1
|
Xavier JC, Kauffman S. Small-molecule autocatalytic networks are universal metabolic fossils. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210244. [PMID: 35599556 DOI: 10.1098/rsta.2021.0244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Life and the genetic code are self-referential and so are autocatalytic networks made of simpler, small molecules. Several origins of life theories postulate autocatalytic chemical networks preceding the primordial genetic code, yet demonstration with biochemical systems is lacking. Here, small-molecule reflexively autocatalytic food-generated networks (RAFs) ranging in size from 3 to 619 reactions were found in all of 6683 prokaryotic metabolic networks searched. The average maximum RAF size is 275 reactions for a rich organic medium and 93 for a medium with a single organic cofactor, NAD. In the rich medium, all universally essential metabolites are produced with the exception of glycerol-1-p (archaeal lipid precursor), phenylalanine, histidine and arginine. The 300 most common reactions, present in at least 2732 RAFs, are mostly involved in amino acid biosynthesis and the metabolism of carbon, 2-oxocarboxylic acid and purines. ATP and NAD are central in generating network complexity, and because ATP is also one of the monomers of RNA, autocatalytic networks producing redox and energy currencies are a strong candidate niche of the origin of a primordial information-processing system. The wide distribution of small-molecule autocatalytic networks indicates that molecular reproduction may be much more prevalent in the Universe than hitherto predicted. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Joana C Xavier
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
2
|
Rees-Garbutt J, Rightmyer J, Chalkley O, Marucci L, Grierson C. Testing Theoretical Minimal Genomes Using Whole-Cell Models. ACS Synth Biol 2021; 10:1598-1604. [PMID: 34111356 DOI: 10.1021/acssynbio.0c00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The minimal gene set for life has often been theorized, with at least ten produced for Mycoplasma genitalium (M. genitalium). Due to the difficulty of using M. genitalium in the lab, combined with its long replication time of 12-15 h, none of these theoretical minimal genomes have been tested, even with modern techniques. The publication of the M. genitalium whole-cell model provided the first opportunity to test them, simulating the genome edits in silico. We simulated minimal gene sets from the literature, finding that they produced in silico cells that did not divide. Using knowledge from previous research, we reintroduced specific essential and low essential genes in silico; enabling cellular division. This reinforces the need to identify species-specific low essential genes and their interactions. Any genome designs created using the currently incomplete and fragmented gene essentiality information will very likely require in vivo reintroductions to correct issues and produce dividing cells.
Collapse
Affiliation(s)
- Joshua Rees-Garbutt
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Jake Rightmyer
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Oliver Chalkley
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- Bristol Centre for Complexity Sciences, Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
| | - Lucia Marucci
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
| | - Claire Grierson
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, U.K
| |
Collapse
|
3
|
Danchin A. Three overlooked key functional classes for building up minimal synthetic cells. Synth Biol (Oxf) 2021; 6:ysab010. [PMID: 35174295 PMCID: PMC8842674 DOI: 10.1093/synbio/ysab010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Assembly of minimal genomes revealed many genes encoding unknown functions. Three overlooked functional categories account for some of them. Cells are prone to make errors and age. As a first key function, discrimination between proper and changed entities is indispensable. Discrimination requires management of information, an authentic, yet abstract, currency of reality. For example proteins age, sometimes very fast. The cell must identify, then get rid of old proteins without destroying young ones. Implementing discrimination in cells leads to the second set of functions, usually ignored. Being abstract, information must nevertheless be embodied into material entities, with unavoidable idiosyncratic properties. This brings about novel unmet needs. Hence, the buildup of cells elicits specific but awkward material implementations, ‘kludges’ that become essential under particular settings, while difficult to identify. Finally, a third functional category characterizes the need for growth, with metabolic implementations allowing the cell to put together the growth of its cytoplasm, membranes, and genome, spanning different spatial dimensions. Solving this metabolic quandary, critical for engineering novel synthetic biology chassis, uncovered an unexpected role for CTP synthetase as the coordinator of nonhomothetic growth. Because a significant number of SynBio constructs aim at creating cell factories we expect that they will be attacked by viruses (it is not by chance that the function of the CRISPR system was identified in industrial settings). Substantiating the role of CTP, natural selection has dealt with this hurdle via synthesis of the antimetabolite 3′‐deoxy‐3′,4′‐didehydro‐CTP, recruited for antiviral immunity in all domains of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos Labs/Stellate Therapeutics, Institut Cochin, Paris, France
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam, SAR Hong Kong, China
| |
Collapse
|
4
|
Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life (Basel) 2020; 10:E20. [PMID: 32110893 PMCID: PMC7151616 DOI: 10.3390/life10030020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Silke Asche
- School of Chemistry, University of Glasgow, Glasgow G128QQ, UK;
| | - Sidney Becker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Holly C. Betts
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK;
| | - Adrien Boniface
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 69130 Ecully, France;
| | - Eloi Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands;
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM Bangi 43600, Selangor, Malaysia;
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6–Dejvice, Czech Republic
| | - Valentina Erastova
- UK Centre for Astrobiology, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Sriram G. Garg
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Nozair Khawaja
- Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany;
| | | | - Rainer Machné
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Quantitative and Theoretical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giacomo Moggioli
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4DQ, UK;
| | - Kamila B. Muchowska
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France;
| | - Sinje Neukirchen
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Benedikt Peter
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Edith Pichlhöfer
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Ádám Radványi
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Annalena Salditt
- Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, 80799 Munich, Germany;
| | - Nicolas M. Schmelling
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Filipa L. Sousa
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Fernando D. K. Tria
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Dániel Vörös
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joana C. Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| |
Collapse
|
5
|
Landon S, Rees-Garbutt J, Marucci L, Grierson C. Genome-driven cell engineering review: in vivo and in silico metabolic and genome engineering. Essays Biochem 2019; 63:267-284. [PMID: 31243142 PMCID: PMC6610458 DOI: 10.1042/ebc20180045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/04/2023]
Abstract
Producing 'designer cells' with specific functions is potentially feasible in the near future. Recent developments, including whole-cell models, genome design algorithms and gene editing tools, have advanced the possibility of combining biological research and mathematical modelling to further understand and better design cellular processes. In this review, we will explore computational and experimental approaches used for metabolic and genome design. We will highlight the relevance of modelling in this process, and challenges associated with the generation of quantitative predictions about cell behaviour as a whole: although many cellular processes are well understood at the subsystem level, it has proved a hugely complex task to integrate separate components together to model and study an entire cell. We explore these developments, highlighting where computational design algorithms compensate for missing cellular information and underlining where computational models can complement and reduce lab experimentation. We will examine issues and illuminate the next steps for genome engineering.
Collapse
Affiliation(s)
- Sophie Landon
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
| | - Joshua Rees-Garbutt
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, U.K
| | - Lucia Marucci
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K.
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
| | - Claire Grierson
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K.
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, U.K
| |
Collapse
|
6
|
Martínez-Carranza E, Barajas H, Alcaraz LD, Servín-González L, Ponce-Soto GY, Soberón-Chávez G. Variability of Bacterial Essential Genes Among Closely Related Bacteria: The Case of Escherichia coli. Front Microbiol 2018; 9:1059. [PMID: 29910775 PMCID: PMC5992433 DOI: 10.3389/fmicb.2018.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/04/2018] [Indexed: 11/23/2022] Open
Abstract
The definition of bacterial essential genes has been widely pursued using different approaches. Their study has impacted several fields of research such as synthetic biology, the construction of bacteria with minimal chromosomes, the search for new antibiotic targets, or the design of strains with biotechnological applications. Bacterial genomes are mosaics that only share a small subset of gene-sequences (core genome) even among members of the same species. It has been reported that the presence of essential genes is highly variable between closely related bacteria and even among members of the same species, due to the phenomenon known as “non-orthologous gene displacement” that refers to the coding for an essential function by genes with no sequence homology due to horizontal gene transfer (HGT). The existence of dormant forms among bacteria and the high incidence of HGT have been proposed to be driving forces of bacterial evolution, and they might have a role in the low level of conservation of essential genes among related bacteria by non-orthologous gene displacement, but this correlation has not been recognized. The aim of this mini-review is to give a brief overview of the approaches that have been taken to define and study essential genes, and the implications of non-orthologous gene displacement in bacterial evolution, focusing mainly in the case of Escherichia coli. To this end, we reviewed the available literature, and we searched for the presence of the essential genes defined by mutagenesis in the genomes of the 63 best-sequenced E. coli genomes that are available in NCBI database. We could not document specific cases of non-orthologous gene displacement among the E. coli strains analyzed, but we found that the quality of the genome-sequences in the database is not enough to make accurate predictions about the conservation of essential-genes among members of this bacterial species.
Collapse
Affiliation(s)
- Enrique Martínez-Carranza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis-David Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Martínez-García E, de Lorenzo V. The quest for the minimal bacterial genome. Curr Opin Biotechnol 2016; 42:216-224. [DOI: 10.1016/j.copbio.2016.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
|
8
|
Gittins JR. Cloning of a copper resistance gene cluster from the cyanobacteriumSynechocystissp. PCC 6803 by recombineering recovery. FEBS Lett 2015; 589:1872-8. [DOI: 10.1016/j.febslet.2015.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/18/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
9
|
Abstract
The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells.
Collapse
|
10
|
Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW. Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 2015; 15:141-61. [PMID: 25722247 PMCID: PMC4361730 DOI: 10.1007/s10142-015-0433-4] [Citation(s) in RCA: 430] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
Abstract
Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.
Collapse
Affiliation(s)
- Miriam Land
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Loren Hauser
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996 USA
| | - Se-Ran Jun
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Intawat Nookaew
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Michael R. Leuze
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Tae-Hyuk Ahn
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Tatiana Karpinets
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Kgs. Lyngby, 2800 Denmark
| | - Guruprased Kora
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Trudy Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstr 7, 55576 Zotzenheim, Germany
| | - Suresh Poudel
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - David W. Ussery
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Kgs. Lyngby, 2800 Denmark
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
11
|
Faria JP, Edirisinghe JN, Davis JJ, Disz T, Hausmann A, Henry CS, Olson R, Overbeek RA, Pusch GD, Shukla M, Vonstein V, Wattam AR. Enabling comparative modeling of closely related genomes: example genus Brucella. 3 Biotech 2015; 5:101-105. [PMID: 28324362 PMCID: PMC4327756 DOI: 10.1007/s13205-014-0202-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this short report, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as well as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.
Collapse
Affiliation(s)
- José P Faria
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Janaka N Edirisinghe
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
- Computation Institute, University of Chicago, Chicago, IL, USA
| | - James J Davis
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA.
- Computation Institute, University of Chicago, Chicago, IL, USA.
| | - Terrence Disz
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Anna Hausmann
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
- Computation Institute, University of Chicago, Chicago, IL, USA
| | - Robert Olson
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Ross A Overbeek
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Gordon D Pusch
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Maulik Shukla
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| | - Veronika Vonstein
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Alice R Wattam
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
12
|
The Cellular Chassis as the Basis for New Functionalities: Shortcomings and Requirements. Synth Biol (Oxf) 2015. [DOI: 10.1007/978-3-319-02783-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Moreno-Hagelsieb G, Hudy-Yuffa B. Estimating overannotation across prokaryotic genomes using BLAST+, UBLAST, LAST and BLAT. BMC Res Notes 2014; 7:651. [PMID: 25228073 PMCID: PMC4180129 DOI: 10.1186/1756-0500-7-651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 09/11/2014] [Indexed: 11/14/2022] Open
Abstract
Background As the number of genomes in public databases increases, it becomes more important to be able to quickly choose the best annotated genomes for further analyses in comparative genomics and evolution. A proxy to annotation quality is the estimation of overannotation by comparing annotated coding genes against the SwissProt database. NCBI’s BLAST (BLAST+) is the common software of choice to compare these sequences. Newer programs that run in a fraction of the time as BLAST+ might miss matches that BLAST+ would find. However, the results might still be useful to calculate overannotation. We thus decided to compare the overannotation estimates yielded using three such programs, UBLAST, LAST and the Blast-Like Alignment Tool (BLAT), and to test non-redundant versions of the SwissProt database to reduce the number of comparisons necessary. Findings We found that all, UBLAST, LAST and BLAT, tend to produce similar overannotation estimates to those obtained with BLAST+. As would be expected, results varied the most from those obtained with BLAST+ in genomes with fewer proteins matching sequences in the SwissProt database. UBLAST was the fastest running algorithm, and showed the smallest variation from the results obtained using BLAST+. Reduced SwissProt databases did not seem to affect the results much, but the reduction in time was modest compared to that obtained from UBLAST, LAST, or BLAT. Conclusions Despite faster programs miss sequence matches otherwise found by NCBI’s BLAST, the overannotation estimates are very similar and thus these programs can be used with confidence for this task. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-651) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Ave, W,, N2L 3C5 Waterloo, ON, Canada.
| | | |
Collapse
|
14
|
Johnson BR, Klaenhammer TR. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie Van Leeuwenhoek 2014; 106:141-56. [PMID: 24748373 PMCID: PMC4064118 DOI: 10.1007/s10482-014-0171-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
For thousands of years, humans have safely consumed microorganisms through fermented foods. Many of these bacteria are considered probiotics, which act through diverse mechanisms to confer a health benefit to the host. However, it was not until the availability of whole-genome sequencing and the era of genomics that mechanisms of probiotic efficacy could be discovered. In this review, we explore the history of the probiotic concept and the current standard of integrated genomic techniques to discern the complex, beneficial relationships between probiotic microbes and their hosts.
Collapse
Affiliation(s)
- Brant R. Johnson
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
| | - Todd R. Klaenhammer
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
- Department of Food, Bioprocessing, and Nutrition Science, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
15
|
Bakermans C, Skidmore ML, Douglas S, McKay CP. Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 2014; 89:331-46. [DOI: 10.1111/1574-6941.12310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 12/01/2022] Open
|
16
|
Alam CM, Singh AK, Sharfuddin C, Ali S. Incidence, complexity and diversity of simple sequence repeats across potexvirus genomes. Gene 2014; 537:189-96. [DOI: 10.1016/j.gene.2014.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 01/04/2014] [Indexed: 01/18/2023]
|
17
|
Jakupciak JP, Wells JM, Karalus RJ, Pawlowski DR, Lin JS, Feldman AB. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis. J Nucleic Acids 2013; 2013:801505. [PMID: 24455204 PMCID: PMC3877622 DOI: 10.1155/2013/801505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey S. Lin
- The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Andrew B. Feldman
- The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| |
Collapse
|
18
|
In-silico analysis of simple and imperfect microsatellites in diverse tobamovirus genomes. Gene 2013; 530:193-200. [DOI: 10.1016/j.gene.2013.08.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
|
19
|
Affiliation(s)
- Helen Cook
- Department of Systems Biology; Center for Biological Sequence Analysis; The Technical University of Denmark; 2800 Kgs Lyngby Denmark
| | - David W. Ussery
- Department of Systems Biology; Center for Biological Sequence Analysis; The Technical University of Denmark; 2800 Kgs Lyngby Denmark
| |
Collapse
|
20
|
Gnanasekaran G, Pan S, Jung W, Jeong K, Jeong JH, Rhee JH, Choy HE, Jung CH. Cloning, Over-expression, and Characterization of YjgA, a Novel ppGpp-binding Protein. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
From essential to persistent genes: a functional approach to constructing synthetic life. Trends Genet 2012; 29:273-9. [PMID: 23219343 PMCID: PMC3642372 DOI: 10.1016/j.tig.2012.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/14/2012] [Accepted: 11/01/2012] [Indexed: 11/21/2022]
Abstract
A central undertaking in synthetic biology (SB) is the quest for the 'minimal genome'. However, 'minimal sets' of essential genes are strongly context-dependent and, in all prokaryotic genomes sequenced to date, not a single protein-coding gene is entirely conserved. Furthermore, a lack of consensus in the field as to what attributes make a gene truly essential adds another aspect of variation. Thus, a universal minimal genome remains elusive. Here, as an alternative to defining a minimal genome, we propose that the concept of gene persistence can be used to classify genes needed for robust long-term survival. Persistent genes, although not ubiquitous, are conserved in a majority of genomes, tend to be expressed at high levels, and are frequently located on the leading DNA strand. These criteria impose constraints on genome organization, and these are important considerations for engineering cells and for creating cellular life-like forms in SB.
Collapse
|
22
|
Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Müller R, Stewart AF, Zhang Y. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 2012; 30:440-6. [PMID: 22544021 DOI: 10.1038/nbt.2183] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/16/2012] [Indexed: 11/09/2022]
Abstract
Functional analysis of genome sequences requires methods for cloning DNA of interest. However, existing methods, such as library cloning and screening, are too demanding or inefficient for high-throughput application to the wealth of genomic data being delivered by massively parallel sequencing. Here we describe direct DNA cloning based on the discovery that the full-length Rac prophage protein RecE and its partner RecT mediate highly efficient linear-linear homologous recombination mechanistically distinct from conventional recombineering mediated by Redαβ from lambda phage or truncated versions of RecET. We directly cloned all ten megasynthetase gene clusters (each 10–52 kb in length) from Photorhabdus luminescens into expression vectors and expressed two of them in a heterologous host to identify the metabolites luminmycin A and luminmide A/B. We also directly cloned cDNAs and exactly defined segments from bacterial artificial chromosomes. Direct cloning with full-length RecE expands the DNA engineering toolbox and will facilitate bioprospecting for natural products.
Collapse
Affiliation(s)
- Jun Fu
- Technische Universitaet Dresden, Genomics, BioInnovationsZentrum, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lukjancenko O, Ussery DW, Wassenaar TM. Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. MICROBIAL ECOLOGY 2012; 63:651-673. [PMID: 22031452 PMCID: PMC3324989 DOI: 10.1007/s00248-011-9948-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
Six bacterial genera containing species commonly used as probiotics for human consumption or starter cultures for food fermentation were compared and contrasted, based on publicly available complete genome sequences. The analysis included 19 Bifidobacterium genomes, 21 Lactobacillus genomes, 4 Lactococcus and 3 Leuconostoc genomes, as well as a selection of Enterococcus (11) and Streptococcus (23) genomes. The latter two genera included genomes from probiotic or commensal as well as pathogenic organisms to investigate if their non-pathogenic members shared more genes with the other probiotic genomes than their pathogenic members. The pan- and core genome of each genus was defined. Pairwise BLASTP genome comparison was performed within and between genera. It turned out that pathogenic Streptococcus and Enterococcus shared more gene families than did the non-pathogenic genomes. In silico multilocus sequence typing was carried out for all genomes per genus, and the variable gene content of genomes was compared within the genera. Informative BLAST Atlases were constructed to visualize genomic variation within genera. The clusters of orthologous groups (COG) classes of all genes in the pan- and core genome of each genus were compared. In addition, it was investigated whether pathogenic genomes contain different COG classes compared to the probiotic or fermentative organisms, again comparing their pan- and core genomes. The obtained results were compared with published data from the literature. This study illustrates how over 80 genomes can be broadly compared using simple bioinformatic tools, leading to both confirmation of known information as well as novel observations.
Collapse
Affiliation(s)
- Oksana Lukjancenko
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs, Lyngby, Denmark
| | - David W. Ussery
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs, Lyngby, Denmark
| | - Trudy M. Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, 55576 Zotzenheim, Germany
| |
Collapse
|
24
|
Liu MF, Cescau S, Mechold U, Wang J, Cohen D, Danchin A, Boulouis HJ, Biville F. Identification of a novel nanoRNase in Bartonella. MICROBIOLOGY-SGM 2012; 158:886-895. [PMID: 22262096 DOI: 10.1099/mic.0.054619-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli, only one essential oligoribonuclease (Orn) can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). In Bacillus subtilis, NrnA and NrnB, which do not show any sequence similarity to Orn, have been identified as functional analogues of Orn. Sequence comparisons did not identify orn, nrnA or nrnB homologues in the genomes of the Chlamydia/Cyanobacteria and Alphaproteobacteria family members. Screening a genomic library from Bartonella birtlesii, a member of the Alphaproteobacteria, for genes that can complement a conditional orn mutant in E. coli, we identified BA0969 (NrnC) as a functional analogue of Orn. NrnC is highly conserved (more than 80 % identity) in the Bartonella genomes sequenced to date. Biochemical characterization showed that this protein exhibits oligo RNA degradation activity (nanoRNase activity). Like Orn from E. coli, NrnC is inhibited by micromolar amounts of 3'-phosphoadenosine 5'-phosphate in vitro. NrnC homologues are widely present in genomes of Alphaproteobacteria. Knock down of nrnC decreases the growth ability of Bartonella henselae, demonstrating the importance of nanoRNase activity in this bacterium.
Collapse
Affiliation(s)
- Ma Feng Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, 5333 Xi an Road, Changchun 130062, PR China
- UMR BIPAR INRA-AFSSA-ENVA, 23 Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - Sandra Cescau
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Undine Mechold
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Jing Wang
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Dorit Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Antoine Danchin
- AMAbiotics SAS, Bldg G1, 2 rue Gaston Crémieux, 91000 Evry, France
| | - Henri-Jean Boulouis
- UMR BIPAR INRA-AFSSA-ENVA, 23 Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - Francis Biville
- Pasteur Institute, 25-28 Rue du Dr Roux, 75015 Paris, France
- UMR BIPAR INRA-AFSSA-ENVA, 23 Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| |
Collapse
|
25
|
Danchin A. Scaling up synthetic biology: Do not forget the chassis. FEBS Lett 2012; 586:2129-37. [DOI: 10.1016/j.febslet.2011.12.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/28/2022]
|
26
|
Danchin A, Binder PM, Noria S. Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk. Genes (Basel) 2011; 2:998-1016. [PMID: 24710302 PMCID: PMC3927596 DOI: 10.3390/genes2040998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/25/2011] [Accepted: 11/16/2011] [Indexed: 12/25/2022] Open
Abstract
The notion of antifragility, an attribute of systems that makes them thrive under variable conditions, has recently been proposed by Nassim Taleb in a business context. This idea requires the ability of such systems to 'tinker', i.e., to creatively respond to changes in their environment. A fairly obvious example of this is natural selection-driven evolution. In this ubiquitous process, an original entity, challenged by an ever-changing environment, creates variants that evolve into novel entities. Analyzing functions that are essential during stationary-state life yield examples of entities that may be antifragile. One such example is proteins with flexible regions that can undergo functional alteration of their side residues or backbone and thus implement the tinkering that leads to antifragility. This in-built property of the cell chassis must be taken into account when considering construction of cell factories driven by engineering principles.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SAS, CEA/Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France.
| | - Philippe M Binder
- Natural Sciences Division, University of Hawaii, Hilo, HI 96720-4091, USA.
| | - Stanislas Noria
- Fondation Fourmentin-Guilbert, 2 avenue du Pavé Neuf, 93160 Noisy-le-Grand, France.
| |
Collapse
|
27
|
Sutcliffe IC, Trujillo ME, Goodfellow M. A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa. Antonie van Leeuwenhoek 2011; 101:13-20. [DOI: 10.1007/s10482-011-9664-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022]
|
28
|
Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz MG. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol 2011; 13:3059-74. [DOI: 10.1111/j.1462-2920.2011.02583.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Rangannan V, Bansal M. PromBase: a web resource for various genomic features and predicted promoters in prokaryotic genomes. BMC Res Notes 2011; 4:257. [PMID: 21781326 PMCID: PMC3160392 DOI: 10.1186/1756-0500-4-257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022] Open
Abstract
Background As more and more genomes are being sequenced, an overview of their genomic features and annotation of their functional elements, which control the expression of each gene or transcription unit of the genome, is a fundamental challenge in genomics and bioinformatics. Findings Relative stability of DNA sequence has been used to predict promoter regions in 913 microbial genomic sequences with GC-content ranging from 16.6% to 74.9%. Irrespective of the genome GC-content the relative stability based promoter prediction method has already been proven to be robust in terms of recall and precision. The predicted promoter regions for the 913 microbial genomes have been accumulated in a database called PromBase. Promoter search can be carried out in PromBase either by specifying the gene name or the genomic position. Each predicted promoter region has been assigned to a reliability class (low, medium, high, very high and highest) based on the difference between its average free energy and the downstream region. The recall and precision values for each class are shown graphically in PromBase. In addition, PromBase provides detailed information about base composition, CDS and CG/TA skews for each genome and various DNA sequence dependent structural properties (average free energy, curvature and bendability) in the vicinity of all annotated translation start sites (TLS). Conclusion PromBase is a database, which contains predicted promoter regions and detailed analysis of various genomic features for 913 microbial genomes. PromBase can serve as a valuable resource for comparative genomics study and help the experimentalist to rapidly access detailed information on various genomic features and putative promoter regions in any given genome. This database is freely accessible for academic and non- academic users via the worldwide web http://nucleix.mbu.iisc.ernet.in/prombase/.
Collapse
Affiliation(s)
- Vetriselvi Rangannan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560 012, India.
| | | |
Collapse
|
30
|
Abstract
OBJECTIVE The purpose of this review article is to summarize what is currently known about microbes associated with the human body and to provide examples of how this knowledge impacts the care of surgical patients. BACKGROUND Pioneering research over the past decade has demonstrated that human beings live in close, constant contact with dynamic communities of microbial organisms. This new reality has wide-ranging implications for the care of surgical patients. METHODS AND RESULTS Recent advances in the culture-independent study of the human microbiome are reviewed. To illustrate the translational relevance of these studies to surgical disease, we discuss in detail what is known about the role of microbes in the pathogenesis of obesity, gastrointestinal malignancies, Crohn disease, and perioperative complications including surgical site infections and sepsis. The topics of mechanical bowel preparation and perioperative antibiotics are also discussed. CONCLUSIONS Heightened understanding of the microbiome in coming years will likely offer opportunities to refine the prevention and treatment of a wide variety of surgical conditions.
Collapse
|
31
|
Life's demons: information and order in biology. What subcellular machines gather and process the information necessary to sustain life? EMBO Rep 2011; 12:495-9. [PMID: 21546913 DOI: 10.1038/embor.2011.83] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/15/2011] [Indexed: 01/26/2023] Open
|
32
|
Leisch H, Morley K, Lau PCK. Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chem Rev 2011; 111:4165-222. [DOI: 10.1021/cr1003437] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
33
|
Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 2010; 37:1241-8. [PMID: 21086099 DOI: 10.1007/s10295-010-0849-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/16/2010] [Indexed: 02/01/2023]
Abstract
Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) re-examining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria.
Collapse
|
34
|
Yu NY, Laird MR, Spencer C, Brinkman FSL. PSORTdb--an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea. Nucleic Acids Res 2010; 39:D241-4. [PMID: 21071402 PMCID: PMC3013690 DOI: 10.1093/nar/gkq1093] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The subcellular localization (SCL) of a microbial protein provides clues about its function, its suitability as a drug, vaccine or diagnostic target and aids experimental design. The first version of PSORTdb provided a valuable resource comprising a data set of proteins of known SCL (ePSORTdb) as well as pre-computed SCL predictions for proteomes derived from complete bacterial genomes (cPSORTdb). PSORTdb 2.0 (http://db.psort.org) extends user-friendly functionalities, significantly expands ePSORTdb and now contains pre-computed SCL predictions for all prokaryotes—including Archaea and Bacteria with atypical cell wall/membrane structures. cPSORTdb uses the latest version of the SCL predictor PSORTb (version 3.0), with higher genome prediction coverage and functional improvements over PSORTb 2.0, which has been the most precise bacterial SCL predictor available. PSORTdb 2.0 is the first microbial protein SCL database reported to have an automatic updating mechanism to regularly generate SCL predictions for deduced proteomes of newly sequenced prokaryotic organisms. This updating approach uses a novel sequence analysis we developed that detects whether the microbe being analyzed has an outer membrane. This identification of membrane structure permits appropriate SCL prediction in an auto-updated fashion and allows PSORTdb to serve as a practical resource for genome annotation and prokaryotic research.
Collapse
Affiliation(s)
- Nancy Y Yu
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | |
Collapse
|