1
|
Sadiq FA, Hansen MF, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhang H. Towards understanding mechanisms and functional consequences of bacterial interactions with members of various kingdoms in complex biofilms that abound in nature. FEMS Microbiol Rev 2022; 46:6595875. [PMID: 35640890 DOI: 10.1093/femsre/fuac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonise a surface develop architecturally complex surface-adhered communities which we refer to as biofilms. They are embedded in polymeric structural scaffolds serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed co-existence of microorganisms from all domains of life, including Bacteria, Archaea and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag, 11222, Palmerston North, New Zealand
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 2021; 18:314-334. [PMID: 33510461 DOI: 10.1038/s41575-020-00397-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France.
| | - John L Wallace
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Antibe Therapeutics Inc., Toronto, ON, Canada
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Céline Deraison
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Costa MO, Harding JCS. Swine dysentery disease mechanism: Brachyspira hampsonii impairs the colonic immune and epithelial repair responses to induce lesions. Microb Pathog 2020; 148:104470. [PMID: 32889046 DOI: 10.1016/j.micpath.2020.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Swine dysentery (SD) is a global, production-limiting disease of pigs in commercial farms. It is associated with infection by Brachyspira hyodysenteriae and B. hampsonii, and characterized by mucohaemorrhagic diarrhea and colitis, SD prevention, treatment or control relies heavily on antimicrobials as no commercial vaccines are available. This is linked to our poor understanding of the disease pathogenesis. Our goal was to characterize the host-pathogen interactions during the early stage of infection. We employed dual RNA-seq to profile mRNA and miRNA following 1-h incubation of colonic explants with a pathogenic or a non-pathogenic B. hampsonii strain. Our results suggest that the pathogenic strain more efficiently interfered with the host's ability to activate and build a humoral response (through IL-4/CCR6/KLHL6 interactions), epithelial wound repair mechanisms (associated with LSECtin impairment of macrophages), induced mitochondrial dysfunction (linked to MDR1), and loss of microbiome homeostasis. The pathogenic strain also up-regulated the expression of stress-associated genes, when compared to the non-pathogenic strain. These results shed a light on the pathophysiological mechanisms that lead to SD and will contribute to the development of novel disease control tools.
Collapse
Affiliation(s)
- Matheus O Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK. Canada; Department of Population Health, Faculty of Veterinary Medicine, Utrecht University. Utrecht, the Netherlands.
| | - John C S Harding
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK. Canada
| |
Collapse
|
4
|
Schweer WP, Burrough ER, Patience JF, Kerr BJ, Gabler NK. Impact of Brachyspira hyodysenteriae on intestinal amino acid digestibility and endogenous amino acid losses in pigs. J Anim Sci 2019; 97:257-268. [PMID: 30335136 PMCID: PMC6313137 DOI: 10.1093/jas/sky393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Brachyspira hyodysenteriae (Bhyo) induces mucohemorrhagic diarrhea in pigs and is an economically significant disease worldwide. Our objectives were to determine the impact of Bhyo on apparent total tract digestibility (ATTD), ileal digestibility (AID), and ileal basal endogenous losses (BEL) in grower pigs. In addition, we assessed the effect of Bhyo on hindgut disappearance of DM, N, and GE. Thirty-two Bhyo negative gilts (38.6 ± 0.70 kg BW) were fitted with a T-cannula in the distal ileum and individually penned. In replicates 1 and 2, pigs were fed a complete diet (7 Bhyo-, 10 Bhyo+ pigs) or nitrogen-free diet (NFD; 4 Bhyo-, 11 Bhyo+ pigs), respectively. Across multiple rooms, the 21 Bhyo+ pigs (62.6 ± 1.39 kg BW) were inoculated with Bhyo on day post inoculation (dpi) 0, and the 11 Bhyo- pigs were sham inoculated. Feces were collected from 9 to 11 dpi and ileal digesta collected from 12 to 13 dpi. All pigs were euthanized at 14 to 15 dpi and intestinal tract pathology assessed. Within the complete diet and NFD treatments, data were analyzed to determine pathogen effects. All Bhyo- pigs remained Bhyo negative, and 5 Bhyo+ pigs in each replicate were confirmed Bhyo positive within 9 dpi. Infection with Bhyo reduced ATTD of DM, N, and GE and increased AID of Gly (P < 0.05). No other AA AID differences were observed. Only BEL of Pro was reduced (P < 0.05) while Arg, Trp, and Gly tended (P < 0.10) to be reduced in Bhyo+ pigs. When calculated from AID and BEL, Bhyo infection reduced standardized ileal digestibility (SID) of N, Arg, Lys, Ala, Gly, Pro, and Ser (P < 0.05) and tended to reduce Thr SID (P = 0.09). In the hindgut of Bhyo+ pigs, there was generally an appearance of nutrients rather than disappearance. In Bhyo+ pigs fed a complete diet, hindgut appearance of N and GE were increased (P < 0.05) by 58 and nine-fold, respectively, and DM tended to be increased two-fold (P = 0.06). Similarly, in NFD fed pigs, hindgut appearance of N and GE was increased by 172% and 162%, respectively, although high variability led to no significance. Altogether, Bhyo infection decreases ATTD but has minimal impact on AID of AA, when corrected for BEL, SID of N, Arg, Lys and some nonessential AA are specifically reduced. Unexpectedly, BEL of several AA involved in mucin production were unaffected by Bhyo infection. This may suggest an increased need for specific AA and energy during a Bhyo challenge.
Collapse
Affiliation(s)
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| | | |
Collapse
|
5
|
La T, Phillips ND, Hampson DJ. Vaccination of chickens with the 34 kDa carboxy-terminus of Bpmp72 reduces colonization with Brachyspira pilosicoli following experimental infection. Avian Pathol 2018; 48:80-85. [PMID: 30404542 DOI: 10.1080/03079457.2018.1546377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The anaerobic intestinal spirochaete Brachyspira pilosicoli colonizes the large intestine of a variety of species of mammals and birds, and may result in colitis, diarrhoea and reductions in growth rate. Naturally occurring infections in chickens are largely confined to adult laying and breeding birds. In this study, the 34 kD carboxy-terminus of the prominent outer membrane protein Bmp72 of B. pilosicoli was expressed as a histidine-tagged recombinant protein and used to immunize two groups (B and C) of 15 individually housed layer chickens. Vaccination was with either 100 μg (B) or 1 mg (C) protein emulsified with Freund's incomplete adjuvant delivered into the pectoral muscles, followed three weeks later by 1 mg of protein in phosphate buffered saline delivered via crop tube. Two weeks later these and 15 non-vaccinated positive control birds (group A) housed in the same room were challenged via crop tube with B. pilosicoli avian strain CPS1. B. pilosicoli was detected in the faeces of all control birds and in 14 of the vaccinated birds in each vaccinated group at some point over the 30-day period following challenge. Colonization was delayed and the duration of excretion was significantly reduced (P = 0.0001) in both groups of vaccinated birds compared to the non-vaccinated control birds. Fewer immunized birds had abnormal caecal contents at post mortem examination compared to non-vaccinated birds, but the difference was not statistically significant. This study indicates that recombinant Bmp72 C-terminus has potential to be developed for use as a vaccine component to provide protection against B. pilosicoli infections. RESEARCH HIGHLIGHTS Laying chickens were immunized with recombinant Brachyspira pilosicoli membrane protein Bpmp72. Immunized birds had a highly significant reduction in the duration of colonization. Fewer immunized than control birds had abnormal caecal contents after infection. Bpmp72 showed potential for use as a novel vaccine component for B. pilosicoli.
Collapse
Affiliation(s)
- Tom La
- a School of Veterinary and Life Sciences, Murdoch University , Murdoch , Western Australia , Australia
| | - Nyree Dale Phillips
- a School of Veterinary and Life Sciences, Murdoch University , Murdoch , Western Australia , Australia
| | - David John Hampson
- a School of Veterinary and Life Sciences, Murdoch University , Murdoch , Western Australia , Australia
| |
Collapse
|
6
|
The Spirochete Brachyspira pilosicoli, Enteric Pathogen of Animals and Humans. Clin Microbiol Rev 2017; 31:31/1/e00087-17. [PMID: 29187397 DOI: 10.1128/cmr.00087-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Brachyspira pilosicoli is a slow-growing anaerobic spirochete that colonizes the large intestine. Colonization occurs commonly in pigs and adult chickens, causing colitis/typhlitis, diarrhea, poor growth rates, and reduced production. Colonization of humans also is common in some populations (individuals living in village and peri-urban settings in developing countries, recent immigrants from developing countries, homosexual males, and HIV-positive patients), but the spirochete rarely is investigated as a potential human enteric pathogen. In part this is due to its slow growth and specialized growth requirements, meaning that it is not detectable in human fecal samples using routine diagnostic methods. Nevertheless, it has been identified histologically attached to the colon and rectum in patients with conditions such as chronic diarrhea, rectal bleeding, and/or nonspecific abdominal discomfort, and one survey of Australian Aboriginal children showed that colonization was significantly associated with failure to thrive. B. pilosicoli has been detected in the bloodstream of elderly patients or individuals with chronic conditions such as alcoholism and malignancies. This review describes the spirochete and associated diseases. It aims to encourage clinicians and clinical microbiologists to consider B. pilosicoli in their differential diagnoses and to develop and use appropriate diagnostic protocols to identify the spirochete in clinical specimens.
Collapse
|
7
|
Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe 2017; 44:13-19. [DOI: 10.1016/j.anaerobe.2017.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/26/2022]
|
8
|
La T, Rohde J, Phillips ND, Hampson DJ. Comparison of Brachyspira hyodysenteriae Isolates Recovered from Pigs in Apparently Healthy Multiplier Herds with Isolates from Herds with Swine Dysentery. PLoS One 2016; 11:e0160362. [PMID: 27489956 PMCID: PMC4973917 DOI: 10.1371/journal.pone.0160362] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Swine dysentery (SD) is a mucohaemorrhagic colitis of grower/finisher pigs classically resulting from infection by the anaerobic intestinal spirochaete Brachyspira hyodysenteriae. This study aimed to determine whether B. hyodysenteriae isolates from pigs in three healthy German multiplier herds supplying gilts to other farms differed from isolates from nine German production herds with SD. Isolates were subjected to whole genomic sequencing, and in silico multilocus sequence typing showed that those from the three multiplier herds were of previously undescribed sequence types (ST132, ST133 and ST134), with all isolates from the same herd having the same ST. All isolates were examined for the presence of 332 genes encoding predicted virulence or virulence lifestyle associated factors, and these were well conserved. Isolates from one multiplier herd were atypical in being weakly haemolytic: they had 10 amino acid substitutions in the haemolysin III protein and five in the haemolysin activation protein compared to reference strain WA1, and had a disruption in the promoter site of the hlyA gene. These changes likely contribute to the weakly haemolytic phenotype and putative lack of virulence. These same isolates also had nine base pair insertions in the iron metabolism genes bitB and bitC and lacked five of six plasmid genes that previously have been associated with colonisation. Other overall differences between isolates from the different herds were in genes from three of five outer membrane proteins, which were not found in all the isolates, and in members of a block of six plasmid genes. Isolates from three herds with SD had all six plasmid genes, while isolates lacking some of these genes were found in the three healthy herds-but also in isolates from six herds with SD. Other differences in genes of unknown function or in gene expression may contribute to variation in virulence; alternatively, superior husbandry and better general health may have made pigs in the two multiplier herds colonised by "typical" strongly haemolytic isolates less susceptible to disease expression.
Collapse
Affiliation(s)
- Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Judith Rohde
- Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany
| | - Nyree Dale Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David J. Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
- * E-mail:
| |
Collapse
|
9
|
Hampson DJ, La T, Phillips ND. Emergence of Brachyspira species and strains: reinforcing the need for surveillance. Porcine Health Manag 2015; 1:8. [PMID: 28694985 PMCID: PMC5499009 DOI: 10.1186/s40813-015-0002-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
This short review discusses the increasing complexity that has developed around the understanding of Brachyspira species that infect pigs, and their ability to cause disease. It describes the recognition of new weakly haemolytic Brachyspira species, and the growing appreciation that Brachyspira pilosicoli and some other weakly haemolytic species may be pathogenic in pigs. It discusses swine dysentery (SD) caused by the strongly haemolytic Brachyspira hyodysenteriae, particularly the cyclical nature of the disease whereby it can largely disappear as a clinical problem from a farm or region, and re-emerge years later. The review then describes the recent emergence of two newly described strongly haemolytic pathogenic species, “Brachyspira suanatina” and “Brachyspira hampsonii” both of which appear to have reservoirs in migratory waterbirds, and which may be transmitted to and between pigs. “B. suanatina” seems to be confined to Scandinavia, whereas “B. hampsonii” has been reported in North America and Europe, causes a disease indistinguishable from SD, and has required the development of new routine diagnostic tests. Besides the emergence of new species, strains of known Brachyspira species have emerged that vary in important biological properties, including antimicrobial susceptibility and virulence. Strains can be tracked locally and at the national and international levels by identifying them using multilocus sequence typing (MLST) and comparing them against sequence data for strains in the PubMLST databases. Using MLST in conjunction with data on antimicrobial susceptibility can form the basis for surveillance programs to track the movement of resistant clones. In addition some strains of B. hyodysenteriae have low virulence potential, and some of these have been found to lack the B. hyodysenteriae 36 kB plasmid or certain genes on the plasmid whose activity may be associated with colonization. Lack of the plasmid or the genes can be identified using PCR testing, and this information can be added to the MLST and resistance data to undertake detailed surveillance. Strains of low virulence are particularly important where they occur in high health status breeding herds without causing obvious disease: potentially they could be transmitted to production herds where they may colonize more effectively and cause disease under stressful commercial conditions.
Collapse
Affiliation(s)
- David J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| | - Nyree D Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| |
Collapse
|
10
|
Reyes-Darias JA, García V, Rico-Jiménez M, Corral-Lugo A, Lesouhaitier O, Juárez-Hernández D, Yang Y, Bi S, Feuilloley M, Muñoz-Rojas J, Sourjik V, Krell T. Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle. Mol Microbiol 2015; 97:488-501. [PMID: 25921834 DOI: 10.1111/mmi.13045] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2015] [Indexed: 02/02/2023]
Abstract
The PctC chemoreceptor of Pseudomonas aeruginosa mediates chemotaxis with high specificity to gamma-aminobutyric acid (GABA). This compound is present everywhere in nature and has multiple functions, including being a human neurotransmitter or plant signaling compound. Because P. aeruginosa is ubiquitously distributed in nature and able to infect and colonize different hosts, the physiological relevance of GABA taxis is unclear, but it has been suggested that bacterial attraction to neurotransmitters may enhance virulence. We report the identification of McpG as a specific GABA chemoreceptor in non-pathogenic Pseudomonas putida KT2440. As with PctC, GABA was found to bind McpG tightly. The analysis of chimeras comprising the PctC and McpG ligand-binding domains fused to the Tar signaling domain showed very high GABA sensitivities. We also show that PctC inactivation does not alter virulence in Caenorhabditis elegans. Significant amounts of GABA were detected in tomato root exudates, and deletion of mcpG reduced root colonization that requires chemotaxis through agar. The C. elegans data and the detection of a GABA receptor in non-pathogenic species indicate that GABA taxis may not be related to virulence in animal systems but may be of importance in the context of colonization and infection of plant roots by soil-dwelling pseudomonads.
Collapse
Affiliation(s)
- Jose Antonio Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| | - Vanina García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironnement LMSM, EA 4312, Normandie Université, Université Rouen, 55 rue Saint Germain, 27000, Evreux, France
| | - Dalia Juárez-Hernández
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Mexico
| | - Yiling Yang
- Max Planck Institute for Terrestrial Microbiology & LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 10, D-35043, Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology & LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 10, D-35043, Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Marc Feuilloley
- Laboratory of Microbiology Signals and Microenvironnement LMSM, EA 4312, Normandie Université, Université Rouen, 55 rue Saint Germain, 27000, Evreux, France
| | - Jesús Muñoz-Rojas
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Mexico
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 10, D-35043, Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| |
Collapse
|
11
|
Effect of spatial separation of pigs on spread of Streptococcus suis serotype 9. PLoS One 2013; 8:e61339. [PMID: 23593467 PMCID: PMC3622602 DOI: 10.1371/journal.pone.0061339] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
The spread of an infectious agent in a population can be reduced by interfering in the infectiousness or susceptibility of individuals, and/or in their contact structure. The aim of this study was to quantify the effect of prevention of direct contact between infectious and susceptible pigs on the transmission of Streptococcus suis (S. suis). In three replicate experiments, S. suis-free pigs were housed in boxes either in pairs (25 pairs) or alone (15 pigs). The distance between the boxes was ±1 m. At 7 weeks of age, one pig of each pair was inoculated intranasally with S. suis serotype 9; the other pigs were exposed to S. suis by either direct (pairs) or indirect contact (individually housed pigs). Tonsillar brush and saliva swab samples from all pigs were collected regularly for 4 weeks post inoculation to monitor colonization with S. suis. All inoculated pigs became infected, and their pen mates became colonized within 2 days. Thirteen indirectly exposed pigs became positive within 7-25 days after exposure. The rate of direct transmission βdir was estimated to be 3.58 per pig per day (95% CI: 2.29-5.60). The rate of indirect transmission increased in time, depending on the cumulative number of days pigs tested positive for the presence of S. suis. The estimate β'ind was 0.001 (95% CI: 0.0006-0.0017) new infections per pig per day for each day that an infected pig was tested positive for S. suis. We conclude that prevention of direct contact reduces the rate at which susceptible pigs become colonized. Simulation studies using these parameters showed, however, that such intervention measure would not limit S. suis serotype 9 spread in a commercial pig farm to a relevant extent, implying that spatial separation of groups op pigs within a compartment would not be effective on a farm.
Collapse
|
12
|
Freestone P. Communication between Bacteria and Their Hosts. SCIENTIFICA 2013; 2013:361073. [PMID: 24381789 PMCID: PMC3871906 DOI: 10.1155/2013/361073] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/11/2013] [Indexed: 05/17/2023]
Abstract
It is clear that a dialogue is occurring between microbes and their hosts and that chemical signals are the language of this interkingdom communication. Microbial endocrinology shows that, through their long coexistence with animals and plants, microorganisms have evolved sensors for detecting eukaryotic hormones, which the microbe uses to determine that they are within proximity of a suitable host and to optimally time the expression of genes needed for host colonisation. It has also been shown that some prokaryotic chemical communication signals are recognized by eukaryotes. Deciphering what is being said during the cross-talk between microbe and host is therefore important, as it could lead to new strategies for preventing or treating bacterial infections.
Collapse
Affiliation(s)
- Primrose Freestone
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
- *Primrose Freestone:
| |
Collapse
|