1
|
Masi A, Stark G, Pfnier J, Mach RL, Mach-Aigner AR. Exploration of Trichoderma reesei as an alternative host for erythritol production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:90. [PMID: 38937852 PMCID: PMC11210129 DOI: 10.1186/s13068-024-02537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Erythritol, a natural polyol, is a low-calorie sweetener synthesized by a number of microorganisms, such as Moniliella pollinis. Yet, a widespread use of erythritol is limited by high production costs due to the need for cultivation on glucose-rich substrates. This study explores the potential of using Trichoderma reesei as an alternative host for erythritol production, as this saprotrophic fungus can be cultivated on lignocellulosic biomass residues. The objective of this study was to evaluate whether such an alternative host would lead to a more sustainable and economically viable production of erythritol by identifying suitable carbon sources for erythritol biosynthesis, the main parameters influencing erythritol biosynthesis and evaluating the feasibility of scaling up the defined process. RESULTS Our investigation revealed that T. reesei can synthesize erythritol from glucose but not from other carbon sources like xylose and lactose. T. reesei is able to consume erythritol, but it does not in the presence of glucose. Among nitrogen sources, urea and yeast extract were more effective than ammonium and nitrate. A significant impact on erythritol synthesis was observed with variations in pH and temperature. Despite successful shake flask experiments, the transition to bioreactors faced challenges, indicating a need for further scale-up optimization. CONCLUSIONS While T. reesei shows potential for erythritol production, reaching a maximum concentration of 1 g/L over an extended period, its productivity could be improved by optimizing the parameters that affect erythritol production. In any case, this research contributes valuable insights into the polyol metabolism of T. reesei, offering potential implications for future research on glycerol or mannitol production. Moreover, it suggests a potential metabolic association between erythritol production and glycolysis over the pentose phosphate pathway.
Collapse
Affiliation(s)
- Audrey Masi
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
- Research Unit of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Georg Stark
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Johanna Pfnier
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Robert L Mach
- Research Unit of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
- Research Unit of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
| |
Collapse
|
2
|
Wu T, Gómez-Coronado PA, Kubis A, Lindner SN, Marlière P, Erb TJ, Bar-Even A, He H. Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli. Nat Commun 2023; 14:8490. [PMID: 38123535 PMCID: PMC10733421 DOI: 10.1038/s41467-023-44247-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.
Collapse
Affiliation(s)
- Tong Wu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul A Gómez-Coronado
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Armin Kubis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
3
|
Kohlmeier MG, Oresnik IJ. The transport of mannitol in Sinorhizobium meliloti is carried out by a broad-substrate polyol transporter SmoEFGK and is affected by the ability to transport and metabolize fructose. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001371. [PMID: 37505890 PMCID: PMC10433430 DOI: 10.1099/mic.0.001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The smo locus (sorbitol mannitol oxidation) is found on the chromosome of S. meliloti's tripartite genome. Mutations at the smo locus reduce or abolish the ability of the bacterium to grow on several carbon sources, including sorbitol, mannitol, galactitol, d-arabitol and maltitol. The contribution of the smo locus to the metabolism of these compounds has not been previously investigated. Genetic complementation of mutant strains revealed that smoS is responsible for growth on sorbitol and galactitol, while mtlK restores growth on mannitol and d-arabitol. Dehydrogenase assays demonstrate that SmoS and MtlK are NAD+-dependent dehydrogenases catalysing the oxidation of their specific substrates. Transport experiments using a radiolabeled substrate indicate that sorbitol, mannitol and d-arabitol are primarily transported into the cell by the ABC transporter encoded by smoEFGK. Additionally, it was found that a mutation in either frcK, which is found in an operon that encodes the fructose ABC transporter, or a mutation in frk, which encodes fructose kinase, leads to the induction of mannitol transport.
Collapse
Affiliation(s)
| | - Ivan J. Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Inability to Catabolize Rhamnose by Sinorhizobium meliloti Rm1021Affects Competition for Nodule Occupancy. Microorganisms 2022; 10:microorganisms10040732. [PMID: 35456783 PMCID: PMC9025865 DOI: 10.3390/microorganisms10040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Rhizobium leguminosarum strains unable to grow on rhamnose as a sole carbon source are less competitive for nodule occupancy. To determine if the ability to use rhamnose as a sole carbon source affects competition for nodule occupancy in Sinorhizobium meliloti, Tn5 mutants unable to use rhamnose as a sole carbon source were isolated. S. meliloti mutations affecting rhamnose utilization were found in two operons syntenous to those of R. leguminosarum. Although the S. meliloti Tn5 mutants were complemented using an R. leguminosarum cosmid that contains the entire wild-type rhamnose catabolic locus, complementation did not occur if the cosmids carried Tn5 insertions within the locus. Through a series of heterologous complementation experiments, enzyme assays, gene fusion, and transport experiments, we show that the S. meliloti regulator, RhaR, is dominant to its R. leguminosarum counterpart. In addition, the data support the hypothesis that the R. leguminosarum kinase is capable of directly phosphorylating rhamnose and rhamnulose, whereas the S. meliloti kinase does not possess rhamnose kinase activity. In nodule competition assays, S. meliloti mutants incapable of rhamnose transport were shown to be less competitive than the wild-type and had a decreased ability to bind plant roots in the presence of rhamnose. The data suggests that rhamnose catabolism is a general determinant in competition for nodule occupancy that spans across rhizobial species.
Collapse
|
5
|
Kohlmeier MG, Bailey-Elkin BA, Mark BL, Oresnik IJ. Characterization of the sorbitol dehydrogenase SmoS from Sinorhizobium meliloti 1021. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:380-390. [PMID: 33645541 DOI: 10.1107/s2059798321001017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022]
Abstract
Sinorhizobium meliloti 1021 is a Gram-negative alphaproteobacterium with a robust capacity for carbohydrate metabolism. The enzymes that facilitate these reactions assist in the survival of the bacterium across a range of environmental niches, and they may also be suitable for use in industrial processes. SmoS is a dehydrogenase that catalyzes the oxidation of the commonly occurring sugar alcohols sorbitol and galactitol to fructose and tagatose, respectively, using NAD+ as a cofactor. The main objective of this study was to evaluate SmoS using biochemical techniques. The nucleotide sequence was codon-optimized for heterologous expression in Escherichia coli BL21 (DE3) Gold cells and the protein was subsequently overexpressed and purified. Size-exclusion chromatography and X-ray diffraction experiments suggest that SmoS is a tetramer. SmoS was crystallized, and crystals obtained in the absence of substrate diffracted to 2.1 Å resolution and those of a complex with sorbitol diffracted to 2.0 Å resolution. SmoS was characterized kinetically and shown to have a preference for sorbitol despite having a higher affinity for galactitol. Computational ligand-docking experiments suggest that tagatose binds the protein in a more energetically favourable complex than fructose, which is retained in the active site over a longer time frame following oxidation and reduces the rate of the reaction. These results supplement the inventory of biomolecules with potential for industrial applications and enhance the understanding of metabolism in the model organism S. meliloti.
Collapse
Affiliation(s)
- MacLean G Kohlmeier
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ben A Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Kim SM, Lim HS, Lee SB. Discovery of a RuBisCO-like Protein that Functions as an Oxygenase in the Novel d-Hamamelose Pathway. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0305-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Hawkins JP, Ordonez PA, Oresnik IJ. Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti. J Bacteriol 2018; 200:e00436-17. [PMID: 29084855 PMCID: PMC5738737 DOI: 10.1128/jb.00436-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022] Open
Abstract
Sinorhizobium meliloti is a Gram-negative alphaproteobacterium that can enter into a symbiotic relationship with Medicago sativa and Medicago truncatula Previous work determined that a mutation in the tkt2 gene, which encodes a putative transketolase, could prevent medium acidification associated with a mutant strain unable to metabolize galactose. Since the pentose phosphate pathway in S. meliloti is not well studied, strains carrying mutations in either tkt2 and tal, which encodes a putative transaldolase, were characterized. Carbon metabolism phenotypes revealed that both mutants were impaired in growth on erythritol and ribose. This phenotype was more pronounced for the tkt2 mutant strain, which also displayed auxotrophy for aromatic amino acids. Changes in pentose phosphate pathway metabolite concentrations were also consistent with a mutation in either tkt2 or tal The concentrations of metabolites in central carbon metabolism were also found to shift dramatically in strains carrying a tkt2 mutation. While the concentrations of proteins involved in central carbon metabolism did not change significantly under any conditions, the levels of those associated with iron acquisition increased in the wild-type strain with erythritol induction. These proteins were not detected in either mutant, resulting in less observable rhizobactin production in the tkt2 mutant. While both mutants were impaired in succinoglycan synthesis, only the tkt2 mutant strain was unable to establish symbiosis with alfalfa. These results suggest that tkt2 and tal play central roles in regulating the carbon flow necessary for carbon metabolism and the establishment of symbiosis.IMPORTANCESinorhizobium meliloti is a model organism for the study of plant-microbe interactions and metabolism, especially because it effects nitrogen fixation. The ability to derive the energy necessary for nitrogen fixation is dependent on an organism's ability to metabolize carbon efficiently. The pentose phosphate pathway is central in the interconversion of hexoses and pentoses. This study characterizes the key enzymes of the nonoxidative branch of the pentose phosphate pathway by using defined genetic mutations and shows the effects the mutations have on the metabolite profile and on physiological processes such as the biosynthesis of exopolysaccharide, as well as the ability to regulate iron acquisition.
Collapse
Affiliation(s)
- Justin P Hawkins
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia A Ordonez
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Hawkins JP, Geddes BA, Oresnik IJ. Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:1009-1019. [PMID: 28871850 DOI: 10.1094/mpmi-07-17-0176-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, the hypothesis that exopolysaccharide plays a role in the survival of Sinorhizobium meliloti at low pH levels is addressed. When S. meliloti was grown at pH 5.75, synthesis of succinoglycan increased, whereas synthesis of galactoglucan decreased. Succinoglycan that was isolated from cultures grown at low pH had a lower degree of polymerization relative to that which was isolated from cultures grown at neutral pH, suggesting that low-molecular weight (LMW) succinoglycan might play a role in adaptation to low pH. Mutants unable to produce succinoglycan or only able to produce high-molecular weight polysaccharide were found to be sensitive to low pH. However, strains unable to produce LMW polysaccharide were 10-fold more sensitive. In response to low pH, transcription of genes encoding proteins for succinoglycan, glycogen, and cyclic β(1-2) glucans biosynthesis increased, while those encoding proteins necessary for the biosynthesis of galactoglucan decreased. While changes in pH did not affect the production of glycogen or cyclic β(1-2) glucan, it was found that the inability to produce cyclic β(1-2) glucan did contribute to pH tolerance in the absence of succinoglycan. Finally, in addition to being sensitive to low pH, a strain carrying mutations in exoK and exsH, which encode the glycanases responsible for the cleavage of succinoglycan to LMW succinoglycan, exhibited a delay in nodulation and was uncompetitive for nodule occupancy. Taken together, the data suggest that the role for LMW succinoglycan in nodule development may be to enhance survival in the colonized curled root hair.
Collapse
Affiliation(s)
- Justin P Hawkins
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Barney A Geddes
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Ivan J Oresnik
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
9
|
|
10
|
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate. J Bacteriol 2016; 199:JB.00572-16. [PMID: 27795326 DOI: 10.1128/jb.00572-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/01/2016] [Indexed: 12/12/2022] Open
Abstract
Insertion sequencing (INSeq) analysis of Rhizobium leguminosarum bv. viciae 3841 (Rlv3841) grown on glucose or succinate at both 21% and 1% O2 was used to understand how O2 concentration alters metabolism. Two transcriptional regulators were required for growth on glucose (pRL120207 [eryD] and RL0547 [phoB]), five were required on succinate (pRL100388, RL1641, RL1642, RL3427, and RL4524 [ecfL]), and three were required on 1% O2 (pRL110072, RL0545 [phoU], and RL4042). A novel toxin-antitoxin system was identified that could be important for generation of new plasmidless rhizobial strains. Rlv3841 appears to use the methylglyoxal pathway alongside the Entner-Doudoroff (ED) pathway and tricarboxylic acid (TCA) cycle for optimal growth on glucose. Surprisingly, the ED pathway was required for growth on succinate, suggesting that sugars made by gluconeogenesis must undergo recycling. Altered amino acid metabolism was specifically needed for growth on glucose, including RL2082 (gatB) and pRL120419 (opaA, encoding omega-amino acid:pyruvate transaminase). Growth on succinate specifically required enzymes of nucleobase synthesis, including ribose-phosphate pyrophosphokinase (RL3468 [prs]) and a cytosine deaminase (pRL90208 [codA]). Succinate growth was particularly dependent on cell surface factors, including the PrsD-PrsE type I secretion system and UDP-galactose production. Only RL2393 (glnB, encoding nitrogen regulatory protein PII) was specifically essential for growth on succinate at 1% O2, conditions similar to those experienced by N2-fixing bacteroids. Glutamate synthesis is constitutively activated in glnB mutants, suggesting that consumption of 2-ketoglutarate may increase flux through the TCA cycle, leading to excess reductant that cannot be reoxidized at 1% O2 and cell death. IMPORTANCE Rhizobium leguminosarum, a soil bacterium that forms N2-fixing symbioses with several agriculturally important leguminous plants (including pea, vetch, and lentil), has been widely utilized as a model to study Rhizobium-legume symbioses. Insertion sequencing (INSeq) has been used to identify factors needed for its growth on different carbon sources and O2 levels. Identification of these factors is fundamental to a better understanding of the cell physiology and core metabolism of this bacterium, which adapts to a variety of different carbon sources and O2 tensions during growth in soil and N2 fixation in symbiosis with legumes.
Collapse
|
11
|
The Sugar Kinase That Is Necessary for the Catabolism of Rhamnose in Rhizobium leguminosarum Directly Interacts with the ABC Transporter Necessary for Rhamnose Transport. J Bacteriol 2015; 197:3812-21. [PMID: 26416834 DOI: 10.1128/jb.00510-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhamnose catabolism in Rhizobium leguminosarum was found to be necessary for the ability of the organism to compete for nodule occupancy. Characterization of the locus necessary for the catabolism of rhamnose showed that the transport of rhamnose was dependent upon a carbohydrate uptake transporter 2 (CUT2) ABC transporter encoded by rhaSTPQ and on the presence of RhaK, a protein known to have sugar kinase activity. A linker-scanning mutagenesis analysis of rhaK showed that the kinase and transport activities of RhaK could be separated genetically. More specifically, two pentapeptide insertions defined by the alleles rhaK72 and rhaK73 were able to uncouple the transport and kinase activities of RhaK, such that the kinase activity was retained, but cells carrying these alleles did not have measurable rhamnose transport rates. These linker-scanning alleles were localized to the C terminus and N terminus of RhaK, respectively. Taken together, the data led to the hypothesis that RhaK might interact either directly or indirectly with the ABC transporter defined by rhaSTPQ. In this work, we show that both N- and C-terminal fragments of RhaK are capable of interacting with the N-terminal fragment of the ABC protein RhaT using a 2-hybrid system. Moreover, if RhaK fragments carrying either the rhaK72 or rhaK73 allele were used, this interaction was abolished. Phylogenetic and bioinformatic analysis of the RhaK fragments suggested that a conserved region in the N terminus of RhaK may represent a putative binding domain. Alanine-scanning mutagenesis of this region followed by 2-hybrid analysis revealed that a substitution of any of the conserved residues greatly affected the interaction between RhaT and RhaK fragments, suggesting that the sugar kinase RhaK and the ABC protein RhaT interact directly. IMPORTANCE ABC transporters involved in the transport of carbohydrates help define the overall physiological fitness of bacteria. The two largest groups of transporters are the carbohydrate uptake transporter classes 1 and 2 (CUT1 and CUT2, respectively). This work provides the first evidence that a kinase that is necessary for the catabolism of a sugar can directly interact with a domain from the ABC protein that is necessary for its transport.
Collapse
|
12
|
Loux V, Mariadassou M, Almeida S, Chiapello H, Hammani A, Buratti J, Gendrault A, Barbe V, Aury JM, Deutsch SM, Parayre S, Madec MN, Chuat V, Jan G, Peterlongo P, Azevedo V, Le Loir Y, Falentin H. Mutations and genomic islands can explain the strain dependency of sugar utilization in 21 strains of Propionibacterium freudenreichii. BMC Genomics 2015; 16:296. [PMID: 25886522 PMCID: PMC4437456 DOI: 10.1186/s12864-015-1467-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/27/2015] [Indexed: 01/11/2023] Open
Abstract
Background Propionibacterium freudenreichii (PF) is an actinobacterium used in cheese technology and for its probiotic properties. PF is also extremely adaptable to several ecological niches and can grow on a variety of carbon and nitrogen sources. The aim of this work was to discover the genetic basis for strain-dependent traits related to its ability to use specific carbon sources. High-throughput sequencing technologies were ideal for this purpose as they have the potential to decipher genomic diversity at a moderate cost. Results 21 strains of PF were sequenced and the genomes were assembled de novo. Scaffolds were ordered by comparison with the complete reference genome CIRM-BIA1, obtained previously using traditional Sanger sequencing. Automatic functional annotation and manual curation were performed. Each gene was attributed to either the core genome or an accessory genome. The ability of the 21 strains to degrade 50 different sugars was evaluated. Thirty-three sugars were degraded by none of the sequenced strains whereas eight sugars were degraded by all of them. The corresponding genes were present in the core genome. Lactose, melibiose and xylitol were only used by some strains. In this case, the presence/absence of genes responsible for carbon uptake and degradation correlated well with the phenotypes, with the exception of xylitol. Furthermore, the simultaneous presence of these genes was in line the metabolic pathways described previously in other species. We also considered the genetic origin (transduction, rearrangement) of the corresponding genomic islands. Ribose and gluconate were degraded to a greater or lesser extent (quantitative phenotype) by some strains. For these sugars, the phenotypes could not be explained by the presence/absence of a gene but correlated with the premature appearance of a stop codon interrupting protein synthesis and preventing the catabolism of corresponding carbon sources. Conclusion These results illustrate (i) the power of correlation studies to discover the genetic basis of binary strain-dependent traits, and (ii) the plasticity of PF chromosomes, probably resulting from horizontal transfers, duplications, transpositions and an accumulation of mutations. Knowledge of the genetic basis of nitrogen and sugar degradation opens up new strategies for the screening of PF strain collections to enable optimum cheese starter, probiotic and white biotechnology applications. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1467-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valentin Loux
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Mahendra Mariadassou
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Sintia Almeida
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,Sciences, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil.
| | - Hélène Chiapello
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Amal Hammani
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Julien Buratti
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Annie Gendrault
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Valérie Barbe
- CEA Genoscope CNRS and université d'Evry, Evry, 91006, France.
| | - Jean-Marc Aury
- CEA Genoscope CNRS and université d'Evry, Evry, 91006, France.
| | - Stéphanie-Marie Deutsch
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Sandrine Parayre
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Marie-Noëlle Madec
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Victoria Chuat
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Gwenaël Jan
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | | | - Vasco Azevedo
- Sciences, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil.
| | - Yves Le Loir
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Hélène Falentin
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| |
Collapse
|
13
|
Geddes BA, González JE, Oresnik IJ. Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1307-17. [PMID: 25387133 DOI: 10.1094/mpmi-06-14-0168-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sinorhizobium meliloti strains unable to utilize galactose as a sole carbon source, due to mutations in the De-Ley Doudoroff pathway (dgoK), were previously shown to be more competitive for nodule occupancy. In this work, we show that strains carrying this mutation have galactose-dependent exopolysaccharide (EPS) phenotypes that were manifested as aberrant Calcofluor staining as well as decreased mucoidy when in an expR(+) genetic background. The aberrant Calcofluor staining was correlated with changes in the pH of the growth medium. Strains carrying dgoK mutations were subsequently demonstrated to show earlier acidification of their growth medium that was correlated with an increase expression of genes associated with succinoglycan biosynthesis as well as increased accumulation of high and low molecular weight EPS in the medium. In addition, it was shown that the acidification of the medium was dependent on the inability of S. meliloti strains to initiate the catabolism of galactose. To more fully understand why strains carrying the dgoK allele were more competitive for nodule occupancy, early nodulation phenotypes were investigated. It was found that strains carrying the dgoK allele had a faster rate of nodulation. In addition, nodule competition experiments using genetic backgrounds unable to synthesize either succinoglycan or EPSII were consistent with the hypothesis that the increased competition phenotype was dependent upon the synthesis of succinoglycan. Fluorescent microscopy experiments on infected root-hair cells, using the acidotropic dye Lysotracker Red DND-99, provide evidence that the colonized curled root hair is an acidic compartment.
Collapse
|
14
|
diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM. Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 2014; 10:e1004742. [PMID: 25340565 PMCID: PMC4207669 DOI: 10.1371/journal.pgen.1004742] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/08/2014] [Indexed: 01/12/2023] Open
Abstract
Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB). Rhizobia are free-living bacteria of agricultural and environmental importance that form root-nodules on leguminous plants and provide these plants with fixed nitrogen. Many of the rhizobia have a multipartite genome, as do several plant and animal pathogens. All isolates of the alfalfa symbiont, Sinorhizobium meliloti, carry three large replicons, the chromosome (∼3.7 Mb), pSymA megaplasmid (∼1.4 Mb), and pSymB chromid (∼1.7 Mb). To gain insight into the role and evolutionary history of these replicons, we have ‘reversed evolution’ by constructing a S. meliloti strain consisting solely of the chromosome and lacking the pSymB chromid and pSymA megaplasmid. As the resulting strain was viable, we could perform a detailed phenotypic analysis and these data provided significant insight into the biology and metabolism of S. meliloti. The data lend direct experimental evidence in understanding the evolution and role of the multipartite genome. Specifically the large secondary replicons increase the organism's niche range, and this advantage offsets the metabolic burden of these replicons on the cell. Additionally, the single-chromosome strain offers a useful platform to facilitate future forward genetic approaches to understanding and manipulating the symbiosis and plant-microbe interactions.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
16
|
Stasiak G, Mazur A, Wielbo J, Marczak M, Zebracki K, Koper P, Skorupska A. Functional relationships between plasmids and their significance for metabolism and symbiotic performance of Rhizobium leguminosarum bv. trifolii. J Appl Genet 2014; 55:515-27. [PMID: 24839164 PMCID: PMC4185100 DOI: 10.1007/s13353-014-0220-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 12/31/2022]
Abstract
Rhizobium leguminosarum bv. trifolii TA1 (RtTA1) is a soil bacterium establishing a highly specific symbiotic relationship with clover, which is based on the exchange of molecular signals between the host plant and the microsymbiont. The RtTA1 genome is large and multipartite, composed of a chromosome and four plasmids, which comprise approximately 65 % and 35 % of the total genome, respectively. Extrachromosomal replicons were previously shown to confer significant metabolic versatility to bacteria, which is important for their adaptation in the soil and nodulation competitiveness. To investigate the contribution of individual RtTA1 plasmids to the overall cell phenotype, metabolic properties and symbiotic performance, a transposon-based elimination strategy was employed. RtTA1 derivatives cured of pRleTA1b or pRleTA1d and deleted in pRleTA1a were obtained. In contrast to the in silico predictions of pRleTA1b and pRleTA1d, which were described as chromid-like replicons, both appeared to be completely curable. On the other hand, for pRleTA1a (symbiotic plasmid) and pRleTA1c, which were proposed to be unessential for RtTA1 viability, it was not possible to eliminate them at all (pRleTA1c) or entirely (pRleTA1a). Analyses of the phenotypic traits of the RtTA1 derivatives obtained revealed the functional significance of individual plasmids and their indispensability for growth, certain metabolic pathways, production of surface polysaccharides, autoaggregation, biofilm formation, motility and symbiotic performance. Moreover, the results allow us to suggest broad functional cooperation among the plasmids in shaping the phenotypic properties and symbiotic capabilities of rhizobia.
Collapse
Affiliation(s)
- Grażyna Stasiak
- Department of Genetics and Microbiology, Maria-Curie Skłodowska University, 19 Akademicka St., 20-033, Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|
17
|
Vanderlinde EM, Hynes MF, Yost CK. Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Environ Microbiol 2014; 16:205-17. [PMID: 23859230 DOI: 10.1111/1462-2920.12196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/24/2023]
Abstract
Homoserine represents a substantial component of pea root exudate that may be important for plant-microbe interactions in the rhizosphere. We identified a gene cluster on plasmid pRL8JI that is required for homoserine utilization by Rhizobium leguminosarum bv. viciae. The genes are arranged as two divergently expressed predicted operons that were induced by L-homoserine, pea root exudate, and were expressed on pea roots. A mutation in gene pRL80083 that prevented utilization of homoserine as a sole carbon and energy source affected the mutant's ability to nodulate peas and lentils competitively. The homoserine gene cluster was present in approximately 47% of natural R. leguminosarum isolates (n = 59) and was strongly correlated with homoserine utilization. Conjugation of pRL8JI to R. leguminosarum 4292 or Agrobacterium tumefaciens UBAPF2 was sufficient for homoserine utilization. The presence of L-homoserine increased conjugation efficiency of pRL8JI from R. leguminosarum to a pRL8JI-cured derivative of R. leguminosarum 1062 and to A. tumefaciens UBAPF2, and induced expression of the plasmid transfer gene trbB; however, there was no difference in conjugation efficiency or trbB expression with A. tumefaciens UBAPF2pRL8-Gm as the donor suggesting that other genes in R. leguminosarum may contribute to regulating conjugation of pRL8 in the presence of homoserine.
Collapse
|
18
|
Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities. J Bacteriol 2013; 195:3424-32. [PMID: 23708135 DOI: 10.1128/jb.00289-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhizobium leguminosarum the ABC transporter responsible for rhamnose transport is dependent on RhaK, a sugar kinase that is necessary for the catabolism of rhamnose. This has led to a working hypothesis that RhaK has two biochemical functions: phosphorylation of its substrate and affecting the activity of the rhamnose ABC transporter. To address this hypothesis, a linker-scanning random mutagenesis of rhaK was carried out. Thirty-nine linker-scanning mutations were generated and mapped. Alleles were then systematically tested for their ability to physiologically complement kinase and transport activity in a strain carrying an rhaK mutation. The rhaK alleles generated could be divided into three classes: mutations that did not affect either kinase or transport activity, mutations that eliminated both transport and kinase activity, and mutations that affected transport activity but not kinase activity. Two genes of the last class (rhaK72 and rhaK73) were found to have similar biochemical phenotypes but manifested different physiological phenotypes. Whereas rhaK72 conferred a slow-growth phenotype when used to complement rhaK mutants, the rhaK73 allele did not complement the inability to use rhamnose as a sole carbon source. To provide insight to how these insertional variants might be affecting rhamnose transport and catabolism, structural models of RhaK were generated based on the crystal structure of related sugar kinases. Structural modeling suggests that both rhaK72 and rhaK73 affect surface-exposed residues in two distinct regions that are found on one face of the protein, suggesting that this protein's face may play a role in protein-protein interaction that affects rhamnose transport.
Collapse
|
19
|
Geddes BA, Hausner G, Oresnik IJ. Phylogenetic analysis of erythritol catabolic loci within the Rhizobiales and proteobacteria. BMC Microbiol 2013; 13:46. [PMID: 23432981 PMCID: PMC3599248 DOI: 10.1186/1471-2180-13-46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to use erythritol as a sole carbon source is not universal among the Rhizobiaceae. Based on the relatedness to the catabolic genes in Brucella it has been suggested that the eryABCD operon may have been horizontally transferred into Rhizobium. During work characterizing a locus necessary for the transport and catabolism of erythritol, adonitol and L-arabitol in Sinorhizobium meliloti, we became interested in the differences between the erythritol loci of S. meliloti and R. leguminosarum. Utilizing the Ortholog Neighborhood Viewer from the DOE Joint Genome Institute database it appeared that loci for erythritol and polyol utilization had distinct arrangements that suggested these loci may have undergone genetic rearrangements. RESULTS A data set was established of genetic loci containing erythritol/polyol orthologs for 19 different proteobacterial species. These loci were analyzed for genetic content and arrangement of genes associated with erythritol, adonitol and L-arabitol catabolism. Phylogenetic trees were constructed for core erythritol catabolic genes and contrasted with the species phylogeny. Additionally, phylogenetic trees were constructed for genes that showed differences in arrangement among the putative erythritol loci in these species. CONCLUSIONS Three distinct erythritol/polyol loci arrangements have been identified that reflect metabolic need or specialization. Comparison of the phylogenetic trees of core erythritol catabolic genes with species phylogeny provides evidence that is consistent with these loci having been horizontally transferred from the alpha-proteobacteria into both the beta and gamma-proteobacteria. ABC transporters within these loci adopt 2 unique genetic arrangements, and although biological data suggests they are functional erythritol transporters, phylogenetic analysis suggests they may not be orthologs and probably should be considered analogs. Finally, evidence for the presence of paralogs, and xenologs of erythritol catabolic genes in some of the genomes included in the analysis is provided.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada
| | | | | |
Collapse
|
20
|
Characterization of the twin-arginine transport secretome in Sinorhizobium meliloti and evidence for host-dependent phenotypes. Appl Environ Microbiol 2012; 78:7141-4. [PMID: 22843517 DOI: 10.1128/aem.01458-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine transport (Tat) system is essential for cell viability in Sinorhizobium meliloti and may play a role during the development of root nodules. Utilizing an in vivo recombination strategy, we have constructed 28 strains that contain deletions in predicted Tat substrates. Testing of these mutations for symbiotic proficiency on the plant hosts alfalfa and sweet clover shows that some of these mutations affect associations with these hosts differentially.
Collapse
|
21
|
López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramírez MA, Rosenblueth M, Martínez-Romero J, Martínez-Romero E. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 2012; 68:149-58. [PMID: 22813963 DOI: 10.1016/j.plasmid.2012.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
Abstract
In bacteria, niche adaptation may be determined by mobile extrachromosomal elements. A remarkable characteristic of Rhizobium and Ensifer (Sinorhizobium) but also of Agrobacterium species is that almost half of the genome is contained in several large extrachromosomal replicons (ERs). They encode a plethora of functions, some of them required for bacterial survival, niche adaptation, plasmid transfer or stability. In spite of this, plasmid loss is common in rhizobia upon subculturing. Rhizobial gene-expression studies in plant rhizospheres with novel results from transcriptomic analysis of Rhizobium phaseoli in maize and Phaseolus vulgaris roots highlight the role of ERs in natural niches and allowed the identification of common extrachromosomal genes expressed in association with plant rootlets and the replicons involved.
Collapse
|
22
|
Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti. J Bacteriol 2012; 194:5044-53. [PMID: 22797764 DOI: 10.1128/jb.00982-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutant unable to utilize galactose was isolated in Sinorhizobium meliloti strain Rm1021. The mutation was found to be in a gene annotated dgoK1, a putative 2-keto-3-deoxygalactonokinase. The genetic region was isolated on a complementing cosmid and subsequently characterized. Based on genetic and bioinformatic evidence, the locus encodes all five enzymes (galD, dgoK, dgoA, SMc00883, and ilvD1) involved in the De Ley-Doudoroff pathway for galactose catabolism. Although all five genes are present, genetic analysis suggests that the galactonase (SMc00883) and the dehydratase (ilvD1) are dispensable with respect to the ability to catabolize galactose. In addition, we show that the transport of galactose is partially facilitated by the arabinose transporter (AraABC) and that both glucose and galactose compete with arabinose for transport. Quantitative reverse transcription-PCR (qRT-PCR) data show that in a dgoK background, the galactose locus is constitutively expressed, and the induction of the ara locus seems to be enhanced. Assays of competition for nodule occupancy show that the inability to catabolize galactose is correlated with an increased ability to compete for nodule occupancy.
Collapse
|
23
|
Geddes BA, Oresnik IJ. Genetic characterization of a complex locus necessary for the transport and catabolism of erythritol, adonitol and L-arabitol in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2012; 158:2180-2191. [PMID: 22609752 DOI: 10.1099/mic.0.057877-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Sinorhizobium meliloti locus necessary for the utilization of erythritol as a sole carbon source, contains 17 genes, including genes that encode an ABC transporter necessary for the transport of erythritol, as well as the genes encoding EryA, EryB, EryC, TpiB and the regulators EryD and EryR (SMc01615). Construction of defined deletions and complementation experiments show that the other genes at this locus encode products that are necessary for the catabolism of adonitol (ribitol) and l-arabitol, but not d-arabitol. These analyses show that aside from one gene that is specific for the catabolism of l-arabitol (SMc01619, lalA), the rest of the catabolic genes are necessary for both polyols (SMc01617, rbtC; SMc01618, rbtB; SMc01622, rbtA). Genetic and biochemical data show that in addition to utilizing erythritol as a substrate, EryA is also capable of utilizing adonitol and l-arabitol. Similarly, transport experiments using labelled erythritol show that adonitol, l-arabitol and erythritol share a common transporter (MptABCDE). Quantitative RT-PCR experiments show that transcripts containing genes necessary for adonitol and l-arabitol utilization are induced by these sugars in an eryA-dependent manner.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
24
|
Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF. Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. MICROBIOLOGY (READING, ENGLAND) 2012; 158:1369-1378. [PMID: 22343359 DOI: 10.1099/mic.0.057281-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Plasmid curing has shown that the ability to use glycerol as a carbon source is plasmid-encoded in Rhizobium leguminosarum. We isolated the locus responsible for glycerol utilization from plasmid pRleVF39c in R. leguminosarum bv. viciae VF39. This region was analyzed by DNA sequencing and mutagenesis. The locus encompasses a gene encoding GlpR (a DeoR regulator), genes encoding an ABC transporter, and genes glpK and glpD, encoding a kinase and dehydrogenase, respectively. All the genes except the regulatory gene glpR were organized into a single operon, and were required for growth on glycerol. The glp operon was strongly induced by both glycerol and glycerol 3-phosphate, as well as by pea seed exudate. GlpR repressed the operon in the absence of inducer. Mutation of genes encoding the ABC transporter abolished all transport of glycerol in transport assays using radiolabelled glycerol. This confirms that, unlike in other organisms such as Escherichia coli and Pseudomonas aeruginosa, which use facilitated diffusion, glycerol uptake occurs by an active process in R. leguminosarum. Since the glp locus is highly conserved in all sequenced R. leguminosarum and Rhizobium etli strains, as well as in Sinorhizobium spp. and Agrobacterium spp. and other alphaproteobacteria, this process for glycerol uptake is probably widespread. Mutants unable to use glycerol were deficient in competitiveness for nodulation of peas compared with the wild-type, suggesting that glycerol catabolism confers an advantage upon the bacterium in the rhizosphere or in the infection thread.
Collapse
Affiliation(s)
- Hao Ding
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Cynthia B Yip
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael F Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
25
|
Kalhoefer D, Thole S, Voget S, Lehmann R, Liesegang H, Wollher A, Daniel R, Simon M, Brinkhoff T. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics 2011; 12:324. [PMID: 21693016 PMCID: PMC3141670 DOI: 10.1186/1471-2164-12-324] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/21/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. RESULTS The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. CONCLUSIONS The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Collapse
Affiliation(s)
- Daniela Kalhoefer
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sebastian Thole
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sonja Voget
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Rüdiger Lehmann
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Heiko Liesegang
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Antje Wollher
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|