1
|
Antunes B, Zanchi C, Johnston PR, Maron B, Witzany C, Regoes RR, Hayouka Z, Rolff J. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is severely constrained by random peptide mixtures. PLoS Biol 2024; 22:e3002692. [PMID: 38954678 PMCID: PMC11218975 DOI: 10.1371/journal.pbio.3002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.
Collapse
Affiliation(s)
- Bernardo Antunes
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
| | - Paul R. Johnston
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
- University of St. Andrews, School of Medicine, North Haugh, St Andrews, Fife, United Kingdom
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
| |
Collapse
|
2
|
Suresh K, Pillai D, Soman M, Sreenivas A, Paul R. Isolation and identification of antimicrobial susceptibility, biofilm formation, efflux pump activity, and virulence determinants in multi-drug resistant Pseudomonas aeruginosa isolated from freshwater fishes. JOURNAL OF WATER AND HEALTH 2023; 21:1858-1870. [PMID: 38153717 PMCID: wh_2023_206 DOI: 10.2166/wh.2023.206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The present study was undertaken to evaluate the prevalence, underlying resistance mechanism, and virulence involved in Pseudomonas aeruginosa (n = 35) isolated from freshwater fishes in Andhra Pradesh, India. Antibiogram studies revealed that 68.5, 62.8, 37.1, 11.4, 8.5, 57.1, 54.2, and 48.5% of isolates had resistance to oxytetracycline, co-trimoxazole, doxycycline, enrofloxacin, ciprofloxacin, cefotaxime, ceftazidime, and ampicillin, respectively. The resistant isolates harboured the tetA (85.7%), tetD (71.4%), tetM (91.4%), sul1 (80%), blaCTX-M (57.1%), blaTEM (42.8%), and blaSHV (48.5%) genes. In total, 50% of the isolates were altered as multi-drug resistant, and the multiple antibiotic resistance index was calculated as 0.4. Furthermore, 37.3, 48.5, and 14.2% of isolates were categorized as strong, moderate, and weak biofilm formers, possessing pslA (91.5%) and pslD (88.6%) biofilm encoding genes. In total, 82.8% of the isolates exhibited efflux pump activity and harboured the mexA (74.2%), mexB (77.1%), and oprM (37.1%) genes. Virulent genes oprL, toxA, exoS, and phzM were detected in 68.5, 68.5, 100, and 17.1% of isolates, respectively. The data suggested that P. aeruginosa harbours multiple resistance mechanisms and virulence factors that may contribute to antibiotic resistance and pathogenicity, and their distribution in fish culture facilities highlights the public health hazards of the food chain.
Collapse
Affiliation(s)
- Kummari Suresh
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail:
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Manju Soman
- Department of Animal Husbandry, Government of Kerala, Kochi, Kerala, India
| | - Akula Sreenivas
- Agriculture Market Intelligence Centre, Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Robin Paul
- Department of Animal Husbandry, Government of Kerala, Kochi, Kerala, India
| |
Collapse
|
3
|
de Sandozequi A, Martínez‐Anaya C. Bacterial surface-exposed lipoproteins and sortase-mediated anchored cell surface proteins in plant infection. Microbiologyopen 2023; 12:e1382. [PMID: 37877658 PMCID: PMC10501053 DOI: 10.1002/mbo3.1382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023] Open
Abstract
The bacterial cell envelope is involved in all stages of infection and the study of its components and structures is important to understand how bacteria interact with the extracellular milieu. Thanks to new techniques that focus on identifying bacterial surface proteins, we now better understand the specific components involved in host-pathogen interactions. In the fight against the deleterious effects of pathogenic bacteria, bacterial surface proteins (at the cell envelope) are important targets as they play crucial roles in the colonization and infection of host tissues. These surface proteins serve functions such as protection, secretion, biofilm formation, nutrient intake, metabolism, and virulence. Bacteria use different mechanisms to associate proteins to the cell surface via posttranslational modification, such as the addition of a lipid moiety to create lipoproteins and attachment to the peptidoglycan layer by sortases. In this review, we focus on these types of proteins (and provide examples of others) that are associated with the bacterial cell envelope by posttranslational modifications and their roles in plant infection.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y BiocatálisisInstituto de BiotecnologíaCuernavacaMéxico
| | - Claudia Martínez‐Anaya
- Departamento de Ingeniería Celular y BiocatálisisInstituto de BiotecnologíaCuernavacaMéxico
| |
Collapse
|
4
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Molecular Characterization and Designing of a Novel Multiepitope Vaccine Construct Against Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28:49. [PMID: 35069055 PMCID: PMC8762192 DOI: 10.1007/s10989-021-10356-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
ABSTRACT Pseudomonas aeruginosa, an ESKAPE pathogen causes many fatal clinical diseases in humans across the globe. Despite an increase in clinical instances of Pseudomonas infection, there is currently no effective vaccine or treatment available. The major membrane protein candidate of the P. aeruginosa bacterial cell is known to be a critical component for cellular bacterial susceptibility to antimicrobial peptides and survival inside the host organisms. Therefore, the current computational study aims to examine P. aeruginosa's major membrane protein, OprF, and OprI, in order to design linear B-cell, cytotoxic T-cell, and helper T-cell peptide-based vaccine constructs. Utilizing various immune-informatics tools and databases, a total of two B-cells and twelve T-cells peptides were predicted. The final vaccine design was simulated to generate a high-quality three-dimensional structure, which included epitopes, adjuvant, and linkers. The vaccine was shown to be nonallergenic, antigenic, soluble, and had the best biophysical properties. The vaccine and Toll-like receptor 4 have a strong and stable interaction, according to protein-protein docking and molecular dynamics simulations. Additionally, in silico cloning was employed to see how the developed vaccine expressed in the pET28a (+) vector. Ultimately, an immune simulation was performed to see the vaccine efficacy. In conclusion, the newly developed vaccine appears to be a promising option for a vaccine against P. aeruginosa infection. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10989-021-10356-z.
Collapse
|
6
|
Detection and association of toxA gene with antibiotics resistance in Pseudomonas aeruginosa strains isolated from different sources in Al Muthanna city. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Sharma S, Zhou R, Wan L, Feng S, Song K, Xu C, Li Y, Liao M. Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins. Nat Commun 2021; 12:4687. [PMID: 34344901 PMCID: PMC8333309 DOI: 10.1038/s41467-021-24965-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE recognizes its substrate by interacting with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins.
Collapse
Affiliation(s)
- Stuti Sharma
- grid.38142.3c000000041936754XDepartment of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA USA
| | - Ruoyu Zhou
- grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Li Wan
- grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - KangKang Song
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA USA
| | - Chen Xu
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA USA
| | - Yanyan Li
- grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Maofu Liao
- grid.38142.3c000000041936754XDepartment of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA USA
| |
Collapse
|
8
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
9
|
Heywood A, Lamont IL. Cell envelope proteases and peptidases of Pseudomonas aeruginosa: multiple roles, multiple mechanisms. FEMS Microbiol Rev 2020; 44:857-873. [PMID: 32804218 DOI: 10.1093/femsre/fuaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is commonly isolated from damp environments. It is also a major opportunistic pathogen, causing a wide range of problematic infections. The cell envelope of P. aeruginosa, comprising the cytoplasmic membrane, periplasmic space, peptidoglycan layer and outer membrane, is critical to the bacteria's ability to adapt and thrive in a wide range of environments. Over 40 proteases and peptidases are located in the P. aeruginosa cell envelope. These enzymes play many crucial roles. They are required for protein secretion out of the cytoplasm to the periplasm, outer membrane, cell surface or the environment; for protein quality control and removal of misfolded proteins; for controlling gene expression, allowing adaptation to environmental changes; for modification and remodelling of peptidoglycan; and for metabolism of small molecules. The key roles of cell envelope proteases in ensuring normal cell functioning have prompted the development of inhibitors targeting some of these enzymes as potential new anti-Pseudomonas therapies. In this review, we summarise the current state of knowledge across the breadth of P. aeruginosa cell envelope proteases and peptidases, with an emphasis on recent findings, and highlight likely future directions in their study.
Collapse
Affiliation(s)
- Astra Heywood
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
10
|
Algammal AM, Mabrok M, Sivaramasamy E, Youssef FM, Atwa MH, El-Kholy AW, Hetta HF, Hozzein WN. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and bla TEM, bla CTX-M, and tetA antibiotic-resistance genes. Sci Rep 2020; 10:15961. [PMID: 32994450 PMCID: PMC7524749 DOI: 10.1038/s41598-020-72264-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the prevalence, antibiogram of Pseudomonasaeruginosa (P.aeruginosa), and the distribution of virulence genes (oprL,exoS, phzM, and toxA) and the antibiotic-resistance genes (blaTEM, tetA, and blaCTX-M). A total of 285 fish (165 Oreochromisniloticus and 120 Clariasgariepinus) were collected randomly from private fish farms in Ismailia Governorate, Egypt. The collected specimens were examined bacteriologically. P. aeruginosa was isolated from 90 examined fish (31.57%), and the liver was the most prominent infected organ. The antibiogram of the isolated strains was determined using a disc diffusion method, where the tested strains exhibited multi-drug resistance (MDR) to amoxicillin, cefotaxime, tetracycline, and gentamicin. The PCR results revealed that all the examined strains harbored (oprL and toxA) virulence genes, while only 22.2% were positive for the phzM gene. On the contrary, none of the tested strains were positive for the exoS gene. Concerning the distribution of the antibiotic resistance genes, the examined strains harbored blaTEM, blaCTX-M, and tetA genes with a total prevalence of 83.3%, 77.7%, and 75.6%, respectively. Experimentally infected fish with P.aeruginosa displayed high mortalities in direct proportion to the encoded virulence genes and showed similar signs of septicemia found in the naturally infected one. In conclusion, P.aeruginosa is a major pathogen of O.niloticus and C.gariepinus.oprL and toxA genes are the most predominant virulence genes associated with P.aeruginosa infection. The blaCTX-M,blaTEM, and tetA genes are the main antibiotic-resistance genes that induce resistance patterns to cefotaxime, amoxicillin, and tetracycline, highlighting MDR P.aeruginosa strains of potential public health concern.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.,Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Elayaraja Sivaramasamy
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Fatma M Youssef
- Department of Clinical Pathology, Ismailia Branch, Animal Health Research Institute, Ismailia, 41522, Egypt
| | - Mona H Atwa
- Department of Clinical Pathology, Ismailia Branch, Animal Health Research Institute, Ismailia, 41522, Egypt
| | - Ali W El-Kholy
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515, Egypt.,Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0595, USA
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
11
|
Bharwad K, Rajkumar S. Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas. World J Microbiol Biotechnol 2019; 35:140. [DOI: 10.1007/s11274-019-2717-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
12
|
Lorenz C, Dougherty TJ, Lory S. Correct Sorting of Lipoproteins into the Inner and Outer Membranes of Pseudomonas aeruginosa by the Escherichia coli LolCDE Transport System. mBio 2019; 10:e00194-19. [PMID: 30992347 PMCID: PMC6469965 DOI: 10.1128/mbio.00194-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Biogenesis of the outer membrane of Gram-negative bacteria depends on dedicated macromolecular transport systems. The LolABCDE proteins make up the machinery for lipoprotein trafficking from the inner membrane (IM) across the periplasm to the outer membrane (OM). The Lol apparatus is additionally responsible for differentiating OM lipoproteins from those for the IM. In Enterobacteriaceae, a default sorting mechanism has been proposed whereby an aspartic acid at position +2 of the mature lipoproteins prevents Lol recognition and leads to their IM retention. In other bacteria, the conservation of sequences immediately following the acylated cysteine is variable. Here we show that in Pseudomonas aeruginosa, the three essential Lol proteins (LolCDE) can be replaced with those from Escherichia coli The P. aeruginosa lipoproteins MexA, OprM, PscJ, and FlgH, with different sequences at their N termini, were correctly sorted by either the E. coli or P. aeruginosa LolCDE. We further demonstrate that an inhibitor of E. coli LolCDE is active against P. aeruginosa only when expressing the E. coli orthologues. Our work shows that Lol proteins recognize a wide range of signals, consisting of an acylated cysteine and a specific conformation of the adjacent domain, determining IM retention or transport to the OM.IMPORTANCE Gram-negative bacteria build their outer membranes (OM) from components that are initially located in the inner membrane (IM). A fraction of lipoproteins is transferred to the OM by the transport machinery consisting of LolABCDE proteins. Our work demonstrates that the LolCDE complexes of the transport pathways of Escherichia coli and Pseudomonas aeruginosa are interchangeable, with the E. coli orthologues correctly sorting the P. aeruginosa lipoproteins while retaining their sensitivity to a small-molecule inhibitor. These findings question the nature of IM retention signals, identified in E. coli as aspartate at position +2 of mature lipoproteins. We propose an alternative model for the sorting of IM and OM lipoproteins based on their relative affinities for the IM and the ability of the promiscuous sorting machinery to deliver lipoproteins to their functional sites in the OM.
Collapse
Affiliation(s)
- Christian Lorenz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J Dougherty
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Lory
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev 2017; 41:698-722. [PMID: 28981745 DOI: 10.1093/femsre/fux020] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium belonging to the γ-proteobacteria. Like other members of the Pseudomonas genus, it is known for its metabolic versatility and its ability to colonize a wide range of ecological niches, such as rhizosphere, water environments and animal hosts, including humans where it can cause severe infections. Another particularity of P. aeruginosa is its high intrinsic resistance to antiseptics and antibiotics, which is partly due to its low outer membrane permeability. In contrast to Enterobacteria, pseudomonads do not possess general diffusion porins in their outer membrane, but rather express specific channel proteins for the uptake of different nutrients. The major outer membrane 'porin', OprF, has been extensively investigated, and displays structural, adhesion and signaling functions while its role in the diffusion of nutrients is still under discussion. Other porins include OprB and OprB2 for the diffusion of glucose, the two small outer membrane proteins OprG and OprH, and the two porins involved in phosphate/pyrophosphate uptake, OprP and OprO. The remaining nineteen porins belong to the so-called OprD (Occ) family, which is further split into two subfamilies termed OccD (8 members) and OccK (11 members). In the past years, a large amount of information concerning the structure, function and regulation of these porins has been published, justifying why an updated review is timely.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Josselin Bodilis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Laboratoire de Biotechnologie et Chimie Marines EA 3884, Université de Bretagne-Sud (UEB), 56321 Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| |
Collapse
|
14
|
Kumari N, Götz F, Nguyen MT. Aspartate tightens the anchoring of staphylococcal lipoproteins to the cytoplasmic membrane. Microbiologyopen 2017; 6. [PMID: 28901671 PMCID: PMC5727369 DOI: 10.1002/mbo3.525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
In gram-negative bacteria, the ABC transporter LolCDE complex translocates outer membrane-specific lipoproteins (Lpp) from the inner membrane to the outer membrane. Lpp possessing aspartate (Asp) at position +2 are not translocated because it functions as a LolCDE avoidance signal. In gram-positive bacteria, lacking an outer membrane and the Lol system, Lpp are only anchored at the outer leaflet of the cytoplasmic membrane. However, the release of Lpp particularly in pathogenic or commensal species is crucial for immune modulation. Here, we provide evidence that in Staphylococcus aureus Asp at position +2 plays a role in withholding Lpp to the cytoplasmic membrane. Screening of published exoproteomic data of S. aureus revealed that Lpp mainly with Gly or Ser at position +2 were found in exoproteome, but there was no Lpp with Asp+2. The occurrence of Lpp with Asp+2 is infrequent in gram-positive bacteria. In S. aureus USA300 only seven of the 67 Lpp possess Asp+2; among them five Lpp represented Lpl lipoproteins involved in host cell invasion. Our study demonstrated that replacing the Asp+2 present in Lpl8 with a Ser enhances its release into the supernatant. However, there is no different release of Asp+2 and Ser+2 in mprF mutant that lacks the positive charge of lysyl-phosphatidylglycerol (Lys-PG). Moreover, substitution of Ser+2 by Asp in SitC (MntC) did not lead to a decreased release indicating that in staphylococci positions +3 and +4 might also be important for a tighter anchoring of Lpp. Here, we show that Asp in position +2 and adjacent amino acids contribute in tightening the anchoring of Lpp by interaction of the negative charged Asp with the positive charged Lys-PG.
Collapse
Affiliation(s)
- Nimerta Kumari
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany.,Institute of Microbiology, University of Sindh, Jamshoro, Pakistan
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Minh-Thu Nguyen
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany.,School of Biological and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
15
|
Structural insights into the mechanism of the membrane integral N-acyltransferase step in bacterial lipoprotein synthesis. Nat Commun 2017; 8:15952. [PMID: 28675161 PMCID: PMC5500888 DOI: 10.1038/ncomms15952] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/13/2017] [Indexed: 02/07/2023] Open
Abstract
Lipoproteins serve essential roles in the bacterial cell envelope. The posttranslational modification pathway leading to lipoprotein synthesis involves three enzymes. All are potential targets for the development of new antibiotics. Here we report the crystal structure of the last enzyme in the pathway, apolipoprotein N-acyltransferase, Lnt, responsible for adding a third acyl chain to the lipoprotein’s invariant diacylated N-terminal cysteine. Structures of Lnt from Pseudomonas aeruginosa and Escherichia coli have been solved; they are remarkably similar. Both consist of a membrane domain on which sits a globular periplasmic domain. The active site resides above the membrane interface where the domains meet facing into the periplasm. The structures are consistent with the proposed ping-pong reaction mechanism and suggest plausible routes by which substrates and products enter and leave the active site. While Lnt may present challenges for antibiotic development, the structures described should facilitate design of therapeutics with reduced off-target effects. Lipoproteins are essential components of bacterial membranes. Here the authors present the crystal structures of Pseudomonas aeruginosa and Escherichia coli apolipoprotein N-acyltransferase, which catalyses the final step in the lipoprotein synthesis pathway, and give insights into its mechanism.
Collapse
|
16
|
Defining Lipoprotein Localisation by Fluorescence Microscopy. Methods Mol Biol 2017. [PMID: 28667602 DOI: 10.1007/978-1-4939-7033-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In recent years it has become evident that lipoproteins play crucial roles in the assembly of bacterial envelope-embedded nanomachineries and in the processes of protein export/secretion. In this chapter we describe a method to determine their precise localisation, for example inner versus outer membrane, in Gram-negative bacteria using human opportunistic pathogen Pseudomonas aeruginosa as a model. A fusion protein between a given putative lipoprotein and the red fluorescent protein mCherry must be created and expressed in a strain expressing cytoplasmic green fluorescent protein (GFP). Then the peripheral localisation of the fusion protein in the cell can be examined by treating cells with lysozyme to create spheroplasts and monitoring fluorescence under a confocal microscope. Mutants in the signal peptide can be engineered to study the association with the membrane and efficiency of transport. This protocol can be adapted to monitor lipoprotein localisation in other Gram-negative bacteria.
Collapse
|
17
|
Kumar A, Naravarjula SS, Debnath Das M. Molecular and immunological characterization of Lp1, the 34 kDa outer membrane lipoprotein of Pseudomonas aeruginosa. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Domínguez-Gil T, Lee M, Acebrón-Avalos I, Mahasenan KV, Hesek D, Dik DA, Byun B, Lastochkin E, Fisher JF, Mobashery S, Hermoso JA. Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase from Pseudomonas aeruginosa. Structure 2016; 24:1729-1741. [PMID: 27618662 DOI: 10.1016/j.str.2016.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022]
Abstract
Bacteria grow and divide without loss of cellular integrity. This accomplishment is notable, as a key component of their cell envelope is a surrounding glycopeptide polymer. In Gram-negative bacteria this polymer-the peptidoglycan-grows by the difference between concurrent synthesis and degradation. The regulation of the enzymatic ensemble for these activities is poorly understood. We report herein the structural basis for the control of one such enzyme, the lytic transglycosylase MltF of Pseudomonas aeruginosa. Its structure comprises two modules: an ABC-transporter-like regulatory module and a catalytic module. Occupancy of the regulatory module by peptidoglycan-derived muropeptides effects a dramatic and long-distance (40 Å) conformational change, occurring over the entire protein structure, to open its active site for catalysis. This discovery of the molecular basis for the allosteric control of MltF catalysis is foundational to further study of MltF within the complex enzymatic orchestration of the dynamic peptidoglycan.
Collapse
Affiliation(s)
- Teresa Domínguez-Gil
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Iván Acebrón-Avalos
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David A Dik
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Byungjin Byun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Juan A Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| |
Collapse
|
19
|
Domínguez-Gil T, Molina R, Alcorlo M, Hermoso JA. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. Drug Resist Updat 2016; 28:91-104. [PMID: 27620957 DOI: 10.1016/j.drup.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway.
Collapse
Affiliation(s)
- Teresa Domínguez-Gil
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Martín Alcorlo
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| |
Collapse
|
20
|
Yonehara R, Yamashita E, Nakagawa A. Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of P
seudomonas aeruginosa. Proteins 2016; 84:759-69. [DOI: 10.1002/prot.25022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ryo Yonehara
- Institute for Protein Research, Osaka University; Suita Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University; Suita Japan
| | | |
Collapse
|
21
|
Vogeley L, El Arnaout T, Bailey J, Stansfeld PJ, Boland C, Caffrey M. Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science 2016; 351:876-80. [PMID: 26912896 DOI: 10.1126/science.aad3747] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With functions that range from cell envelope structure to signal transduction and transport, lipoproteins constitute 2 to 3% of bacterial genomes and play critical roles in bacterial physiology, pathogenicity, and antibiotic resistance. Lipoproteins are synthesized with a signal peptide securing them to the cytoplasmic membrane with the lipoprotein domain in the periplasm or outside the cell. Posttranslational processing requires a signal peptidase II (LspA) that removes the signal peptide. Here, we report the crystal structure of LspA from Pseudomonas aeruginosa complexed with the antimicrobial globomycin at 2.8 angstrom resolution. Mutagenesis studies identify LspA as an aspartyl peptidase. In an example of molecular mimicry, globomycin appears to inhibit by acting as a noncleavable peptide that sterically blocks the active site. This structure should inform rational antibiotic drug discovery.
Collapse
Affiliation(s)
- Lutz Vogeley
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Toufic El Arnaout
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Jonathan Bailey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Coilin Boland
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Fernández-Piñar R, Lo Sciuto A, Rossi A, Ranucci S, Bragonzi A, Imperi F. In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa. Sci Rep 2015; 5:17593. [PMID: 26621210 PMCID: PMC4665194 DOI: 10.1038/srep17593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa represents a prototype of multi-drug resistant opportunistic pathogens for which novel therapeutic options are urgently required. In order to identify new candidates as potential drug targets, we combined large-scale transposon mutagenesis data analysis and bioinformatics predictions to retrieve a set of putative essential genes which are conserved in P. aeruginosa and predicted to encode cell envelope or secreted proteins. By generating unmarked deletion or conditional mutants, we confirmed the in vitro essentiality of two periplasmic proteins, LptH and LolA, responsible for lipopolysaccharide and lipoproteins transport to the outer membrane respectively, and confirmed that they are important for cell envelope stability. LptH was also found to be essential for P. aeruginosa ability to cause infection in different animal models. Conversely, LolA-depleted cells appeared only partially impaired in pathogenicity, indicating that this protein likely plays a less relevant role during bacterial infection. Finally, we ruled out any involvement of the other six proteins under investigation in P. aeruginosa growth, cell envelope stability and virulence. Besides proposing LptH as a very promising drug target in P. aeruginosa, this study confirms the importance of in vitro and in vivo validation of potential essential genes identified through random transposon mutagenesis.
Collapse
Affiliation(s)
- Regina Fernández-Piñar
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessandra Lo Sciuto
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alice Rossi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Serena Ranucci
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Imperi
- Laboratory of Molecular Microbiology, Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Hu X, Yan H, Liu K, Hu J, Qi C, Yang J, Liu Y, Zhao J, Liu J. Identification and characterization of a novel stress-responsive outer membrane protein Lip40 from Actinobacillus pleuropneumoniae. BMC Biotechnol 2015; 15:106. [PMID: 26608465 PMCID: PMC4660844 DOI: 10.1186/s12896-015-0199-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/29/2015] [Indexed: 01/30/2023] Open
Abstract
Background Actinobacillus pleuropneumoniae, a Gram-negative bacterium, is the causative agent of porcine pleuropneumonia, a highly contagious and often fatal disease. Because current vaccines confer limited protection against A. pleuropneumoniae infection, the development of more effective vaccines is urgently required. The identification of immunogenic and protective antigens, such as an outer-membrane lipoprotein, will advance this purpose. Results Sixty putative lipoproteins were predicted from the genomic sequence of A. pleuropneumoniae using multiple algorithms. Here, we focused on the characteristics of the putative lipoprotein Lip40 from A. pleuropneumoniae strain SLW01 (serovar 1). Lip40 shares sequence similarity with many bacterial lipoproteins, and the structural prediction of Lip40 suggests that it is similar to A. pleuropneumoniae TbpB. The N-terminus of Lip40 contains an interesting tandemly repeated sequence, Q(E/D/P)QPK. Real-time RT–PCR indicated that the expression of lip40 was significantly upregulated at 42 °C, at 16 °C, and under anaerobic conditions. Recombinant Lip40 (rLip40) produced in Escherichia coli BL21(DE3) was specifically recognized by porcine convalescent serum directed against A. pleuropneumoniae. Lip40 was confirmed to localize at the bacterial outer membrane, and its expression was significantly stimulated when A. pleuropneumoniae was cultured under various stress conditions. Lip40 also protected 75 % of mice from fatal virulent A. pleuropneumoniae infection. Conclusions The immunogenic outer-membrane protein Lip40 is stress responsive, protects mice against infection, and might be a virulence determinant. Further investigation of Lip40 should expedite vaccine development and provide insight into the pathogenesis of A. pleuropneumoniae. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0199-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuehe Hu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Hao Yan
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Ke Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jiansheng Hu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Chao Qi
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jihong Yang
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Yanli Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jin Zhao
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Jinlin Liu
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
24
|
Desmarais SM, Tropini C, Miguel A, Cava F, Monds RD, de Pedro MA, Huang KC. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography. J Biol Chem 2015; 290:31090-100. [PMID: 26468288 DOI: 10.1074/jbc.m115.661660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.
Collapse
Affiliation(s)
| | - Carolina Tropini
- From the Departments of Bioengineering and the Biophysics Program, Stanford University, Stanford, California 94305
| | | | - Felipe Cava
- the Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, 90187 Sweden
| | - Russell D Monds
- From the Departments of Bioengineering and the Bio-X Program, Stanford University, Stanford, California 94305, and
| | - Miguel A de Pedro
- the Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Kerwyn Casey Huang
- From the Departments of Bioengineering and the Biophysics Program, Stanford University, Stanford, California 94305, the Bio-X Program, Stanford University, Stanford, California 94305, and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305,
| |
Collapse
|
25
|
Pseudomonas aeruginosa LysR PA4203 regulator NmoR acts as a repressor of the PA4202 nmoA gene, encoding a nitronate monooxygenase. J Bacteriol 2014; 197:1026-39. [PMID: 25384477 DOI: 10.1128/jb.01991-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The PA4203 gene encodes a LysR regulator and lies between the ppgL gene (PA4204), which encodes a periplasmic gluconolactonase, and, in the opposite orientation, the PA4202 (nmoA) gene, coding for a nitronate monooxygenase, and ddlA (PA4201), encoding a d-alanine alanine ligase. The intergenic regions between PA4203 and ppgL and between PA4203 and nmoA are very short (79 and 107 nucleotides, respectively). Here we show that PA4203 (nmoR) represses its own transcription and the expression of nmoA. A chromatin immunoprecipitation analysis showed the presence of a single NmoR binding site between nmoA and nmoR, which was confirmed by electrophoretic mobility shift assays (EMSAs) with the purified NmoR protein. Despite this observation, a transcriptome analysis revealed more genes to be affected in an nmoR mutant, including genes known to be part of the MexT LysR activator regulon. The PA1225 gene, encoding a quinone oxidoreductase, was the most highly upregulated gene in the nmoR deletion mutant, independently of MexT. Finally, deletion of the nmoA gene resulted in an increased sensitivity of the cells to 3-nitropropionic acid (3-NPA), confirming the role of the nitronate monooxygenase protein in the detoxification of nitronate.
Collapse
|
26
|
Adamczack J, Hoffmann M, Papke U, Haufschildt K, Nicke T, Bröring M, Sezer M, Weimar R, Kuhlmann U, Hildebrandt P, Layer G. NirN protein from Pseudomonas aeruginosa is a novel electron-bifurcating dehydrogenase catalyzing the last step of heme d1 biosynthesis. J Biol Chem 2014; 289:30753-30762. [PMID: 25204657 DOI: 10.1074/jbc.m114.603886] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1.
Collapse
Affiliation(s)
- Julia Adamczack
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Martin Hoffmann
- Institute of Inorganic and Analytical Chemistry and Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Ulrich Papke
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany; and
| | - Kristin Haufschildt
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Tristan Nicke
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Martin Bröring
- Institute of Inorganic and Analytical Chemistry and Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Murat Sezer
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Rebecca Weimar
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Uwe Kuhlmann
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hildebrandt
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Gunhild Layer
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany;.
| |
Collapse
|
27
|
Proteomic approach to Pseudomonas aeruginosa adaptive resistance to benzalkonium chloride. J Proteomics 2013; 89:273-9. [DOI: 10.1016/j.jprot.2013.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022]
|
28
|
Casabona MG, Vandenbrouck Y, Attree I, Couté Y. Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics 2013; 13:2419-23. [PMID: 23744604 DOI: 10.1002/pmic.201200565] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/16/2013] [Accepted: 05/11/2013] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that can inhabit a wide variety of environments and infect different hosts. Human infections by this microbe are nowadays perceived as a major health problem due notably to its multiresistance. The present data set provides the first description of P. aeruginosa inner membrane proteome. To achieve this, we combined efficient separation of membranes from PAO1 reference strain using discontinuous sucrose gradient centrifugation and MS-based proteomic analysis. A core list of 991 nonredundant proteins was established and analyzed in terms of trans-membrane domains, signal peptide, and lipobox sequence prediction. Furthermore, functional insights into membrane-spanning and membrane-associated protein complexes have been explored. All mass spectrometry data have been deposited in the ProteomeXchange with identifier PXD000107.
Collapse
|
29
|
Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF. Biosci Rep 2013; 33:BSR20130043. [PMID: 23683062 PMCID: PMC3694632 DOI: 10.1042/bsr20130043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The periplasmic cytochrome cd1 nitrite reductase NirS occurring in denitrifying bacteria such as the human pathogen Pseudomonas aeruginosa contains the essential tetrapyrrole cofactors haem c and haem d1. Whereas the haem c is incorporated into NirS by the cytochrome c maturation system I, nothing is known about the insertion of the haem d1 into NirS. Here, we show by co-immunoprecipitation that NirS interacts with the potential haem d1 insertion protein NirN in vivo. This NirS–NirN interaction is dependent on the presence of the putative haem d1 biosynthesis enzyme NirF. Further, we show by affinity co-purification that NirS also directly interacts with NirF. Additionally, NirF is shown to be a membrane anchored lipoprotein in P. aeruginosa. Finally, the analysis by UV–visible absorption spectroscopy of the periplasmic protein fractions prepared from the P. aeruginosa WT (wild-type) and a P. aeruginosa ΔnirN mutant shows that the cofactor content of NirS is altered in the absence of NirN. Based on our results, we propose a potential model for the maturation of NirS in which the three proteins NirS, NirN and NirF form a transient, membrane-associated complex in order to achieve the last step of haem d1 biosynthesis and insertion of the cofactor into NirS.
Collapse
|
30
|
Vecchietti D, Di Silvestre D, Miriani M, Bonomi F, Marengo M, Bragonzi A, Cova L, Franceschi E, Mauri P, Bertoni G. Analysis of Pseudomonas aeruginosa cell envelope proteome by capture of surface-exposed proteins on activated magnetic nanoparticles. PLoS One 2012; 7:e51062. [PMID: 23226459 PMCID: PMC3511353 DOI: 10.1371/journal.pone.0051062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/29/2012] [Indexed: 12/23/2022] Open
Abstract
We report on specific magneto-capturing followed by Multidimensional Protein Identification Technology (MudPIT) for the analysis of surface-exposed proteins of intact cells of the bacterial opportunistic pathogen Pseudomonas aeruginosa. The magneto-separation of cell envelope fragments from the soluble cytoplasmic fraction allowed the MudPIT identification of the captured and neighboring proteins. Remarkably, we identified 63 proteins captured directly by nanoparticles and 67 proteins embedded in the cell envelope fragments. For a high number of proteins, our analysis strongly indicates either surface exposure or localization in an envelope district. The localization of most identified proteins was only predicted or totally unknown. This novel approach greatly improves the sensitivity and specificity of the previous methods, such as surface shaving with proteases that was also tested on P. aeruginosa. The magneto-capture procedure is simple, safe, and rapid, and appears to be well-suited for envelope studies in highly pathogenic bacteria.
Collapse
Affiliation(s)
- Davide Vecchietti
- Department of Life Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Mauro Marengo
- DISMA, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Lara Cova
- Department of Life Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Pierluigi Mauri
- Institute for Biomedical Technologies (ITB)-CNR, Segrate, Milan, Italy
| | - Giovanni Bertoni
- Department of Life Sciences, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| |
Collapse
|
31
|
Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol 2012; 3:408. [PMID: 23233851 PMCID: PMC3516279 DOI: 10.3389/fmicb.2012.00408] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/13/2012] [Indexed: 01/01/2023] Open
Abstract
Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | | | | |
Collapse
|
32
|
Li K, Pidatala RR, Ramakrishna W. Mutational, proteomic and metabolomic analysis of a plant growth promoting copper-resistant Pseudomonas spp. FEMS Microbiol Lett 2012; 335:140-8. [PMID: 22845850 DOI: 10.1111/j.1574-6968.2012.02646.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/14/2012] [Accepted: 07/25/2012] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas sp. TLC6-6.5-4 is a multiple metal resistant plant growth-promoting bacteria isolated from copper-contaminated lake sediments. In this study, a comprehensive analysis of genes involved in copper resistance was performed by generating a library of transposon (Tn5) mutants. Two copper-sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trpA gene (tryptophan synthase alpha subunit), and CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analyses were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. Proteomic analysis revealed that disruption of Clp protease gene up-regulated molecular chaperones and down-regulated the expression of enzymes related to tRNA modification, whereas metabolomic analysis showed that amino acid and oligosaccharide transporters that are part of ATP-binding cassette (ABC) transporters pathways were down-regulated. Further, copper stress altered metabolic pathways including the tricarboxylic acid cycle, protein absorption and glyoxylate metabolism.
Collapse
Affiliation(s)
- Kefeng Li
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | | | |
Collapse
|
33
|
Peimbert M, Alcaraz LD, Bonilla-Rosso G, Olmedo-Alvarez G, García-Oliva F, Segovia L, Eguiarte LE, Souza V. Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin I: ancient lessons on how to cope with an environment under severe nutrient stress. ASTROBIOLOGY 2012; 12:648-58. [PMID: 22920515 PMCID: PMC3426886 DOI: 10.1089/ast.2011.0694] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Cuatro Ciénegas Basin (CCB) is an oasis in the desert of Mexico characterized by low phosphorus availability and by its great diversity of microbial mats. We compared the metagenomes of two aquatic microbial mats from the CCB with different nutrient limitations. We observed that the red mat was P-limited and dominated by Pseudomonas, while the green mat was N-limited and had higher species richness, with Proteobacteria and Cyanobacteria as the most abundant phyla. From their gene content, we deduced that both mats were very metabolically diverse despite their use of different strategies to cope with their respective environments. The red mat was found to be mostly heterotrophic, while the green mat was more autotrophic. The red mat had a higher number of transporters in general, including transporters of cellobiose and osmoprotectants. We suggest that generalists with plastic genomes dominate the red mat, while specialists with minimal genomes dominate the green mat. Nutrient limitation was a common scenario on the early planet; despite this, biogeochemical cycles were performed, and as a result the planet changed. The metagenomes of microbial mats from the CCB show the different strategies a community can use to cope with oligotrophy and persist.
Collapse
Affiliation(s)
- Mariana Peimbert
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Cuajimalpa, México D.F., México
| | - Luis David Alcaraz
- Departamento de Ingeniería Genética, Cinvestav, Campus Guanajuato, Irapuato, México
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, España
| | - Germán Bonilla-Rosso
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
| | | | - Felipe García-Oliva
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, México
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
| |
Collapse
|
34
|
Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis. J Bacteriol 2012; 194:5185-96. [PMID: 22753057 DOI: 10.1128/jb.00860-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified the fatty acid synthesis (FAS) initiation enzyme in Pseudomonas aeruginosa as FabY, a β-ketoacyl synthase KASI/II domain-containing enzyme that condenses acetyl coenzyme A (acetyl-CoA) with malonyl-acyl carrier protein (ACP) to make the FAS primer β-acetoacetyl-ACP in the accompanying article (Y. Yuan, M. Sachdeva, J. A. Leeds, and T. C. Meredith, J. Bacteriol. 194:5171-5184, 2012). Herein, we show that growth defects stemming from deletion of fabY can be suppressed by supplementation of the growth media with exogenous decanoate fatty acid, suggesting a compensatory mechanism. Fatty acids eight carbons or longer rescue growth by generating acyl coenzyme A (acyl-CoA) thioester β-oxidation degradation intermediates that are shunted into FAS downstream of FabY. Using a set of perdeuterated fatty acid feeding experiments, we show that the open reading frame PA3286 in P. aeruginosa PAO1 intercepts C(8)-CoA by condensation with malonyl-ACP to make the FAS intermediate β-keto decanoyl-ACP. This key intermediate can then be extended to supply all of the cellular fatty acid needs, including both unsaturated and saturated fatty acids, along with the 3-hydroxyl fatty acid acyl groups of lipopolysaccharide. Heterologous PA3286 expression in Escherichia coli likewise established the fatty acid shunt, and characterization of recombinant β-keto acyl synthase enzyme activity confirmed in vitro substrate specificity for medium-chain-length acyl CoA thioester acceptors. The potential for the PA3286 shunt in P. aeruginosa to curtail the efficacy of inhibitors targeting FabY, an enzyme required for FAS initiation in the absence of exogenous fatty acids, is discussed.
Collapse
|
35
|
A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 2012; 3:163-70. [PMID: 22410786 DOI: 10.1007/s13238-012-2023-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial lipoproteins are proteins that are post-translationally modified with a diacylglyceride at an N-terminal cysteine, which serves to tether these proteins to the outer face of the plasma membrane or to the outer membrane. This paper reviews recent insights into the enzymology of bacterial lipoprotein biosynthesis and localization. Moreover, we use bioinformatic analyses of bacterial lipoprotein signal peptide features and of the key biosynthetic enzymes to consider the distribution of lipoprotein biosynthesis at the phylum level. These analyses support the important conclusion that lipoprotein biosynthesis is a fundamental pathway utilized across the domain bacteria. Moreover, with the exception of a small number of sequences likely to derive from endosymbiont genomes, the enzymes of bacterial lipoprotein biosynthesis appear unique to bacteria, making this pathway an attractive target for the development of novel antimicrobials. Whilst lipoproteins with comparable signal peptide features are encoded in the genomes of Archaea, it is clear that these lipoproteins have a distinctive biosynthetic pathway that has yet to be characterized.
Collapse
|
36
|
Izoré T, Perdu C, Job V, Attree I, Faudry E, Dessen A. Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa. J Mol Biol 2011; 413:236-46. [PMID: 21839744 DOI: 10.1016/j.jmb.2011.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/26/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that employs a finely tuned type III secretion system (T3SS) to inject toxins directly into the cytoplasm of target cells. ExsB is a 15.6-kDa protein encoded in a T3SS transcription regulation operon that displays high sequence similarity to YscW, a lipoprotein from Yersinia spp. whose genetic neighborhood also involves a transcriptional regulator, and has been shown to play a role in the stabilization of the outer membrane ring of the T3SS. Here, we show that ExsB is expressed in P. aeruginosa upon induction of the T3SS, and subcellular fractionation studies reveal that it is associated with the outer membrane. The high-resolution crystal structure of ExsB shows that it displays a compact β-sandwich fold with interdependent β-sheets. ExsB possesses a large patch of basic residues that could play a role in membrane recognition, and its structure is distinct from that of MxiM, a lipoprotein involved in secretin stabilization in Shigella, as well as from those of Pil lipoproteins involved in pilus biogenesis. These results reveal that small lipoproteins involved in formation of the outer membrane secretin ring display clear structural differences that may be related to the different functions they play in these systems.
Collapse
Affiliation(s)
- Thierry Izoré
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, France
| | | | | | | | | | | |
Collapse
|