HeB/FeJ (Kramnik) mice develop human-like lesions when experimentally infected with Mtb and thus make available, a faithful and highly tractable system to study the physiology of the pathogen in-vivo. We compared the transcriptomics of Mtb and various mutants in the DosR (DevR) regulon derived from Kramnik mouse granulomas to those cultured in-vitro. We recently showed that mutant ΔdosS is attenuated in C3HeB/FeJ mice. Aerosol exposure of mice with the mutant mycobacteria resulted in a substantially different and a relatively weaker transcriptional response (< = 20 genes were induced) for the functional category ‘Information Pathways’ in Mtb:ΔdosR; ‘Lipid Metabolism’ in Mtb:ΔdosT; ‘Virulence, Detoxification, Adaptation’ in both Mtb:ΔdosR and Mtb:ΔdosT; and ‘PE/PPE’ family in all mutant strains compare to wild-type Mtb H37Rv, suggesting that the inability to induce DosR functions to different levels can modulate the interaction of the pathogen with the host. The Mtb genes expressed during growth in C3HeB/FeJ mice appear to reflect adaptation to differential nutrient utilization for survival in mouse lungs. The genes such as glnB, Rv0744c, Rv3281, sdhD/B, mce4A, dctA etc. downregulated in mutant ΔdosS indicate their requirement for bacterial growth and flow of carbon/energy source from host cells. We conclude that genes expressed in Mtb during in-vivo chronic phase of infection in Kramnik mice mainly contribute to growth, cell wall processes, lipid metabolism, and virulence.
Collapse
Affiliation(s)
- Uma Shankar Gautam
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail: (DK); (USG)
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Louisiana State University School of Veterinary Medicine Department of Pathobiological Sciences, Baton Rouge, Louisiana, United States of America
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (DK); (USG)
| |
Collapse
|
11
|
Nagarajan SN, Upadhyay S, Chawla Y, Khan S, Naz S, Subramanian J, Gandotra S, Nandicoori VK. Protein kinase A (PknA) of Mycobacterium tuberculosis is independently activated and is critical for growth in vitro and survival of the pathogen in the host. J Biol Chem 2015; 290:9626-45. [PMID: 25713147 DOI: 10.1074/jbc.m114.611822] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 01/09/2023] Open
Abstract
The essential mycobacterial protein kinases PknA and PknB play crucial roles in modulating cell shape and division. However, the precise in vivo functional aspects of PknA have not been investigated. This study aims to dissect the role of PknA in mediating cell survival in vitro as well as in vivo. We observed aberrant cell shape and severe growth defects when PknA was depleted. Using the mouse infection model, we observe that PknA is essential for survival of the pathogen in the host. Complementation studies affirm the importance of the kinase, juxtamembrane, and transmembrane domains of PknA. Surprisingly, the extracytoplasmic domain is dispensable for cell growth and survival in vitro. We find that phosphorylation of the activation loop at Thr(172) of PknA is critical for bacterial growth. PknB has been previously suggested to be the receptor kinase, which activates multiple kinases, including PknA, by trans-phosphorylating their activation loop residues. Using phospho-specific PknA antibodies and conditional pknB mutant, we find that PknA autophosphorylates its activation loop independent of PknB. Fluorescently tagged PknA and PknB show distinctive distribution patterns within the cell, suggesting that although both kinases are known to modulate cell shape and division, their modes of action are likely to be different. This is supported by our findings that expression of kinase-dead PknA versus kinase-dead PknB in mycobacterial cells leads to different cellular phenotypes. Data indicate that although PknA and PknB are expressed as part of the same operon, they appear to be regulating cellular processes through divergent signaling pathways.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India, the Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, India, and
| | - Sandeep Upadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yogesh Chawla
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shazia Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saba Naz
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jayashree Subramanian
- the Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, India, and
| | - Sheetal Gandotra
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India,
| |
Collapse
|
12
|
Fortuin S, Tomazella GG, Nagaraj N, Sampson SL, Gey van Pittius NC, Soares NC, Wiker HG, de Souza GA, Warren RM. Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog. Front Microbiol 2015; 6:6. [PMID: 25713560 PMCID: PMC4322841 DOI: 10.3389/fmicb.2015.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/04/2015] [Indexed: 11/29/2022] Open
Abstract
Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis.
Collapse
Affiliation(s)
- Suereta Fortuin
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Gisele G Tomazella
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen Bergen, Norway
| | | | - Samantha L Sampson
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Nicolaas C Gey van Pittius
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| | - Nelson C Soares
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Harald G Wiker
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen Bergen, Norway
| | - Gustavo A de Souza
- Norway Proteomics Core Facility, Department of Immunology, Oslo University Oslo, Norway
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa
| |
Collapse
|
13
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
14
|
Phosphorylation of pyruvate kinase A by protein kinase J leads to the altered growth and differential rate of intracellular survival of mycobacteria. Appl Microbiol Biotechnol 2014; 98:10065-76. [PMID: 24934223 DOI: 10.1007/s00253-014-5859-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
PknJ (Rv2088) is a serine/threonine protein kinase of mycobacteria which is present in Mycobacterium tuberculosis (MTB), but its gene is absent in Mycobacterium smegmatis (MS); a fast grower and nonpathogenic species of mycobacteria. The heterologous expression of MTB-specific PknJ in MS altered the growth of recombinant mycobacteria highlighting one of the characteristics of this protein. This nature of the protein was further confirmed when Mycobacterium bovis BCG (BCG) containing antisense copy of pknJ resulted in the increased growth of BCG. The real-time RNA quantification analysis pointed out toward increased expression of this protein during infection of THP-1 macrophage cells which further emphasized that the protein is essential for the intracellular survival of mycobacteria. The differential in gel electrophoresis (DIGE) data followed by mass spectroscopy suggested that PknJ is involved in regulation of pyruvate kinase A (Rv1617). Since pyruvate kinase (PK) A is one of the key enzymes which controls glycolytic cycle in mycobacteria, we looked for its interaction with PknJ during extracellular and intracellular growth of mycobacteria. In order to identify the specific residue(s) involved in post-translational modification, the phospho-null mutants of PK were generated, and their substrate specificities in response to PknJ were assessed through kinase assay. The findings thus underlined that the PK activity is predominantly dependent on the threonine residue at the 94(th) position and further suggested that this site may be plausible in intracellular survival of mycobacteria upon phosphorylation with PknJ.
Collapse
|
15
|
HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo. J Bacteriol 2014; 196:2646-57. [PMID: 24816602 DOI: 10.1128/jb.01625-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HU, a widely conserved bacterial histone-like protein, regulates many genes, including those involved in stress response and virulence. Whereas ample data are available on HU-DNA communication, the knowledge on how HU perceives a signal and transmit it to DNA remains limited. In this study, we identify HupB, the HU homolog of the human pathogen Mycobacterium tuberculosis, as a component of serine/threonine protein kinase (STPK) signaling. HupB is extracted in its native state from the exponentially growing cells of M. tuberculosis H37Ra and is shown to be phosphorylated on both serine and threonine residues. The STPKs capable of modifying HupB are determined in vitro and the residues modified by the STPKs are identified for both in vivo and the in vitro proteins through mass spectrometry. Of the identified phosphosites, Thr(65) and Thr(74) in the DNA-embracing β-strand of the N-terminal domain of HupB (N-HupB) are shown to be crucial for its interaction with DNA. In addition, Arg(55) is also identified as an important residue for N-HupB-DNA interaction. N-HupB is shown to have a diminished interaction with DNA after phosphorylation. Furthermore, hupB is shown to be maximally expressed during the stationary phase in M. tuberculosis H37Ra, while HupB kinases were found to be constitutively expressed (PknE and PknF) or most abundant during the exponential phase (PknB). In conclusion, HupB, a DNA-binding protein, with an ability to modulate chromatin structure is proposed to work in a growth-phase-dependent manner through its phosphorylation carried out by the mycobacterial STPKs.
Collapse
|
16
|
Zhu H, Zhou J, Ni Y, Yu Z, Mao A, Hu Y, Wang W, Zhang X, Wen L, Li B, Wang X, Yu Y, Lv L, Guo R, Lu C, He K. Contribution of eukaryotic-type serine/threonine kinase to stress response and virulence of Streptococcus suis. PLoS One 2014; 9:e91971. [PMID: 24637959 PMCID: PMC3956855 DOI: 10.1371/journal.pone.0091971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important swine and human pathogen responsible for septicemia and meningitis. The bacterial homologues of eukaryotic-type serine/threonine kinases (ESTKs) have been reported to play critical roles in various cellular processes. To investigate the role of STK in SS2, an isogenic stk mutant strain (Δstk) and a complemented strain (CΔstk) were constructed. The Δstk showed a significant decrease in adherence to HEp-2 cells, compared with the wild-type strain, and a reduced survival ratio in whole blood. In addition, the Δstk exhibited a notable reduced tolerance of environmental stresses including high temperature, acidic pH, oxidative stress, and high osmolarity. More importantly, the Δstk was attenuated in both the CD1 mouse and piglet models of infection. The results of quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that the expressions of a few genes involving in adherence, stress response and virulence were clearly decreased in the Δstk mutant strain. Our data suggest that SsSTK is required for virulence and stress response in SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiyi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaomin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lixin Lv
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
17
|
Selvan LDN, Renuse S, Kaviyil JE, Sharma J, Pinto SM, Yelamanchi SD, Puttamallesh VN, Ravikumar R, Pandey A, Prasad TSK, Harsha HC. Phosphoproteome of Cryptococcus neoformans. J Proteomics 2013; 97:287-95. [PMID: 23851311 DOI: 10.1016/j.jprot.2013.06.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Cryptococcus neoformans is an encapsulated pathogenic yeast, which causes life threatening meningitis in immunocompromised individuals. C. neoformans var. grubii is the most prevalent and virulent form among the two varieties of C. neoformans - C. neoformans var. grubii and C. neoformans var. neoformans. The virulence of C. neoformans is mainly conferred by its capsule and melanin. cAMP dependent PKA-induced phosphorylation events are reported to be associated with the expression of these virulence traits, which highlights the importance of phosphoproteins in virulence and infection. Therefore, we performed global profiling of phosphoproteome of C. neoformans to enable a better understanding of molecular regulation of its virulence and pathogenesis. High resolution mass spectrometry of TiO2 enriched phosphopeptides from C. neoformans var. grubii grown in culture led to the identification of 1089 phosphopeptides derived from 648 proteins including about 45 kinases. Motif enrichment analysis revealed that most CDK family substrates were found to be phosphorylated. This indicates that cyclin-dependent kinases were among the active kinases in the pathogen in culture. These studies provide a framework for understanding virulence mechanisms in the context of signalling pathways in pathogenic yeast. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. BIOLOGICAL SIGNIFICANCE C. neoformans is a pathogenic yeast responsible for cryptococcal meningitis. Melanin and polysaccharide capsule have been established as some of the key virulence factors that play a major role in the pathogenesis of C. neoformans. Recent studies have shown the role of kinase mediated signalling pathways in governing biosynthesis of these virulence factors. This study revealed 1540 phosphorylation sites in 648 proteins providing a comprehensive view of phosphoproteins in C. neoformans. This should serve as a useful resource to explore activated signalling pathways in C. neoformans and their association with its virulence and pathogenesis.
Collapse
Affiliation(s)
- Lakshmi Dhevi N Selvan
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Jyothi Embekkat Kaviyil
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences, Bangalore 560 029, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Soujanya D Yelamanchi
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Raju Ravikumar
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences, Bangalore 560 029, India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India; Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India.
| | - H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.
| |
Collapse
|
18
|
Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria. Mol Cell Biochem 2012; 369:67-74. [DOI: 10.1007/s11010-012-1369-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/12/2012] [Indexed: 11/25/2022]
|
19
|
Mycobacterium tuberculosis protein kinase K enables growth adaptation through translation control. J Bacteriol 2012; 194:4184-96. [PMID: 22661693 DOI: 10.1128/jb.00585-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis serine/threonine protein kinases (STPKs) are responsible for orchestrating critical metabolic and physiological changes that dictate mycobacterial growth adaptation. Previously, we established that PknK participates in regulatory pathways that slow the growth of M. tuberculosis in a variety of in vitro stress environments and during persistent infection in mice. In the present study, we have elaborated on the mechanism of PknK-mediated regulation. Through transcription profiling of wild-type H37Rv and a ΔpknK mutant strain during logarithmic and stationary growth phases, we determined that PknK regulates the expression of a large subset of tRNA genes so that regulation is synchronized with growth phase and cellular energy status. Elevated levels of wild-type M. tuberculosis PknK (PknK(Mtb)), but not phosphorylation-defective PknK(Mtb), in Mycobacterium smegmatis cause significant retardation of the growth rate and altered colony morphology. We investigated a role for PknK in translational control and established that PknK directs the inhibition of in vitro transcription and translation processes in a phosphorylation-dependent manner. Increasing concentrations of ATP or PknK exert cooperative effects and enhance the inhibitory function of PknK. Furthermore, truncation and mutational analyses of PknK revealed that PknK is autoregulated via intramolecular interactions with its C-terminal region. Significantly, the invariant lysine 55 residue was only essential for activity in the full-length PknK protein, and the truncated mutant proteins were active. A model for PknK autoregulation is proposed and discussed.
Collapse
|
20
|
Abstract
Genomic studies have revealed the presence of Ser/Thr kinases and phosphatases in many bacterial species, although their physiological roles have largely been unclear. Here we review bacterial Ser/Thr kinases (eSTKs) that show homology in their catalytic domains to eukaryotic Ser/Thr kinases and their partner phosphatases (eSTPs) that are homologous to eukaryotic phosphatases. We first discuss insights into the enzymatic mechanism of eSTK activation derived from structural studies on both the ligand-binding and catalytic domains. We then turn our attention to the identified substrates of eSTKs and eSTPs for a number of species and to the implications of these findings for understanding their physiological roles in these organisms.
Collapse
|
21
|
Chakraborti PK, Matange N, Nandicoori VK, Singh Y, Tyagi JS, Visweswariah SS. Signalling mechanisms in Mycobacteria. Tuberculosis (Edinb) 2011; 91:432-40. [PMID: 21570916 DOI: 10.1016/j.tube.2011.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/28/2011] [Accepted: 04/10/2011] [Indexed: 11/18/2022]
Abstract
The importance of inter- and intracellular signal transduction in all forms of life cannot be underestimated. A large number of genes dedicated to cellular signalling are found in almost all sequenced genomes, and Mycobacteria are no exception. What appears to be interesting in Mycobacteria is that well characterized signalling mechanisms used by bacteria, such as the histidine-aspartate phosphorelay seen in two-component systems, are found alongside signalling components that closely mimic those seen in higher eukaryotes. This review will describe the important contribution made by researchers in India towards the identification and characterization of proteins involved in two-component signalling, protein phosphorylation and cyclic nucleotide metabolism.
Collapse
|
22
|
Malhotra V, Arteaga-Cortés LT, Clay G, Clark-Curtiss JE. Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation. MICROBIOLOGY-SGM 2010; 156:2829-2841. [PMID: 20522497 PMCID: PMC3068690 DOI: 10.1099/mic.0.040675-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis serine/threonine protein kinases (STPKs) are key regulators of growth and metabolism; however, evidence for their roles in virulence is limited. In a preliminary screen based on comparative expression between strains H37Rv and H37Ra, six STPK genes, pknD, pknG, pknH, pknJ, pknK and pknL, showed higher expression in H37Rv. In the second screen, STPK expression was analysed in H37Rv-infected human macrophages. Interestingly, significant expression of pknK was detected only at 18 h post-infection, suggesting its involvement in early infection events. We have investigated the roles of PknK in vitro and in vivo. PknK levels were induced under stationary phase and deletion of pknK resulted in increased resistance of the mutant to acidic pH, hypoxia, oxidative and stationary-phase stresses in vitro. These results, together with the increased survival of the ΔpknK strain during persistent infection in mice, reveal a role for PknK in adaptive mechanisms that slow the growth of mycobacteria. A novel finding of this study was the inhibition of growth of ΔpknK strain during acute infection in mice that correlated with the significant upregulation of tumour necrosis factor as well as the simultaneous downregulation of interleukin-12p40, interferon-γ and induced nitric oxide synthase transcripts. Finally, we provide evidence for the localization of PknK during infection and discuss its implications in pathogenesis.
Collapse
Affiliation(s)
- Vandana Malhotra
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| | - Lourdes T Arteaga-Cortés
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| | - Gwendolyn Clay
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Josephine E Clark-Curtiss
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|