1
|
Fasano A, Guendon C, Jacq-Bailly A, Kpebe A, Wozniak J, Baffert C, Barrio MD, Fourmond V, Brugna M, Léger C. A Chimeric NiFe Hydrogenase Heterodimer to Assess the Role of the Electron Transfer Chain in Tuning the Enzyme's Catalytic Bias and Oxygen Tolerance. J Am Chem Soc 2023; 145:20021-20030. [PMID: 37657413 DOI: 10.1021/jacs.3c06895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The observation that some homologous enzymes have the same active site but very different catalytic properties demonstrates the importance of long-range effects in enzyme catalysis, but these effects are often difficult to rationalize. The NiFe hydrogenases 1 and 2 (Hyd 1 and Hyd 2) from E. coli both consist of a large catalytic subunit that embeds the same dinuclear active site and a small electron-transfer subunit with a chain of three FeS clusters. Hyd 1 is mostly active in H2 oxidation and resistant to inhibitors, whereas Hyd 2 also catalyzes H2 production and is strongly inhibited by O2 and CO. Based on structural and site-directed mutagenesis data, it is currently believed that the catalytic bias and tolerance to O2 of Hyd 1 are defined by the distal and proximal FeS clusters, respectively. To test these hypotheses, we produced and characterized a hybrid enzyme made of the catalytic subunit of Hyd 1 and the electron transfer subunit of Hyd 2. We conclude that catalytic bias and sensitivity to CO are set by the catalytic subunit rather than by the electron transfer chain. We confirm the importance of the proximal cluster in making the enzyme Hyd 1 resist long-term exposure to O2, but we show that other structural determinants, in both subunits, contribute to O2 tolerance. A similar strategy based on the design of chimeric heterodimers could be used in the future to elucidate various structure-function relationships in hydrogenases and other multimeric metalloenzymes and to engineer useful hydrogenases that combine the desirable properties of distinct, homologous enzymes.
Collapse
Affiliation(s)
- Andrea Fasano
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Chloé Guendon
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Aurore Jacq-Bailly
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Arlette Kpebe
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Jérémy Wozniak
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Carole Baffert
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Melisa Del Barrio
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Myriam Brugna
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281, Marseille, France
| |
Collapse
|
2
|
Shomar H, Bokinsky G. Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules 2021; 26:molecules26226930. [PMID: 34834021 PMCID: PMC8617995 DOI: 10.3390/molecules26226930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.
Collapse
Affiliation(s)
- Helena Shomar
- INSERM U722, Faculté de Médecine, Université de Paris, Site Xavier Bichat, 75018 Paris, France
- Correspondence: (H.S.); (G.B.)
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Correspondence: (H.S.); (G.B.)
| |
Collapse
|
3
|
Fan Q, Neubauer P, Lenz O, Gimpel M. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview. Int J Mol Sci 2020; 21:E5890. [PMID: 32824336 PMCID: PMC7460606 DOI: 10.3390/ijms21165890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
Hydrogenases are complex metalloenzymes, showing tremendous potential as H2-converting redox catalysts for application in light-driven H2 production, enzymatic fuel cells and H2-driven cofactor regeneration. They catalyze the reversible oxidation of hydrogen into protons and electrons. The apo-enzymes are not active unless they are modified by a complicated post-translational maturation process that is responsible for the assembly and incorporation of the complex metal center. The catalytic center is usually easily inactivated by oxidation, and the separation and purification of the active protein is challenging. The understanding of the catalytic mechanisms progresses slowly, since the purification of the enzymes from their native hosts is often difficult, and in some case impossible. Over the past decades, only a limited number of studies report the homologous or heterologous production of high yields of hydrogenase. In this review, we emphasize recent discoveries that have greatly improved our understanding of microbial hydrogenases. We compare various heterologous hydrogenase production systems as well as in vitro hydrogenase maturation systems and discuss their perspectives for enhanced biohydrogen production. Additionally, activities of hydrogenases isolated from either recombinant organisms or in vivo/in vitro maturation approaches were systematically compared, and future perspectives for this research area are discussed.
Collapse
Affiliation(s)
- Qin Fan
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Peter Neubauer
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Oliver Lenz
- Department of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Matthias Gimpel
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| |
Collapse
|
4
|
Budhraja R, Ding C, Walter P, Wagner S, Reemtsma T, Gary Sawers R, Adrian L. The impact of species, respiration type, growth phase and genetic inventory on absolute metal content of intact bacterial cells. Metallomics 2019; 11:925-935. [DOI: 10.1039/c9mt00009g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absolute metal ion content was determined from whole cells of different microbial species and changes were related to growth conditions and change of encoded genes.
Collapse
Affiliation(s)
- Rohit Budhraja
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
- Chair of Geobiotechnology
| | - Chang Ding
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
| | - Philipp Walter
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
| | - Stephan Wagner
- Helmholtz Centre for Environmental Research – UFZ
- Department of Analytical Chemistry
- Leipzig
- Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research – UFZ
- Department of Analytical Chemistry
- Leipzig
- Germany
| | - R. Gary Sawers
- Institute of Biology/Microbiology
- Martin-Luther Universität
- Halle
- Germany
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
- Chair of Geobiotechnology
| |
Collapse
|
5
|
Hartwig S, Thomas C, Krumova N, Quitzke V, Türkowsky D, Jehmlich N, Adrian L, Sawers RG. Heterologous complementation studies in Escherichia coli with the Hyp accessory protein machinery from Chloroflexi provide insight into [NiFe]-hydrogenase large subunit recognition by the HypC protein family. MICROBIOLOGY-SGM 2015; 161:2204-19. [PMID: 26364315 DOI: 10.1099/mic.0.000177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Six Hyp maturation proteins (HypABCDEF) are conserved in micro-organisms that synthesize [NiFe]-hydrogenases (Hyd). Of these, the HypC chaperones interact directly with the apo-form of the catalytically active large subunit of Hyd enzymes and are believed to transfer the Fe(CN)2CO moiety of the bimetallic cofactor from the Hyp machinery to this large subunit. In E. coli, HypC is specifically required for maturation of Hyd-3 while its paralogue, HybG, is specifically required for Hyd-2 maturation; either HypC or HybG can mature Hyd-1. In this study, we demonstrate that the products of the hypABFCDE operon from the deeply branching hydrogen-dependent and obligate organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 were capable of maturing and assembling active Hyd-1, Hyd-2 and Hyd-3 in an E. coli hyp mutant. Maturation of Hyd-1 was less efficient, presumably because HypB of E. coli was necessary to restore optimal enzyme activity. In a reciprocal maturation study, the highly O2-sensitive H2-uptake HupLS [NiFe]-hydrogenase from D. mccartyi CBDB1 was also synthesized in an active form in E. coli. Together, these findings indicated that HypC from D. mccartyi CBDB1 exhibits promiscuity in its large subunit interaction in E. coli. Based on these findings, we generated amino acid variants of E. coli HybG capable of partial recovery of Hyd-3-dependent H2 production in a hypC hybG double null mutant. Together, these findings identify amino acid regions in HypC accessory proteins that specify interaction with the large subunits of hydrogenase and demonstrate functional compatibility of Hyp accessory protein machineries.
Collapse
Affiliation(s)
- Stefanie Hartwig
- 1 Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Claudia Thomas
- 1 Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Nadya Krumova
- 1 Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Vivien Quitzke
- 1 Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Dominique Türkowsky
- 2 Department of Proteomics, Helmholz Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Nico Jehmlich
- 2 Department of Proteomics, Helmholz Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Lorenz Adrian
- 3 Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - R Gary Sawers
- 1 Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| |
Collapse
|
6
|
Abdullatypov AV, Tsygankov AA. Modeling three-dimensional structure of two closely related Ni-Fe hydrogenases. PHOTOSYNTHESIS RESEARCH 2015; 125:341-353. [PMID: 25572109 DOI: 10.1007/s11120-014-0071-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
The results of homology modeling of HydSL, a NiFe-hydrogenase from purple sulfur bacterium Thiocapsa roseopersicina BBS, and deep-water bacterium Alteromonas macleodii deep ecotype are presented in this work. It is shown that the models have larger confidence level than earlier published ones; full-size models of these enzymes are presented for the first time. The C-end fragment of small subunit of T. roseopersicina hydrogenase is shown to have random orientation in relation to the main protein globule. The obtained models of this enzyme have a large number of ion pairs, as well as thermostable HydSL hydrogenase from Allochromatium vinosum, in contrast to thermostable HydSL hydrogenase from Alt. macleodii and thermolabile HydAB hydrogenase from Desulfovibrio vulgaris. The possible determinant of oxygen stability of studied hydrogenases could be the lack of several intramolecular tunnels. Hydrophobic and electrostatic surfaces were mapped in order to find out possible pathways of coupling hydrogenase to electron-transferring chains, as well as methods for construction of artificial photobiohydrogen-producing systems.
Collapse
Affiliation(s)
- A V Abdullatypov
- Institute of Basic Biological Problems RAS, Institutskaya, 2, Pushchino, 142290, Moscow Region, Russia,
| | | |
Collapse
|
7
|
Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci 2015; 16:10537-61. [PMID: 26006225 PMCID: PMC4463661 DOI: 10.3390/ijms160510537] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria have garnered interest as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms can utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical processes. Our limited understanding of the cellular hydrogen production pathway is a primary setback in the potential scale-up of this process. In this regard, the present review discusses the recent insight around ferredoxin/flavodoxin as the likely electron donor to the bidirectional Hox hydrogenase instead of the generally accepted NAD(P)H. This may have far reaching implications in powering solar driven hydrogen production. However, it is evident that a successful hydrogen-producing candidate would likely integrate enzymatic traits from different species. Engineering the [NiFe] hydrogenases for optimal catalytic efficiency or expression of a high turnover [FeFe] hydrogenase in these photo-autotrophs may facilitate the development of strains to reach target levels of biohydrogen production in cyanobacteria. The fundamental advancements achieved in these fields are also summarized in this review.
Collapse
Affiliation(s)
- Namita Khanna
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| |
Collapse
|
8
|
Designed surface residue substitutions in [NiFe] hydrogenase that improve electron transfer characteristics. Int J Mol Sci 2015; 16:2020-33. [PMID: 25603181 PMCID: PMC4307346 DOI: 10.3390/ijms16012020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/12/2015] [Indexed: 01/11/2023] Open
Abstract
Photobiological hydrogen production is an attractive, carbon-neutral means to convert solar energy to hydrogen. We build on previous research improving the Alteromonas macleodii “Deep Ecotype” [NiFe] hydrogenase, and report progress towards creating an artificial electron transfer pathway to supply the hydrogenase with electrons necessary for hydrogen production. Ferredoxin is the first soluble electron transfer mediator to receive high-energy electrons from photosystem I, and bears an electron with sufficient potential to efficiently reduce protons. Thus, we engineered a hydrogenase-ferredoxin fusion that also contained several other modifications. In addition to the C-terminal ferredoxin fusion, we truncated the C-terminus of the hydrogenase small subunit, identified as the available terminus closer to the electron transfer region. We also neutralized an anionic patch surrounding the interface Fe-S cluster to improve transfer kinetics with the negatively charged ferredoxin. Initial screening showed the enzyme tolerated both truncation and charge neutralization on the small subunit ferredoxin-binding face. While the enzyme activity was relatively unchanged using the substrate methyl viologen, we observed a marked improvement from both the ferredoxin fusion and surface modification using only dithionite as an electron donor. Combining ferredoxin fusion and surface charge modification showed progressively improved activity in an in vitro assay with purified enzyme.
Collapse
|
9
|
A broad survey reveals substitution tolerance of residues ligating FeS clusters in [NiFe] hydrogenase. BMC BIOCHEMISTRY 2014; 15:10. [PMID: 24934472 PMCID: PMC4070099 DOI: 10.1186/1471-2091-15-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 01/31/2023]
Abstract
Background In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four amino acids (Asp, His, Asn, Gln) at each of the 12 ligating positions because these amino acids are alternative coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences. We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1” (H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted for Cys. Results Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit, indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme. Conclusions We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A. macleodii “deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be functional and also suggests a new limiting factor in the production of active enzyme.
Collapse
|
10
|
Ghosh D, Bisaillon A, Hallenbeck PC. Increasing the metabolic capacity of Escherichia coli for hydrogen production through heterologous expression of the Ralstonia eutropha SH operon. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:122. [PMID: 23977944 PMCID: PMC3765991 DOI: 10.1186/1754-6834-6-122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/21/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND Fermentative hydrogen production is an attractive means for the sustainable production of this future energy carrier but is hampered by low yields. One possible solution is to create, using metabolic engineering, strains which can bypass the normal metabolic limits to substrate conversion to hydrogen. Escherichia coli can degrade a variety of sugars to hydrogen but can only convert electrons available at the pyruvate node to hydrogen, and is unable to use the electrons available in NADH generated during glycolysis. RESULTS Here, the heterologous expression of the soluble [NiFe] hydrogenase from Ralstonia eutropha H16 (the SH hydrogenase) was used to demonstrate the introduction of a pathway capable of deriving substantial hydrogen from the NADH generated by fermentation. Successful expression was demonstrated by in vitro assay of enzyme activity. Moreover, expression of SH restored anaerobic growth on glucose to adhE strains, normally blocked for growth due to the inability to re-oxidize NADH. Measurement of in vivo hydrogen production showed that several metabolically engineered strains were capable of using the SH hydrogenase to derive 2 mol H2 per mol of glucose consumed, close to the theoretical maximum. CONCLUSION Previous introduction of heterologous [NiFe] hydrogenase in E. coli led to NAD(P)H dependent activity, but hydrogen production levels were very low. Here we have shown for the first time substantial in vivo hydrogen production by a heterologously expressed [NiFe] hydrogenase, the soluble NAD-dependent H2ase of R. eutropha (SH hydrogenase). This hydrogenase was able to couple metabolically generated NADH to hydrogen production, thus rescuing an alcohol dehydrogenase (adhE) mutant. This enlarges the range of metabolism available for hydrogen production, thus potentially opening the door to the creation of greatly improved hydrogen production. Strategies for further increasing yields should revolve around making additional NADH available.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Ariane Bisaillon
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Patrick C Hallenbeck
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
11
|
Schiffels J, Pinkenburg O, Schelden M, Aboulnaga EHAA, Baumann MEM, Selmer T. An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from Cupriavidus necator in Escherichia coli. PLoS One 2013; 8:e68812. [PMID: 23861944 PMCID: PMC3702609 DOI: 10.1371/journal.pone.0068812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
Expression of multiple heterologous genes in a dedicated host is a prerequisite for approaches in synthetic biology, spanning from the production of recombinant multiprotein complexes to the transfer of tailor-made metabolic pathways. Such attempts are often exacerbated, due in most cases to a lack of proper directional, robust and readily accessible genetic tools. Here, we introduce an innovative system for cloning and expression of multiple genes in Escherichia coli BL21 (DE3). Using the novel methodology, genes are equipped with individual promoters and terminators and subsequently assembled. The resulting multiple gene cassettes may either be placed in one vector or alternatively distributed among a set of compatible plasmids. We demonstrate the effectiveness of the developed tool by production and maturation of the NAD(+)reducing soluble [NiFe]-hydrogenase (SH) from Cupriavidus necator H16 (formerly Ralstonia eutropha H16) in E. coli BL21Star™ (DE3). The SH (encoded in hoxFUYHI) was successfully matured by co-expression of a dedicated set of auxiliary genes, comprising seven hyp genes (hypC1D1E1A2B2F2X) along with hoxW, which encodes a specific endopeptidase. Deletion of genes involved in SH maturation reduced maturation efficiency substantially. Further addition of hoxN1, encoding a high-affinity nickel permease from C. necator, considerably increased maturation efficiency in E. coli. Carefully balanced growth conditions enabled hydrogenase production at high cell-densities, scoring mg·(Liter culture)(-1) yields of purified functional SH. Specific activities of up to 7.2±1.15 U·mg(-1) were obtained in cell-free extracts, which is in the range of the highest activities ever determined in C. necator extracts. The recombinant enzyme was isolated in equal purity and stability as previously achieved with the native form, yielding ultrapure preparations with anaerobic specific activities of up to 230 U·mg(-1). Owing to the combinatorial power exhibited by the presented cloning platform, the system might represent an important step towards new routes in synthetic biology.
Collapse
Affiliation(s)
- Johannes Schiffels
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Juelich, Germany
| | - Olaf Pinkenburg
- Institute for Immunology, Biomedical Research Centre (BMFZ), Philipps University of Marburg, Marburg (Lahn), Germany
| | - Maximilian Schelden
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Juelich, Germany
| | | | - Marcus E. M. Baumann
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Juelich, Germany
| | - Thorsten Selmer
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Juelich, Germany
- * E-mail:
| |
Collapse
|
12
|
Yonemoto IT, Matteri CW, Nguyen TA, Smith HO, Weyman PD. Dual organism design cycle reveals small subunit substitutions that improve [NiFe] hydrogenase hydrogen evolution. J Biol Eng 2013; 7:17. [PMID: 23819621 PMCID: PMC3701524 DOI: 10.1186/1754-1611-7-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/26/2013] [Indexed: 01/21/2023] Open
Abstract
Background Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii “Deep ecotype” that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity. Results We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions. Conclusions Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement.
Collapse
Affiliation(s)
- Isaac T Yonemoto
- J, Craig Venter Institute, 10355 Science Center Dr, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
13
|
López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, Rodriguez-Valera F. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep 2012; 2:696. [PMID: 23019517 PMCID: PMC3458243 DOI: 10.1038/srep00696] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/12/2012] [Indexed: 12/17/2022] Open
Abstract
Alteromonas macleodii is a marine gammaproteobacterium with widespread distribution in temperate or tropical waters. We describe three genomes of isolates from surface waters around Europe (Atlantic, Mediterranean and Black Sea) and compare them with a previously described deep Mediterranean isolate (AltDE) that belongs to a widely divergent clade. The surface isolates are quite similar, the most divergent being the Black Sea (BS11) isolate. The genomes contain several genomic islands with different gene content. The recruitment of very similar genomic fragments from metagenomes in different locations indicates that the surface clade is globally abundant with little effect of geography, even the AltDE and the BS11 genomes recruiting from surface samples in open ocean locations. The finding of CRISPR protospacers of AltDE in a lysogenic phage in the Atlantic (English Channel) isolate illustrates a flow of genetic material among these clades and a remarkably wide distribution of this phage.
Collapse
Affiliation(s)
- Mario López-Pérez
- División de Microbiología, Universidad Miguel Hernández, San Juan 03550, Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Noskov VN, Karas BJ, Young L, Chuang RY, Gibson DG, Lin YC, Stam J, Yonemoto IT, Suzuki Y, Andrews-Pfannkoch C, Glass JI, Smith HO, Hutchison CA, Venter JC, Weyman PD. Assembly of large, high G+C bacterial DNA fragments in yeast. ACS Synth Biol 2012; 1:267-73. [PMID: 23651249 DOI: 10.1021/sb3000194] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ability to assemble large pieces of prokaryotic DNA by yeast recombination has great application in synthetic biology, but cloning large pieces of high G+C prokaryotic DNA in yeast can be challenging. Additional considerations in cloning large pieces of high G+C DNA in yeast may be related to toxic genes, to the size of the DNA, or to the absence of yeast origins of replication within the sequence. As an example of our ability to clone high G+C DNA in yeast, we chose to work with Synechococcus elongatus PCC 7942, which has an average G+C content of 55%. We determined that no regions of the chromosome are toxic to yeast and that S. elongatus DNA fragments over ~200 kb are not stably maintained. DNA constructs with a total size under 200 kb could be readily assembled, even with 62 kb of overlapping sequence between pieces. Addition of yeast origins of replication throughout allowed us to increase the total size of DNA that could be assembled to at least 454 kb. Thus, cloning strategies utilizing yeast recombination with large, high G+C prokaryotic sequences should include yeast origins of replication as a part of the design process.
Collapse
Affiliation(s)
- Vladimir N. Noskov
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Bogumil J. Karas
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Lei Young
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ray-Yuan Chuang
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Daniel G. Gibson
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Ying-Chi Lin
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Jason Stam
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Isaac T. Yonemoto
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Yo Suzuki
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Cynthia Andrews-Pfannkoch
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - John I. Glass
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Hamilton O. Smith
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Clyde A. Hutchison
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - J. Craig Venter
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Philip D. Weyman
- Department of Synthetic Biology
and Bioenergy, J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| |
Collapse
|
15
|
Gonzaga A, Martin-Cuadrado AB, López-Pérez M, Megumi Mizuno C, García-Heredia I, Kimes NE, Lopez-García P, Moreira D, Ussery D, Zaballos M, Ghai R, Rodriguez-Valera F. Polyclonality of concurrent natural populations of Alteromonas macleodii. Genome Biol Evol 2012; 4:1360-74. [PMID: 23212172 PMCID: PMC3542563 DOI: 10.1093/gbe/evs112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 01/28/2023] Open
Abstract
We have analyzed a natural population of the marine bacterium, Alteromonas macleodii, from a single sample of seawater to evaluate the genomic diversity present. We performed full genome sequencing of four isolates and 161 metagenomic fosmid clones, all of which were assigned to A. macleodii by sequence similarity. Out of the four strain genomes, A. macleodii deep ecotype (AltDE1) represented a different genome, whereas AltDE2 and AltDE3 were identical to the previously described AltDE. Although the core genome (~80%) had an average nucleotide identity of 98.51%, both AltDE and AltDE1 contained flexible genomic islands (fGIs), that is, genomic islands present in both genomes in the same genomic context but having different gene content. Some of the fGIs encode cell surface receptors known to be phage recognition targets, such as the O-chain of the lipopolysaccharide, whereas others have genes involved in physiological traits (e.g., nutrient transport, degradation, and metal resistance) denoting microniche specialization. The presence in metagenomic fosmids of genomic fragments differing from the sequenced strain genomes, together with the presence of new fGIs, indicates that there are at least two more A. macleodii clones present. The availability of three or more sequences overlapping the same genomic region also allowed us to estimate the frequency and distribution of recombination events among these different clones, indicating that these clustered near the genomic islands. The results indicate that this natural A. macleodii population has multiple clones with a potential for different phage susceptibility and exploitation of resources, within a seemingly unstructured habitat.
Collapse
Affiliation(s)
- Aitor Gonzaga
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Carolina Megumi Mizuno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Inmaculada García-Heredia
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Nikole E. Kimes
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | | | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| | - David Ussery
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
- Present address: Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Mila Zaballos
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | | |
Collapse
|
16
|
Weyman PD, Smith HO, Xu Q. Genetic analysis of the Alteromonas macleodii [NiFe]-hydrogenase. FEMS Microbiol Lett 2011; 322:180-7. [PMID: 21718346 DOI: 10.1111/j.1574-6968.2011.02348.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alteromonas macleodii Deep ecotype is a marine, heterotrophic, gammaproteobacterium isolated in the Mediterranean Sea between depths of 1000 and 3500 m. The sequenced strain was previously reported to contain a [NiFe] hydrogenase. We verified the presence of this hydrogenase in other strains of A. macleodii Deep ecotype that were previously isolated from several bathypelagic microenvironments. We developed a system for the genetic manipulation of A. macleodii Deep ecotype using conjugation and used this system to create mutant strains that lack the [NiFe] hydrogenase structural genes (hynSL). The mutants did not possess hydrogenase activity, and complementation of the mutant strain with the hynSL genes successfully restored hydrogenase activity. Both the mutant and the wild-type strains grew at the same rate in a variety of media and under different environmental conditions, indicating little effect of the hydrogenase mutation under the conditions tested.
Collapse
Affiliation(s)
- Philip D Weyman
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD, USA
| | | | | |
Collapse
|
17
|
Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Synechococcus elongatus. PLoS One 2011; 6:e20126. [PMID: 21637846 PMCID: PMC3102683 DOI: 10.1371/journal.pone.0020126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/13/2011] [Indexed: 12/04/2022] Open
Abstract
Oxygen-tolerant [NiFe] hydrogenases may be used in future photobiological hydrogen production systems once the enzymes can be heterologously expressed in host organisms of interest. To achieve heterologous expression of [NiFe] hydrogenases in cyanobacteria, the two hydrogenase structural genes from Alteromonas macleodii Deep ecotype (AltDE), hynS and hynL, along with the surrounding genes in the gene operon of HynSL were cloned in a vector with an IPTG-inducible promoter and introduced into Synechococcus elongatus PCC7942. The hydrogenase protein was expressed at the correct size upon induction with IPTG. The heterologously-expressed HynSL hydrogenase was active when tested by in vitro H2 evolution assay, indicating the correct assembly of the catalytic center in the cyanobacterial host. Using a similar expression system, the hydrogenase structural genes from Thiocapsa roseopersicina (hynSL) and the entire set of known accessory genes were transferred to S. elongatus. A protein of the correct size was expressed but had no activity. However, when the 11 accessory genes from AltDE were co-expressed with hynSL, the T. roseopersicina hydrogenase was found to be active by in vitro assay. This is the first report of active, heterologously-expressed [NiFe] hydrogenases in cyanobacteria.
Collapse
|