1
|
Will V, Moynié L, Si Ahmed Charrier E, Le Bas A, Kuhn L, Volck F, Chicher J, Aksoy H, Madec M, Antheaume C, Mislin GLA, Schalk IJ. Structure of the Outer Membrane Transporter FemA and Its Role in the Uptake of Ferric Dihydro-Aeruginoic Acid and Ferric Aeruginoic Acid in Pseudomonas aeruginosa. ACS Chem Biol 2025; 20:690-706. [PMID: 40035455 DOI: 10.1021/acschembio.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Iron is essential for bacterial growth, and Pseudomonas aeruginosa synthesizes the siderophores pyochelin (PCH) and pyoverdine to acquire it. PCH contains a thiazolidine ring that aids in iron chelation but is prone to hydrolysis, leading to the formation of 2-(2-hydroxylphenyl)-thiazole-4-carbaldehyde (IQS). Using mass spectrometry, we demonstrated that PCH undergoes hydrolysis and oxidation in solution, resulting in the formation of aeruginoic acid (AA). This study used proteomic analyses and fluorescent reporters to show that AA, dihydroaeruginoic acid (DHA), and PCH induce the expression of femA, a gene encoding the ferri-mycobactin outer membrane transporter in P. aeruginosa. Notably, the induction by AA and DHA was observed only in strains unable to produce pyoverdine, suggesting their weaker iron-chelating ability compared to that of pyoverdine. 55Fe uptake assays demonstrated that both AA-Fe and DHA-Fe complexes are transported via FemA; however, no uptake was observed for PCH-Fe through this transporter. Structural studies revealed that FemA is able to bind AA2-Fe or DHA2-Fe complexes. Key interactions are conserved between FemA and these two complexes, with specificity primarily driven by one of the two siderophore molecules. Interestingly, although no iron uptake was noted for PCH through FemA, the transporter also binds PCH-Fe in a similar manner. These findings show that under moderate iron deficiency, when only PCH is produced by P. aeruginosa, degradation products AA and DHA enhance iron uptake by inducing femA expression and facilitating iron transport through FemA. This provides new insights into the pathogen's strategies for iron homeostasis.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Lucile Moynié
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, United Kingdom
| | - Elise Si Ahmed Charrier
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Audrey Le Bas
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, United Kingdom
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, IBMC, 2 Allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Florian Volck
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, IBMC, 2 Allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Hava Aksoy
- Université de Strasbourg, Institut des Sciences et de L'Ingénieurie Supramoleculaire, Plateforme d'analyses Chimiques 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Morgan Madec
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Cyril Antheaume
- Université de Strasbourg, Institut des Sciences et de L'Ingénieurie Supramoleculaire, Plateforme d'analyses Chimiques 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Gaëtan L A Mislin
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Isabelle J Schalk
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| |
Collapse
|
2
|
Zhang H, Yang J, Cheng J, Zeng J, Ma X, Lin J. PQS and pyochelin in Pseudomonas aeruginosa share inner membrane transporters to mediate iron uptake. Microbiol Spectr 2024; 12:e0325623. [PMID: 38171001 PMCID: PMC10846271 DOI: 10.1128/spectrum.03256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria absorb different forms of iron through various channels to meet their needs. Our previous studies have shown that TseF, a type VI secretion system effector for Fe uptake, facilitates the delivery of outer membrane vesicle-associated Pseudomonas quinolone signal (PQS)-Fe3+ to bacterial cells by a process involving the Fe(III) pyochelin receptor FptA and the porin OprF. However, the form in which the PQS-Fe3+ complex enters the periplasm and how it is moved into the cytoplasm remain unclear. Here, we first demonstrate that the PQS-Fe3+ complex enters the cell directly through FptA or OprF. Next, we show that inner membrane transporters such as FptX, PchHI, and FepBCDG are not only necessary for Pseudomonas aeruginosa to absorb PQS-Fe3+ and pyochelin (PCH)-Fe3+ but are also necessary for the virulence of P. aeruginosa toward Galleria mellonella larvae. Furthermore, we suggest that the function of PQS-Fe3+ (but not PQS)-mediated quorum-sensing regulation is dependent on FptX, PchHI, and FepBCDG. Additionally, the findings indicate that unlike FptX, neither FepBCDG nor PchHI play roles in the autoregulatory loop involving PchR, but further deletion of fepBCDG and pchHI can reverse the inactive PchR phenotype caused by fptX deletion and reactivate the expression of the PCH pathway genes under iron-limited conditions. Finally, this work identifies the interaction between FptX, PchHI, and FepBCDG, indicating that a larger complex could be formed to mediate the uptake of PQS-Fe3+ and PCH-Fe3+. These results pave the way for a better understanding of the PQS and PCH iron absorption pathways and provide future directions for research on tackling P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa has evolved a number of strategies to acquire the iron it needs from its host, with the most common being the synthesis, secretion, and uptake of siderophores such as pyoverdine, pyochelin, and the quorum-sensing signaling molecule Pseudomonas quinolone signal (PQS). However, despite intensive studies of the siderophore uptake pathways of P. aeruginosa, our understanding of how siderophores transport iron across the inner membrane into the cytoplasm is still incomplete. Herein, we reveal that PQS and pyochelin in P. aeruginosa share inner membrane transporters such as FptX, PchHI, and FepBCDG to mediate iron uptake. Meanwhile, PQS and pyochelin-mediated signaling operate to a large extent via these inner membrane transporters. Our study revealed the existence of shared uptake pathways between PQS and pyochelin, which could lead us to reexamine the role of these two molecules in the iron uptake and virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Heng Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jing Zeng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Xin Ma
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
3
|
Will V, Gasser V, Kuhn L, Fritsch S, Heinrichs DE, Schalk IJ. Siderophore specificities of the Pseudomonas aeruginosa TonB-dependent transporters ChtA and ActA. FEBS Lett 2023; 597:2963-2974. [PMID: 37758521 DOI: 10.1002/1873-3468.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Iron is an essential nutrient for the survival and virulence of Pseudomonas aeruginosa. The pathogen expresses at least 15 different iron-uptake pathways, the majority involving small iron chelators called siderophores. P. aeruginosa produces two siderophores, but can also use many produced by other microorganisms. This implies that the bacterium expresses appropriate TonB-dependent transporters (TBDTs) at the outer membrane to import the ferric form of each of the siderophores used. Here, we show that the two α-carboxylate-type siderophores rhizoferrin-Fe and staphyloferrin A-Fe are transported into P. aeruginosa cells by the TBDT ActA. Among the mixed α-carboxylate/hydroxamate-type siderophores, we found aerobactin-Fe to be transported by ChtA and schizokinen-Fe and arthrobactin-Fe by ChtA and another unidentified TBDT. Our findings enhance the understanding of the adaptability of P. aeruginosa and hold significant implications for developing novel strategies to combat antibiotic resistance.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Véronique Gasser
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, Strasbourg Cedex, France
| | - Sarah Fritsch
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Isabelle J Schalk
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
4
|
Sánchez-Jiménez A, Marcos-Torres FJ, Llamas MA. Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process. Microb Biotechnol 2023. [PMID: 36857468 DOI: 10.1111/1751-7915.14241] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen able to infect any human tissue. One of the reasons for its high adaptability and colonization of host tissues is its capacity of maintaining iron homeostasis through a wide array of iron acquisition and removal mechanisms. Due to their ability to cause life-threatening acute and chronic infections, especially among cystic fibrosis and immunocompromised patients, and their propensity to acquire resistance to many antibiotics, the World Health Organization (WHO) has encouraged the scientific community to find new strategies to eradicate this pathogen. Several recent strategies to battle P. aeruginosa focus on targeting iron homeostasis mechanisms, turning its greatest advantage into an exploitable weak point. In this review, we discuss the different mechanisms used by P. aeruginosa to maintain iron homeostasis and the strategies being developed to fight this pathogen by blocking these mechanisms. Among others, the use of iron chelators and mimics, as well as disruption of siderophore production and uptake, have shown promising results in reducing viability and/or virulence of this pathogen. The so-called 'Trojan-horse' strategy taking advantage of the siderophore uptake systems is emerging as an efficient method to improve delivery of antibiotics into the bacterial cells. Moreover, siderophore transporters are considered promising targets for the developing of P. aeruginosa vaccines.
Collapse
Affiliation(s)
- Ana Sánchez-Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco J Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María A Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
5
|
Schalk IJ, Perraud Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ Microbiol 2022; 25:811-831. [PMID: 36571575 DOI: 10.1111/1462-2920.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
6
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
7
|
Kotecka K, Kawalek A, Modrzejewska-Balcerek M, Gawor J, Zuchniewicz K, Gromadka R, Bartosik AA. Functional Characterization of TetR-like Transcriptional Regulator PA3973 from Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms232314584. [PMID: 36498910 PMCID: PMC9736018 DOI: 10.3390/ijms232314584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa, a human opportunistic pathogen, is a common cause of nosocomial infections. Its ability to survive under different conditions relies on a complex regulatory network engaging transcriptional regulators controlling metabolic pathways and capabilities to efficiently use the available resources. P. aeruginosa PA3973 encodes an uncharacterized TetR family transcriptional regulator. In this study, we applied a transcriptome profiling (RNA-seq), genome-wide identification of binding sites using ChIP-seq, as well as the phenotype analyses to unravel the biological role of PA3973. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3973 showed changes in the mRNA level of 648 genes. Concomitantly, ChIP-seq analysis identified more than 300 PA3973 binding sites in the P. aeruginosa genome. A 13 bp sequence motif was indicated as the binding site of PA3973. The PA3973 regulon encompasses the PA3972-PA3971 genes encoding a probable acyl-CoA dehydrogenase and a thioesterase. In vitro analysis showed PA3973 binding to PA3973p. Accordingly, the lack of PA3973 triggered increased expression of PA3972 and PA3971. The ∆PA3972-71 PAO1161 strain demonstrated impaired growth in the presence of stress-inducing agents hydroxylamine or hydroxyurea, thus suggesting the role of PA3972-71 in pathogen survival upon stress. Overall our results showed that TetR-type transcriptional regulator PA3973 has multiple binding sites in the P. aeruginosa genome and influences the expression of diverse genes, including PA3972-PA3971, encoding proteins with a proposed role in stress response.
Collapse
|
8
|
Plant-Derived Catechols Are Substrates of TonB-Dependent Transporters and Sensitize Pseudomonas aeruginosa to Siderophore-Drug Conjugates. mBio 2022; 13:e0149822. [PMID: 35770947 PMCID: PMC9426570 DOI: 10.1128/mbio.01498-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for acute and chronic infections in immunocompromised hosts. This organism is known to compete efficiently against coinfecting microorganisms, due in part to the secretion of antimicrobial molecules and the synthesis of siderophore molecules with high affinity for iron. P. aeruginosa possess a large repertoire of TonB-dependent transporters for the uptake of its own, as well as xenosiderophores released from other bacteria or fungi. Here, we show that P. aeruginosa is also capable of utilizing plant-derived polyphenols as an iron source. We found that exclusively plant-derived phenols containing a catechol group (i.e., chlorogenic acid, caffeic acid, quercetin, luteolin) induce the expression of the TonB-dependent transporters PiuA or PirA. This induction requires the two-component system PirR-PirS. Chlorogenic acid in its Fe(III)-loaded form was actively transported by PiuA and PirA and supported growth under iron-limiting conditions. Coincidentally, PiuA and PirA are also the main TonB transporters for the recently approved siderophore-drug conjugate cefiderocol. Surprisingly, quercetin supplementation increased the susceptibility of P. aeruginosa to siderophore-drug conjugates, due to induction of piuA and pirA expression mediated by the PirR-PirS two-component system. These findings suggest a potential novel therapeutic application for these biologically active dietary polyphenols.
Collapse
|
9
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
10
|
Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:29-68. [DOI: 10.1007/978-3-031-08491-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Reales-Calderón JA, Sun Z, Mascaraque V, Pérez-Navarro E, Vialás V, Deutsch EW, Moritz RL, Gil C, Martínez JL, Molero G. A wide-ranging Pseudomonas aeruginosa PeptideAtlas build: A useful proteomic resource for a versatile pathogen. J Proteomics 2021; 239:104192. [PMID: 33757883 PMCID: PMC8668395 DOI: 10.1016/j.jprot.2021.104192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen with high prevalence in nosocomial infections. This microorganism is a good model for understanding biological processes such as the quorum-sensing response, the metabolic integration of virulence, the mechanisms of global regulation of bacterial physiology, and the evolution of antibiotic resistance. Till now, P. aeruginosa proteomic data, although available in several on-line repositories, were dispersed and difficult to access. In the present work, proteomes of the PAO1 strain grown under different conditions and from diverse cellular compartments have been joined to build the Pseudomonas PeptideAtlas. This resource is a comprehensive mass spectrometry-derived peptide and inferred protein database with 71.3% coverage of the total predicted proteome of P. aeruginosa PAO1, the highest coverage among bacterial PeptideAtlas datasets. The proteins included cover 89% of metabolic proteins, 72% of proteins involved in genetic information processing, 83% of proteins responsible for environmental information processing, more than 88% of the ones related to quorum sensing and biofilm formation, and 89% of proteins responsible for antimicrobial resistance. It exemplifies a necessary tool for targeted proteomics studies, system-wide observations, and cross-species observational studies. The manuscript describes the building of the PeptideAtlas and the contribution of the different proteomic data used. SIGNIFICANCE: Pseudomonas aeruginosa is among the most versatile human bacterial pathogens. Studies of its proteome are very important as they can reveal virulence factors and mechanisms of antibiotic resistance. The construction of a proteomic resource such as the PeptideAtlas enables targeted proteomics studies, system-wide observations, and cross-species observational studies.
Collapse
Affiliation(s)
- J A Reales-Calderón
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Z Sun
- Institute for Systems Biology, Seattle, WA, USA
| | - V Mascaraque
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - E Pérez-Navarro
- Unidad de Proteómica de la Universidad Complutense de Madrid, Spain
| | - V Vialás
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - E W Deutsch
- Institute for Systems Biology, Seattle, WA, USA
| | - R L Moritz
- Institute for Systems Biology, Seattle, WA, USA
| | - C Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain; Unidad de Proteómica de la Universidad Complutense de Madrid, Spain
| | - J L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - G Molero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
12
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
13
|
Fu Y, Peng H, Liu J, Nguyen TH, Hashmi MZ, Shen C. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142851. [PMID: 33097267 DOI: 10.1016/j.scitotenv.2020.142851] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Waterborne pathogens have been found in biofilms grown in drinking water distribution system (DWDS). However, there is a lack of quantitative study on the culturability of pathogens in biofilms from metropolitan DWDS. In this study, we quantified culturable and viable but non-culturable (VBNC) Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa and Vibrio cholerae in biofilms collected from five kinds of pipes (galvanized steel pipe, steel pipe, stainless steel clad pipe, ductile cast iron pipe and polyethylene pipe) and associated drinking water at an actual chlorinated DWDS in use from China. The results of these comprehensive analyses revealed that pipe material is a significant factor influencing the culturability of pathogen and microbial communities. Network analysis of the culturable pathogens and 16S rRNA gene inferred potential interactions between microbiome and culturability of pathogens. Although the water quality met the Chinese national standard of drinking water, however, VBNC pathogens were detected in both biofilms and water from the DWDS. This investigation suggests that stainless steel clad pipe (SSCP) was a better choice for pathogen control compared with other metal pipes. To our knowledge, this is the first study on culturable and VBNC pathogens in biofilms of different pipe materials in metropolitan DWDS.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongxi Peng
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingqing Liu
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Gasser V, Kuhn L, Hubert T, Aussel L, Hammann P, Schalk IJ. The Esterase PfeE, the Achilles' Heel in the Battle for Iron between Pseudomonas aeruginosa and Escherichia coli. Int J Mol Sci 2021; 22:ijms22062814. [PMID: 33802163 PMCID: PMC8001512 DOI: 10.3390/ijms22062814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria access iron, a key nutrient, by producing siderophores or using siderophores produced by other microorganisms. The pathogen Pseudomonas aeruginosa produces two siderophores but is also able to pirate enterobactin (ENT), the siderophore produced by Escherichia coli. ENT-Fe complexes are imported across the outer membrane of P. aeruginosa by the two outer membrane transporters PfeA and PirA. Iron is released from ENT in the P. aeruginosa periplasm by hydrolysis of ENT by the esterase PfeE. We show here that pfeE gene deletion renders P. aeruginosa unable to grow in the presence of ENT because it is unable to access iron via this siderophore. Two-species co-cultures under iron-restricted conditions show that P. aeruginosa strongly represses the growth of E. coli as long it is able to produce its own siderophores. Both strains are present in similar proportions in the culture as long as the siderophore-deficient P. aeruginosa strain is able to use ENT produced by E. coli to access iron. If pfeE is deleted, E. coli has the upper hand in the culture and P. aeruginosa growth is repressed. Overall, these data show that PfeE is the Achilles' heel of P. aeruginosa in communities with bacteria producing ENT.
Collapse
Affiliation(s)
- Véronique Gasser
- InnoVec, UMR7242, Université de Strasbourg, ESBS, Bld Sébastien Brant, F-67413 Illkirch, France; (V.G.); (T.H.)
- UMR7242, CNRS, ESBS, Bld Sébastien Brant, F-67413 Illkirch, France
| | - Laurianne Kuhn
- Plateforme Proteomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg CEDEX, France; (L.K.); (P.H.)
| | - Thibaut Hubert
- InnoVec, UMR7242, Université de Strasbourg, ESBS, Bld Sébastien Brant, F-67413 Illkirch, France; (V.G.); (T.H.)
- UMR7242, CNRS, ESBS, Bld Sébastien Brant, F-67413 Illkirch, France
| | - Laurent Aussel
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, 13 900 Marseille, France;
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg CEDEX, France; (L.K.); (P.H.)
| | - Isabelle J. Schalk
- InnoVec, UMR7242, Université de Strasbourg, ESBS, Bld Sébastien Brant, F-67413 Illkirch, France; (V.G.); (T.H.)
- UMR7242, CNRS, ESBS, Bld Sébastien Brant, F-67413 Illkirch, France
- Correspondence:
| |
Collapse
|
15
|
Perraud Q, Kuhn L, Fritsch S, Graulier G, Gasser V, Normant V, Hammann P, Schalk IJ. Opportunistic use of catecholamine neurotransmitters as siderophores to access iron by Pseudomonas aeruginosa. Environ Microbiol 2020; 24:878-893. [PMID: 33350053 DOI: 10.1111/1462-2920.15372] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Iron is an essential nutrient for bacterial growth and the cause of a fierce battle between the pathogen and host during infection. Bacteria have developed several strategies to access iron from the host, the most common being the production of siderophores, small iron-chelating molecules secreted into the bacterial environment. The opportunist pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a wide panoply of xenosiderophores, siderophores produced by other microorganisms. Here, we demonstrate that catecholamine neurotransmitters (dopamine, l-DOPA, epinephrine and norepinephrine) are able to chelate iron and efficiently bring iron into P. aeruginosa cells via TonB-dependent transporters (TBDTs). Bacterial growth assays under strong iron-restricted conditions and with numerous mutants showed that the TBDTs involved are PiuA and PirA. PiuA exhibited more pronounced specificity for dopamine uptake than for norepinephrine, epinephrine and l-DOPA, whereas PirA specificity appeared to be higher for l-DOPA and norepinephrine. Proteomic and qRT-PCR approaches showed pirA transcription and expression to be induced in the presence of all four catecholamines. Finally, the oxidative properties of catecholamines enable them to reduce iron, and we observed ferrous iron uptake via the FeoABC system in the presence of l-DOPA.
Collapse
Affiliation(s)
- Quentin Perraud
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Sarah Fritsch
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Gwenaëlle Graulier
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Vincent Normant
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Isabelle J Schalk
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| |
Collapse
|
16
|
Normant V, Josts I, Kuhn L, Perraud Q, Fritsch S, Hammann P, Mislin GLA, Tidow H, Schalk IJ. Nocardamine-Dependent Iron Uptake in Pseudomonas aeruginosa: Exclusive Involvement of the FoxA Outer Membrane Transporter. ACS Chem Biol 2020; 15:2741-2751. [PMID: 32902248 DOI: 10.1021/acschembio.0c00535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron is a key nutrient for almost all living organisms. Paradoxically, it is poorly soluble and consequently poorly bioavailable. Bacteria have thus developed multiple strategies to access this metal. One of the most common consists of the use of siderophores, small compounds that chelate ferric iron with very high affinity. Many bacteria are able to produce their own siderophores or use those produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a large panel of exosiderophores. We investigated the ability of P. aeruginosa to use nocardamine (NOCA) and ferrioxamine B (DFOB) as exosiderophores under iron-limited planktonic growth conditions. Proteomic and RT-qPCR approaches showed induction of the transcription and expression of the outer membrane transporter FoxA in the presence of NOCA or DFOB in the bacterial environment. Expression of the proteins of the heme- or pyoverdine- and pyochelin-dependent iron uptake pathways was not affected by the presence of these two tris-hydroxamate siderophores. 55Fe uptake assays using foxA mutants showed ferri-NOCA to be exclusively transported by FoxA, whereas ferri-DFOB was transported by FoxA and at least one other unidentified transporter. The crystal structure of FoxA complexed with NOCA-Fe revealed very similar siderophore binding sites between NOCA-Fe and DFOB-Fe. We discuss iron uptake by hydroxamate exosiderophores in P. aeruginosa cells in light of these results.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Sarah Fritsch
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Isabelle J. Schalk
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| |
Collapse
|
17
|
Zhang Y, Pan X, Wang L, Chen L. Iron metabolism in Pseudomonas aeruginosa biofilm and the involved iron-targeted anti-biofilm strategies. J Drug Target 2020; 29:249-258. [PMID: 32969723 DOI: 10.1080/1061186x.2020.1824235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium that exists in various ecosystems, causing severe infections in patients with AIDS or cystic fibrosis. P. aeruginosa can form biofilm on a variety of surfaces, whereby the bacteria produce defensive substances and enhance antibiotic-resistance, making themselves more adaptable to hostile environments. P. aeruginosa resistance represents one of the main causes of infection-related morbidity and mortality at a global level. Iron is required for the growth of P. aeruginosa biofilm. This review summarises how the iron metabolism contributes to develop biofilm, and more importantly, it may provide some references for the clinic to achieve novel anti-biofilm therapeutics by targeting iron activities.
Collapse
Affiliation(s)
- Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
18
|
Perraud Q, Cantero P, Roche B, Gasser V, Normant VP, Kuhn L, Hammann P, Mislin GLA, Ehret-Sabatier L, Schalk IJ. Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms. Mol Cell Proteomics 2020; 19:589-607. [PMID: 32024770 PMCID: PMC7124469 DOI: 10.1074/mcp.ra119.001829] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition.
Collapse
Affiliation(s)
- Quentin Perraud
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Paola Cantero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Béatrice Roche
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Vincent P Normant
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L A Mislin
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Isabelle J Schalk
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| |
Collapse
|
19
|
Perraud Q, Moynié L, Gasser V, Munier M, Godet J, Hoegy F, Mély Y, Mislin GLA, Naismith JH, Schalk IJ. A Key Role for the Periplasmic PfeE Esterase in Iron Acquisition via the Siderophore Enterobactin in Pseudomonas aeruginosa. ACS Chem Biol 2018; 13:2603-2614. [PMID: 30086222 DOI: 10.1021/acschembio.8b00543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm.
Collapse
Affiliation(s)
- Quentin Perraud
- Université de Strasbourg, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Lucile Moynié
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
- Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, United Kingdom
| | - Véronique Gasser
- Université de Strasbourg, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Mathilde Munier
- Université de Strasbourg, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Julien Godet
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS 7021, F-67413 Illkirch, Strasbourg, France
| | - Françoise Hoegy
- Université de Strasbourg, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Yves Mély
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS 7021, F-67413 Illkirch, Strasbourg, France
| | - Gaëtan. L. A. Mislin
- Université de Strasbourg, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
- Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, United Kingdom
| | - Isabelle J. Schalk
- Université de Strasbourg, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242, ESBS, 300 Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| |
Collapse
|
20
|
Tettmann B, Niewerth C, Kirschhöfer F, Neidig A, Dötsch A, Brenner-Weiss G, Fetzner S, Overhage J. Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS) Promotes Biofilm Formation of Pseudomonas aeruginosa by Increasing Iron Availability. Front Microbiol 2016; 7:1978. [PMID: 28018312 PMCID: PMC5145850 DOI: 10.3389/fmicb.2016.01978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/25/2016] [Indexed: 11/24/2022] Open
Abstract
The 2-alkyl-3-hydroxy-4(1H)-quinolone 2,4-dioxygenase HodC was previously described to cleave the Pseudomonas quinolone signal, PQS, which is exclusively used in the complex quorum sensing (QS) system of Pseudomonas aeruginosa, an opportunistic pathogen employing QS to regulate virulence and biofilm development. Degradation of PQS by exogenous addition of HodC to planktonic cells of P. aeruginosa attenuated production of virulence factors, and reduced virulence in planta. However, proteolytic cleavage reduced the efficacy of HodC. Here, we identified the secreted protease LasB of P. aeruginosa to be responsible for HodC degradation. In static biofilms of the P. aeruginosa PA14 lasB::Tn mutant, the catalytic activity of HodC led to an increase in viable biomass in newly formed but also in established biofilms, and reduced the expression of genes involved in iron metabolism and siderophore production, such as pvdS, pvdL, pvdA, and pvdQ. This is likely due to an increase in the levels of bioavailable iron by degradation of PQS, which is able to sequester iron from the surrounding environment. Thus, HodC, despite its ability to quench the production of virulence factors, is contraindicated for combating P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Beatrix Tettmann
- Karlsruhe Institute of Technology, Institute of Functional Interfaces Karlsruhe, Germany
| | - Christine Niewerth
- Institute for Molecular Microbiology and Biotechnology, University of Münster Münster, Germany
| | - Frank Kirschhöfer
- Karlsruhe Institute of Technology, Institute of Functional Interfaces Karlsruhe, Germany
| | - Anke Neidig
- Karlsruhe Institute of Technology, Institute of Functional Interfaces Karlsruhe, Germany
| | - Andreas Dötsch
- Karlsruhe Institute of Technology, Institute of Functional Interfaces Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Karlsruhe Institute of Technology, Institute of Functional Interfaces Karlsruhe, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster Münster, Germany
| | - Joerg Overhage
- Karlsruhe Institute of Technology, Institute of Functional Interfaces Karlsruhe, Germany
| |
Collapse
|
21
|
Schalk IJ, Cunrath O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ Microbiol 2016; 18:3227-3246. [PMID: 27632589 DOI: 10.1111/1462-2920.13525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Biological metal ions, including Co, Cu, Fe, Mg, Mn, Mo, Ni and Zn ions, are necessary for the survival and the growth of all microorganisms. Their biological functions are linked to their particular chemical properties: they play a role in structuring macromolecules and/or act as co-factors catalyzing diverse biochemical reactions. These metal ions are also essential for microbial pathogens during infection: they are involved in bacterial metabolism and various virulence factor functions. Therefore, during infection, bacteria need to acquire biological metal ions from the host such that there is competition for these ions between the bacterium and the host. Evidence is increasingly emerging of "nutritional immunity" against pathogens in the hosts; this includes strategies making access to metals difficult for infecting bacteria. It is clear that biological metals play key roles during infection and in the battle between the pathogens and the host. Here, we summarize current knowledge about the strategies used by Pseudomonas aeruginosa to access the various biological metals it requires. P. aeruginosa is a medically significant Gram-negative bacterial opportunistic pathogen that can cause severe chronic lung infections in cystic fibrosis patients and that is responsible for nosocomial infections worldwide.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France.
| | - Olivier Cunrath
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France
| |
Collapse
|
22
|
Tyrrell J, Callaghan M. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies. MICROBIOLOGY-SGM 2015; 162:191-205. [PMID: 26643057 DOI: 10.1099/mic.0.000220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy.
Collapse
Affiliation(s)
- Jean Tyrrell
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| |
Collapse
|
23
|
Mislin GLA, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 2014; 6:408-20. [PMID: 24481292 DOI: 10.1039/c3mt00359k] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates.
Collapse
Affiliation(s)
- Gaëtan L A Mislin
- UMR 7242, Université de Strasbourg-CNRS, ESBS, 300 Boulevard, Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | |
Collapse
|
24
|
Gicquel G, Bouffartigues E, Bains M, Oxaran V, Rosay T, Lesouhaitier O, Connil N, Bazire A, Maillot O, Bénard M, Cornelis P, Hancock REW, Dufour A, Feuilloley MGJ, Orange N, Déziel E, Chevalier S. The extra-cytoplasmic function sigma factor sigX modulates biofilm and virulence-related properties in Pseudomonas aeruginosa. PLoS One 2013; 8:e80407. [PMID: 24260387 PMCID: PMC3832394 DOI: 10.1371/journal.pone.0080407] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/02/2013] [Indexed: 11/23/2022] Open
Abstract
SigX, one of the 19 extra-cytoplasmic function sigma factors of P. aeruginosa, was only known to be involved in transcription of the gene encoding the major outer membrane protein OprF. We conducted a comparative transcriptomic study between the wildtype H103 strain and its sigX mutant PAOSX, which revealed a total of 307 differentially expressed genes that differed by more than 2 fold. Most dysregulated genes belonged to six functional classes, including the “chaperones and heat shock proteins”, “antibiotic resistance and susceptibility”, “energy metabolism”, “protein secretion/export apparatus”, and “secreted factors”, and “motility and attachment” classes. In this latter class, the large majority of the affected genes were down-regulated in the sigX mutant. In agreement with the array data, the sigX mutant was shown to demonstrate substantially reduced motility, attachment to biotic and abiotic surfaces, and biofilm formation. In addition, virulence towards the nematode Caenorhabditis elegans was reduced in the sigX mutant, suggesting that SigX is involved in virulence-related phenotypes.
Collapse
Affiliation(s)
- Gwendoline Gicquel
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Emeline Bouffartigues
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Manjeet Bains
- Centre for Microbal Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Virginie Oxaran
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Thibaut Rosay
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Olivier Lesouhaitier
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Nathalie Connil
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UEB), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Olivier Maillot
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), IRIB, Faculty of Sciences, University of Rouen, Mont-Saint-Aignan, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research group Microbiology, VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robert E. W. Hancock
- Centre for Microbal Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UEB), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Marc G. J. Feuilloley
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Nicole Orange
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Sylvie Chevalier
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
- * E-mail:
| |
Collapse
|
25
|
Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013; 3:75. [PMID: 24294593 PMCID: PMC3827675 DOI: 10.3389/fcimb.2013.00075] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review.
Collapse
Affiliation(s)
- Pierre Cornelis
- Research Group Microbiology, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
- Department Structural Biology, VIB, Vrije Universiteit BrusselBrussels, Belgium
| | - Jozef Dingemans
- Research Group Microbiology, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
- Department Structural Biology, VIB, Vrije Universiteit BrusselBrussels, Belgium
| |
Collapse
|