1
|
Munif MR, Hart RA, Rafeek RAM, Mallawaarachchi AC, Anderson L, McMillan DJ, Sriprakash KS, Ketheesan N. Mechanisms that potentially contribute to the development of post-streptococcal glomerulonephritis. Pathog Dis 2024; 82:ftae024. [PMID: 39341789 PMCID: PMC11556339 DOI: 10.1093/femspd/ftae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Post-streptococcal glomerulonephritis (PSGN) is primarily associated with preceding group A streptococcal skin or throat infections, now mainly observed in economically disadvantaged communities. This condition significantly predisposes individuals to later-life chronic kidney disease and concurrent renal complications, with the elderly experiencing increased severity and less favourable outcomes. Streptococcal pyrogenic exotoxin B and nephritis-associated plasmin receptor are identified nephritogenic antigens (nephritogens). Pathogenesis of PSGN is multifactorial. It can involve the formation of antigen-antibody immune complexes, causing inflammatory damage to renal glomeruli. Deposition of circulating immune complexes or in situ formation of immune complexes in glomeruli, or both, results in glomerulonephritis. Additionally, molecular mimicry is hypothesized as a mechanism, wherein cross-reactivity between anti-streptococcal antibodies and glomerular intrinsic matrix proteins leads to glomerulonephritis. Besides, as observed in clinical studies, streptococcal inhibitor of complement, a streptococcal-secreted protein, can also be associated with PSGN. However, the interplay between these streptococcal antigens in the pathogenesis of PSGN necessitates further investigation. Despite the clinical significance of PSGN, the lack of credible animal models poses challenges in understanding the association between streptococcal antigens and the disease process. This review outlines the postulated mechanisms implicated in the development of PSGN with possible therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Raguib Munif
- School of Science & Technology, University of New England, NSW, Australia
- Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert A Hart
- School of Science & Technology, University of New England, NSW, Australia
| | - Rukshan A M Rafeek
- School of Science & Technology, University of New England, NSW, Australia
| | - Amali C Mallawaarachchi
- School of Clinical Medicine, University of New South Wales, NSW, Australia
- Garvan Institute of Medical Research, NSW, Australia
| | - Lyndal Anderson
- Sydney Medical School, The University of Sydney, NSW, Australia
- Royal Prince Alfred Hospital, NSW, Australia
| | - David J McMillan
- School of Science & Technology, University of New England, NSW, Australia
- School of Science, Technology, Engineering and Genecology Research Centre, University of the Sunshine Coast, Queensland, Australia
| | - Kadaba S Sriprakash
- School of Science & Technology, University of New England, NSW, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Natkunam Ketheesan
- School of Science & Technology, University of New England, NSW, Australia
- School of Science, Technology, Engineering and Genecology Research Centre, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
2
|
Neumann A, Happonen L, Karlsson C, Bahnan W, Frick IM, Björck L. Streptococcal protein SIC activates monocytes and induces inflammation. iScience 2021; 24:102339. [PMID: 33855284 PMCID: PMC8027542 DOI: 10.1016/j.isci.2021.102339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Streptococcus pyogenes is a major bacterial pathogen in the human population and isolates of the clinically important M1 serotype secrete protein Streptococcal inhibitor of complement (SIC) known to interfere with human innate immunity. Here we find that SIC from M1 bacteria interacts with TLR2 and CD14 on monocytes leading to the activation of the NF-κB and p38 MAPK pathways and the release of several pro-inflammatory cytokines (e.g. TNFα and INFγ). In human plasma, SIC binds clusterin and histidine-rich glycoprotein, and whole plasma, and these two purified plasma proteins enhanced the activation of monocytes by SIC. Isolates of the M55 serotype secrete an SIC homolog, but this protein did not activate monocytes. M1 isolates are common in cases of invasive S. pyogenes infections characterized by massive inflammation, and the results of this study indicate that the pro-inflammatory property of SIC contributes to the pathology of these severe clinical conditions.
Collapse
Affiliation(s)
- Ariane Neumann
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Wael Bahnan
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| |
Collapse
|
3
|
Siemens N, Snäll J, Svensson M, Norrby-Teglund A. Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1294:127-150. [PMID: 33079367 DOI: 10.1007/978-3-030-57616-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Necrotizing skin and soft tissue infections (NSTIs) are severe life-threatening and rapidly progressing infections. Beta-hemolytic streptococci, particularly S. pyogenes (group A streptococci (GAS)) but also S. dysgalactiae subsp. equisimilis (SDSE, most group G and C streptococcus), are the main causative agents of monomicrobial NSTIs and certain types, such as emm1 and emm3, are over-represented in NSTI cases. An arsenal of bacterial virulence factors contribute to disease pathogenesis, which is a complex and multifactorial process. In this chapter, we summarize data that have provided mechanistic and immuno-pathologic insight into host-pathogens interactions that contribute to tissue pathology in streptococcal NSTIs. The role of streptococcal surface associated and secreted factors contributing to the hyper-inflammatory state and immune evasion, bacterial load in the tissue and persistence strategies, including intracellular survival and biofilm formation, as well as strategies to mimic NSTIs in vitro are discussed.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| | - Johanna Snäll
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Norrby-Teglund
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
4
|
Shannon BA, McCormick JK, Schlievert PM. Toxins and Superantigens of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0054-2018. [PMID: 30737912 PMCID: PMC11590448 DOI: 10.1128/microbiolspec.gpp3-0054-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Blake A Shannon
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - John K McCormick
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
5
|
Frick IM, Shannon O, Neumann A, Karlsson C, Wikström M, Björck L. Streptococcal inhibitor of complement (SIC) modulates fibrinolysis and enhances bacterial survival within fibrin clots. J Biol Chem 2018; 293:13578-13591. [PMID: 30002122 PMCID: PMC6120194 DOI: 10.1074/jbc.ra118.001988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/11/2018] [Indexed: 11/06/2022] Open
Abstract
Some strains of the bacterial pathogen Streptococcus pyogenes secrete protein SIC (streptococcal inhibitor of complement), including strains of the clinically relevant M1 serotype. SIC neutralizes the effect of a number of antimicrobial proteins/peptides and interferes with the function of the host complement system. Previous studies have shown that some S. pyogenes proteins bind and modulate coagulation and fibrinolysis factors, raising the possibility that SIC also may interfere with the activity of these factors. Here we show that SIC interacts with both human thrombin and plasminogen, key components of coagulation and fibrinolysis. We found that during clot formation, SIC binds fibrin through its central region and that SIC inhibits fibrinolysis by interacting with plasminogen. Flow cytometry results indicated that SIC and plasminogen bind simultaneously to S. pyogenes bacteria, and fluorescence microscopy revealed co-localization of the two proteins at the bacterial surface. As a consequence, SIC-expressing bacteria entrapped in clots inhibit fibrinolysis, leading to delayed bacterial escape from the clots as compared with mutant bacteria lacking SIC. Moreover, within the clots SIC-expressing bacteria were protected against killing. In an animal model of subcutaneous infection, SIC-expressing bacteria exhibited a delayed systemic spread. These results demonstrate that the bacterial protein SIC interferes with coagulation and fibrinolysis and thereby enhances bacterial survival, a finding that has significant implications for S. pyogenes virulence.
Collapse
Affiliation(s)
- Inga-Maria Frick
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| | - Oonagh Shannon
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| | - Ariane Neumann
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| | - Christofer Karlsson
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| | - Mats Wikström
- the University of Copenhagen, Protein Function and Interactions Group, Novo Nordisk Foundation Center for Protein Research, DK-2200 Copenhagen, Denmark
| | - Lars Björck
- From the Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden and
| |
Collapse
|
6
|
Westman J, Chakrakodi B, Snäll J, Mörgelin M, Bruun Madsen M, Hyldegaard O, Neumann A, Frick IM, Norrby-Teglund A, Björck L, Herwald H. Protein SIC Secreted from Streptococcus pyogenes Forms Complexes with Extracellular Histones That Boost Cytokine Production. Front Immunol 2018. [PMID: 29520265 PMCID: PMC5827136 DOI: 10.3389/fimmu.2018.00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Innate immunity relies on an effective recognition of the pathogenic microorganism as well as on endogenous danger signals. While bacteria in concert with their secreted virulence factors can cause a number of inflammatory reactions, danger signals released at the site of infection may in addition determine the amplitude of such responses and influence the outcome of the disease. Here, we report that protein SIC, Streptococcal Inhibitor of Complement, an abundant secreted protein from Streptococcus pyogenes, binds to extracellular histones, a group of danger signals released during necrotizing tissue damage. This interaction leads to the formation of large aggregates in vitro. Extracellular histones and SIC are abundantly expressed and seen colocalized in biopsies from patients with necrotizing soft-tissue infections caused by S. pyogenes. In addition, binding of SIC to histones neutralized their antimicrobial activity. Likewise, the ability of histones to induce hemolysis was inhibited in the presence of SIC. However, when added to whole blood, SIC was not able to block the pro-inflammatory effect of histones. Instead SIC boosted the histone-triggered release of a broad range of cytokines and chemokines, including IL-6, TNF-α, IL-8, IL-1β, IL-1ra, G-CSF, and IFN-γ. These results demonstrate that the interaction between SIC and histones has multiple effects on the host response to S. pyogenes infection.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bhavya Chakrakodi
- Department of Medicine, Karolinska Institutet, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Johanna Snäll
- Department of Medicine, Karolinska Institutet, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Faculty of Medicine, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Martin Bruun Madsen
- Rigshospitalet, Department of Intensive Care, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ole Hyldegaard
- Rigshospitalet, Hyperbaric Unit, Department of Anesthesia, Center of Head and Orthopedics, Copenhagen, Denmark
| | - Ariane Neumann
- Department of Clinical Sciences, Faculty of Medicine, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Inga-Maria Frick
- Department of Clinical Sciences, Faculty of Medicine, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Anna Norrby-Teglund
- Department of Medicine, Karolinska Institutet, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lars Björck
- Department of Clinical Sciences, Faculty of Medicine, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Heiko Herwald
- Department of Clinical Sciences, Faculty of Medicine, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care 2017; 7:117. [PMID: 29197958 PMCID: PMC5712298 DOI: 10.1186/s13613-017-0339-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Host infection by a micro-organism triggers systemic inflammation, innate immunity and complement pathways, but also haemostasis activation. The role of thrombin and fibrin generation in host defence is now recognised, and thrombin has become a partner for survival, while it was seen only as one of the "principal suspects" of multiple organ failure and death during septic shock. This review is first focused on pathophysiology. The role of contact activation system, polyphosphates and neutrophil extracellular traps has emerged, offering new potential therapeutic targets. Interestingly, newly recognised host defence peptides (HDPs), derived from thrombin and other "coagulation" factors, are potent inhibitors of bacterial growth. Inhibition of thrombin generation could promote bacterial growth, while HDPs could become novel therapeutic agents against pathogens when resistance to conventional therapies grows. In a second part, we focused on sepsis-induced coagulopathy diagnostic challenge and stratification from "adaptive" haemostasis to "noxious" disseminated intravascular coagulation (DIC) either thrombotic or haemorrhagic. Besides usual coagulation tests, we discussed cellular haemostasis assessment including neutrophil, platelet and endothelial cell activation. Then, we examined therapeutic opportunities to prevent or to reduce "excess" thrombin generation, while preserving "adaptive" haemostasis. The fail of international randomised trials involving anticoagulants during septic shock may modify the hypothesis considering the end of haemostasis as a target to improve survival. On the one hand, patients at low risk of mortality may not be treated to preserve "immunothrombosis" as a defence when, on the other hand, patients at high risk with patent excess thrombin and fibrin generation could benefit from available (antithrombin, soluble thrombomodulin) or ongoing (FXI and FXII inhibitors) therapies. We propose to better assess coagulation response during infection by an improved knowledge of pathophysiology and systematic testing including determination of DIC scores. This is one of the clues to allocate the right treatment for the right patient at the right moment.
Collapse
Affiliation(s)
- Xavier Delabranche
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| | - Julie Helms
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM, EFS Grand Est, BPPS UMR-S 949, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Wollein Waldetoft K, Svensson L, Mörgelin M, Olin AI, Nitsche-Schmitz DP, Björck L, Frick IM. Streptococcal surface proteins activate the contact system and control its antibacterial activity. J Biol Chem 2012; 287:25010-8. [PMID: 22648411 PMCID: PMC3408149 DOI: 10.1074/jbc.m112.373217] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Group G streptococci (GGS) are important bacterial pathogens in humans. Here, we investigated the interactions between GGS and the contact system, a procoagulant and proinflammatory proteolytic cascade that, upon activation, also generates antibacterial peptides. Two surface proteins of GGS, protein FOG and protein G (PG), were found to bind contact system proteins. Experiments utilizing contact protein-deficient human plasma and isogenic GGS mutant strains lacking FOG or PG showed that FOG and PG both activate the procoagulant branch of the contact system. In contrast, only FOG induced cleavage of high molecular weight kininogen, generating the proinflammatory bradykinin peptide and additional high molecular weight kininogen fragments containing the antimicrobial peptide NAT-26. On the other hand, PG protected the bacteria against the antibacterial effect of NAT-26. These findings underline the significance of the contact system in innate immunity and demonstrate that GGS have evolved surface proteins to exploit and modulate its effects.
Collapse
|
10
|
Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc Natl Acad Sci U S A 2012; 109:3469-74. [PMID: 22331877 DOI: 10.1073/pnas.1201031109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The widespread occurrence of antibiotic resistance among human pathogens is a major public health problem. Conventional antibiotics typically target bacterial killing or growth inhibition, resulting in strong selection for the development of antibiotic resistance. Alternative therapeutic approaches targeting microbial pathogenicity without inhibiting growth might minimize selection for resistant organisms. Compounds inhibiting gene expression of streptokinase (SK), a critical group A streptococcal (GAS) virulence factor, were identified through a high-throughput, growth-based screen on a library of 55,000 small molecules. The lead compound [Center for Chemical Genomics 2979 (CCG-2979)] and an analog (CCG-102487) were confirmed to also inhibit the production of active SK protein. Microarray analysis of GAS grown in the presence of CCG-102487 showed down-regulation of a number of important virulence factors in addition to SK, suggesting disruption of a general virulence gene regulatory network. CCG-2979 and CCG-102487 both enhanced granulocyte phagocytosis and killing of GAS in an in vitro assay, and CCG-2979 also protected mice from GAS-induced mortality in vivo. These data suggest that the class of compounds represented by CCG-2979 may be of therapeutic value for the treatment of GAS and potentially other gram-positive infections in humans.
Collapse
|
11
|
Frick IM, Shannon O, Åkesson P, Mörgelin M, Collin M, Schmidtchen A, Björck L. Antibacterial activity of the contact and complement systems is blocked by SIC, a protein secreted by Streptococcus pyogenes. J Biol Chem 2011; 286:1331-40. [PMID: 21068386 PMCID: PMC3020741 DOI: 10.1074/jbc.m110.178350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/21/2010] [Indexed: 01/05/2023] Open
Abstract
Recent studies have shown that activation of complement and contact systems results in the generation of antibacterial peptides. Streptococcus pyogenes, a major bacterial pathogen in humans, exists in >100 different serotypes due to sequence variation in the surface-associated M protein. Cases of invasive and life-threatening S. pyogenes infections are commonly associated with isolates of the M1 serotype, and in contrast to the large majority of M serotypes, M1 isolates all secrete the SIC protein. Here, we show that SIC interferes with the activation of the contact system and blocks the activity of antibacterial peptides generated through complement and contact activation. This effect promotes the growth of S. pyogenes in human plasma, and in a mouse model of S. pyogenes sepsis, SIC enhances bacterial dissemination, results which help explain the high frequency of severe S. pyogenes infections caused by isolates of the M1 serotype.
Collapse
Affiliation(s)
- Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|