1
|
Peng B, Wei S. Synthetic Engineering of Microbes for Production of Terpenoid Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10052-10068. [PMID: 40254844 DOI: 10.1021/acs.jafc.5c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Terpenoids are a class of chemicals comprising many food ingredient chemicals. Synthetic biology and metabolic engineering have been performed to produce microbial cell factories for their production. For improved production of various terpenoid ingredients, heterologous synthetic pathways can be optimized at multiple dimensions. Optimizing chassis precursor supply and overcoming the host's inherent metabolic rigidity are crucial for enhancing overall efficiency of heterologous terpenoid production. Integrating synthetic regulatory circuits can facilitate the staged programming and precise optimization of heterologous and endogenous metabolism. Engineering long-term genetic and metabolic stability is essential for the successful scale-up of commercial production. Maximizing efficiency in food terpenoid production will rely on interdisciplinary synthetic and engineering biology tools to advance state-of-the-art capabilities for the streamlined design and construction of complex genotypes in microbial chassis.
Collapse
Affiliation(s)
- Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Qin Y, Qu B, Lee B. Propidium Monoazide-Treated, Cell-Direct, Quantitative PCR for Detecting Viable Chloramphenicol-Resistant Escherichia coli and Corynebacterium glutamicum Cells. Genes (Basel) 2023; 14:2135. [PMID: 38136957 PMCID: PMC10743000 DOI: 10.3390/genes14122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
With the rapid development and commercialization of industrial genetically modified microorganisms (GMMs), public concerns regarding their potential effects are on the rise. It is imperative to promptly monitor the unintended release of viable GMMs into wastewater, the air, and the surrounding ecosystems to prevent the risk of horizontal gene transfer to native microorganisms. In this study, we have developed a method that combines propidium monoazide (PMA) with a dual-plex quantitative PCR (qPCR) approach based on TaqMan probes. This method targets the chloramphenicol-resistant gene (CmR) along with the endogenous genes D-1-deoxyxylulose 5-phosphate synthase (dxs) and chromosomal replication initiator protein (dnaA). It allows for the direct quantitative detection of viable genetically modified Escherichia coli and Corynebacterium glutamicum cells, eliminating the requirement for DNA isolation. The dual-plex qPCR targeting CmR/dxs and CmR/dnaA demonstrated excellent performance across various templates, including DNA, cultured cells, and PMA-treated cells. Repeatability and precision, defined as RSDr% and bias%, respectively, were calculated and found to fall within the acceptable limits specified by the European Network of GMO Laboratories (ENGL). Through PMA-qPCR assays, we determined the detection limits for viable chloramphenicol-resistant E. coli and C. glutamicum strains to be 20 and 51 cells, respectively, at a 95% confidence level. Notably, this method demonstrated superior sensitivity compared to Enzyme-Linked Immunosorbent Assay (ELISA), which has a detection limit exceeding 1000 viable cells for both GM bacterial strains. This approach offers the potential to accurately and efficiently detect viable cells of GMMs, providing a time-saving and cost-effective solution.
Collapse
Affiliation(s)
| | | | - Bumkyu Lee
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea; (Y.Q.)
| |
Collapse
|
3
|
Jeon EJ, Lee YM, Choi EJ, Kim SB, Jeong KJ. Production of Tagatose by Whole-cell Bioconversion from Fructose Using Corynebacterium glutamicum. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
High copy number mutants derived from Corynebacterium glutamicum cryptic plasmid pAM330 and copy number control. J Biosci Bioeng 2019; 127:529-538. [DOI: 10.1016/j.jbiosc.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022]
|
5
|
Hashiro S, Yasueda H. Plasmid copy number mutation in repA gene encoding RepA replication initiator of cryptic plasmid pHM1519 in Corynebacterium glutamicum. Biosci Biotechnol Biochem 2018; 82:2212-2224. [PMID: 30122124 DOI: 10.1080/09168451.2018.1508986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cryptic plasmid pHM1519 is a rolling-circular replication mode plasmid of the pCG1 plasmid family in coryneform bacteria. The derived shuttle vector pPK4 is maintained at about 40-50 copies per chromosome in Corynebacterium glutamicum 2256 (ATCC 13869). We found that a mutation (designated copA1) within the repA gene encoding essential initiator protein RepA of the pHM1519-replicon increased the copy number of the mutant plasmid to about 800 copies per chromosome. The mutation was a single G to A base transition, which changed Gly to Glu at position 429 of the amino acid sequence of RepA. In silico secondary structure prediction of RepA suggested that Gly429 is situated in a disordered region in a helix-turn-helix motif, which is a typical DNA-binding domain. This study shows the first example of a high copy number of a C. glutamicum cryptic plasmid caused by an altered replication initiator protein.
Collapse
Affiliation(s)
- Shuhei Hashiro
- a Institute for Innovation , Ajinomoto Co., Inc ., Kawasaki , Japan
| | - Hisashi Yasueda
- a Institute for Innovation , Ajinomoto Co., Inc ., Kawasaki , Japan
| |
Collapse
|
6
|
Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:4117-4130. [DOI: 10.1007/s00253-018-8911-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/24/2018] [Accepted: 03/03/2018] [Indexed: 12/20/2022]
|
7
|
Choi JW, Yim SS, Jeong KJ. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2017; 102:873-883. [DOI: 10.1007/s00253-017-8653-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 01/29/2023]
|
8
|
Functional analysis of arabinofuranosidases and a xylanase of Corynebacterium alkanolyticum for arabinoxylan utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2017; 101:5019-5032. [DOI: 10.1007/s00253-017-8280-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 11/27/2022]
|
9
|
Abstract
Plasmids are selfish genetic elements that normally constitute a burden for the bacterial host cell. This burden is expected to favor plasmid loss. Therefore, plasmids have evolved mechanisms to control their replication and ensure their stable maintenance. Replication control can be either mediated by iterons or by antisense RNAs. Antisense RNAs work through a negative control circuit. They are constitutively synthesized and metabolically unstable. They act both as a measuring device and a regulator, and regulation occurs by inhibition. Increased plasmid copy numbers lead to increasing antisense-RNA concentrations, which, in turn, result in the inhibition of a function essential for replication. On the other hand, decreased plasmid copy numbers entail decreasing concentrations of the inhibiting antisense RNA, thereby increasing the replication frequency. Inhibition is achieved by a variety of mechanisms, which are discussed in detail. The most trivial case is the inhibition of translation of an essential replication initiator protein (Rep) by blockage of the rep-ribosome binding site. Alternatively, ribosome binding to a leader peptide mRNA whose translation is required for efficient Rep translation can be prevented by antisense-RNA binding. In 2004, translational attenuation was discovered. Antisense-RNA-mediated transcriptional attenuation is another mechanism that has, so far, only been detected in plasmids of Gram-positive bacteria. ColE1, a plasmid that does not need a plasmid-encoded replication initiator protein, uses the inhibition of primer formation. In other cases, antisense RNAs inhibit the formation of an activator pseudoknot that is required for efficient Rep translation.
Collapse
|
10
|
Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 2015; 81:2284-98. [PMID: 25595768 PMCID: PMC4357955 DOI: 10.1128/aem.03973-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 11/20/2022] Open
Abstract
Reinforcing microbial thermotolerance is a strategy to enable fermentation with flexible temperature settings and thereby to save cooling costs. Here, we report on adaptive laboratory evolution (ALE) of the amino acid-producing bacterium Corynebacterium glutamicum under thermal stress. After 65 days of serial passage of the transgenic strain GLY3, in which the glycolytic pathway is optimized for alanine production under oxygen deprivation, three strains adapted to supraoptimal temperatures were isolated, and all the mutations they acquired were identified by whole-genome resequencing. Of the 21 mutations common to the three strains, one large deletion and two missense mutations were found to promote growth of the parental strain under thermal stress. Additive effects on thermotolerance were observed among these mutations, and the combination of the deletion with the missense mutation on otsA, encoding a trehalose-6-phosphate synthase, allowed the parental strain to overcome the upper limit of growth temperature. Surprisingly, the three evolved strains acquired cross-tolerance for isobutanol, which turned out to be partly attributable to the genomic deletion associated with the enhanced thermotolerance. The deletion involved loss of two transgenes, pfk and pyk, encoding the glycolytic enzymes, in addition to six native genes, and elimination of the transgenes, but not the native genes, was shown to account for the positive effects on thermal and solvent stress tolerance, implying a link between energy-producing metabolism and bacterial stress tolerance. Overall, the present study provides evidence that ALE can be a powerful tool to refine the phenotype of C. glutamicum and to investigate the molecular bases of stress tolerance.
Collapse
Affiliation(s)
- Shinichi Oide
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Wataru Gunji
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Yasuhiro Moteki
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Shogo Yamamoto
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Toru Jojima
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| |
Collapse
|
11
|
Xu W, Chen H, He CL, Wang Q. Deep sequencing-based identification of small regulatory RNAs in Synechocystis sp. PCC 6803. PLoS One 2014; 9:e92711. [PMID: 24647397 PMCID: PMC3960264 DOI: 10.1371/journal.pone.0092711] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/24/2014] [Indexed: 11/30/2022] Open
Abstract
Synechocystis sp. PCC 6803 is a genetically tractable model organism for photosynthesis research. The genome of Synechocystis sp. PCC 6803 consists of a circular chromosome and seven plasmids. The importance of small regulatory RNAs (sRNAs) as mediators of a number of cellular processes in bacteria has begun to be recognized. However, little is known regarding sRNAs in Synechocystis sp. PCC 6803. To provide a comprehensive overview of sRNAs in this model organism, the sRNAs of Synechocystis sp. PCC 6803 were analyzed using deep sequencing, and 7,951,189 reads were obtained. High quality mapping reads (6,127,890) were mapped onto the genome and assembled into 16,192 transcribed regions (clusters) based on read overlap. A total number of 5211 putative sRNAs were revealed from the genome and the 4 megaplasmids, and 27 of these molecules, including four from plasmids, were confirmed by RT-PCR. In addition, possible target genes regulated by all of the putative sRNAs identified in this study were predicted by IntaRNA and analyzed for functional categorization and biological pathways, which provided evidence that sRNAs are indeed involved in many different metabolic pathways, including basic metabolic pathways, such as glycolysis/gluconeogenesis, the citrate cycle, fatty acid metabolism and adaptations to environmentally stress-induced changes. The information from this study provides a valuable reservoir for understanding the sRNA-mediated regulation of the complex physiology and metabolic processes of cyanobacteria.
Collapse
Affiliation(s)
- Wen Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Chen-Liu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
12
|
Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner. J Bacteriol 2013; 196:60-9. [PMID: 24142248 DOI: 10.1128/jb.01004-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Corynebacterium glutamicum ArnR is a novel transcriptional regulator that represses expression of the nitrate reductase operon narKGHJI and the nitric oxide (NO)-detoxifying flavohemoglobin gene hmp under aerobic conditions. In a previous study, we showed that ArnR-mediated repression is relieved during anaerobic nitrate respiration, but we could not pinpoint the specific signal that ArnR senses. In this study, we show that in the absence of nitrate, ArnR-mediated repression is maintained under anaerobic conditions. The derepression in response to nitrate is eliminated by disruption of narG, suggesting that ArnR senses nitrate derivatives generated during nitrate respiration. Specifically, the hmp gene is upregulated in the presence of nitrite or nitric oxide (NO) in an ArnR-dependent manner, although the response of narK appears to be greatly affected by ArnR-independent regulation. In vitro binding of ArnR to the narK and hmp promoter regions is more strongly inhibited by NO than by nitrite. We previously showed that the UV-visible spectrum of ArnR is typical of a Fe-S cluster-containing protein. Site-directed mutagenesis of each of three cysteine residues, which are possibly involved in coordination of the cofactor in the ArnR protein, results in loss of the binding of this protein to its target promoters in vitro and eliminates the repression of the target genes in vivo under aerobic conditions. These observations suggest that the cofactor coordinated by these three cysteine residues in the ArnR protein plays a critical role in the NO-responsive expression of the narKGHJI operon and the hmp gene.
Collapse
|
13
|
Okibe N, Suzuki N, Inui M, Yukawa H. pCGR2 copy number depends on the par
locus that forms a ParC-ParB-DNA partition complex in Corynebacterium glutamicum. J Appl Microbiol 2013; 115:495-508. [DOI: 10.1111/jam.12257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Naoko Okibe
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Nobuaki Suzuki
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| |
Collapse
|
14
|
Brantl S. Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria. Future Microbiol 2012; 7:853-71. [DOI: 10.2217/fmb.12.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
sRNAs that act by base pairing were first discovered in plasmids, phages and transposons, where they control replication, maintenance and transposition. Since 2001, however, computational searches were applied that led to the discovery of a plethora of sRNAs in bacterial chromosomes. Whereas the majority of these chromsome-encoded sRNAs have been investigated in Escherichia coli, Salmonella and other Gram-negative bacteria, only a few well-studied examples are known from Gram-positive bacteria. Here, the author summarizes our current knowledge on plasmid- and chromosome-encoded sRNAs from Gram-positive species, thereby focusing on regulatory mechanisms used by these RNAs and their biological role in complex networks. Furthermore, regulatory factors that control the expression of these RNAs will be discussed and differences between sRNAs from Gram-positive and Gram-negative bacteria highlighted. The main emphasis of this review is on sRNAs that act by base pairing (i.e., by an antisense mechanism). Thereby, both plasmid-encoded and chromosome-encoded sRNAs will be considered.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|