1
|
Liu J, Liu D, Sun T, Fan TP, Cai Y. Construction and characterization of a promoter library with varying strengths to enhance acetoin production from xylose in Serratia marcescens. Biotechnol Appl Biochem 2024; 71:553-564. [PMID: 38225826 DOI: 10.1002/bab.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Serratia marcescens is utilized as a significant enterobacteria in the production of various high-value secondary metabolites. Acetoin serves as a crucial foundational compound of development and finds application in a broad range of fields. Furthermore, S. marcescens HBQA-7 is capable of utilizing xylose as its exclusive carbon source for acetoin production. The objective of this study was to utilize a constitutive promoter screening strategy to enhance both xylose utilization and acetoin production in S. marcescens HBQA-7. By utilizing RNA-seq, we identified the endogenous constitutive promoter P6 that is the most robust, which facilitated the overexpression of the sugar transporter protein GlfL445I, α-acetyl lactate synthase, and α-acetyl lactate decarboxylase, respectively. The resultant recombinant strains exhibited enhanced xylose utilization rates and acetoin yields. Subsequently, a recombinant plasmid, denoted as pBBR1MCS-P6-glfL445IalsSalsD, was constructed, simultaneously expressing the aforementioned three genes. The resulting recombinant strain, designated as S3, demonstrated a 1.89-fold boost in xylose consumption rate compared with the original strain during shake flask fermentation. resulting in the accumulation of 7.14 g/L acetoin in the final fermentation medium. Subsequently, in a 5 L fermenter setup, the acetoin yield reached 48.75 g/L, corresponding to a xylose-to-acetoin conversion yield of 0.375 g/g.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingting Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Wen A, Xie C, Mazhar M, Wang C, Zeng H, Qin L, Zhu Y. Tetramethylpyrazine from adlay ( Coix lacryma-jobi) biotransformation by Bacillus subtilis and its quality characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4092-4102. [PMID: 33071330 PMCID: PMC7520485 DOI: 10.1007/s13197-020-04443-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/24/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
Adlay, as a traditional Chinese medicine, has been used in nourishing foods, which are rich in a variety of nutrients (special biological compounds). The study was designed to optimize the fermentation parameters of dehulled, polished and broken adlay fermented by Bacillus subtilis BJ3-2 with regard to tetramethylpyrazine (TMP) yield and fibrinolytic enzyme activity. Then the proximate and bioactive components of B. subtilis-fermented adlay were evaluated. Box-Behnken design results showed that the TMP yield was 6.93 mg/g DW (dried weight) of B. subtilis-fermented polished adlay, which was about 136 times higher than that of B. subtilis-fermented soybean (BSB). The fibrinolytic enzyme activity was 2236.17 U/g in B. subtilis-fermented dehulled adlay, and slightly less than in BSB. B. subtilis-fermented adlay contained higher fat, free amino acids and fatty acids contents but lower protein and starch contents than raw adlay. Except for coixol and coixan, the levels of γ-aminobutyric acid, triterpenes, phenolics, flavonoids and coixenolide in B. subtilis-fermented adlay increased by 14.05, 2.02, 2.31 and 1.36 times, respectively. The contents of phenolic acids including caffeic, gallic, catechinic and chlonogenic acids in the free phenolic extracts significantly increased (p < 0.05). The results demonstrated that the biotransformation of high-yield TMP, fibrinolytic enzyme and other bioactive components of B. subtilis-fermented adlay products was realized. B. subtilis-fermented adlay could be a promising value-added food, and that is more suitable for human consumption.
Collapse
Affiliation(s)
- Anyan Wen
- College of Life Science, Guizhou University, Guiyang, 550025 China
| | - Chunzhi Xie
- College of Life Science, Guizhou University, Guiyang, 550025 China
| | - Muhammad Mazhar
- College of Life Science, Guizhou University, Guiyang, 550025 China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025 China
| | - Haiying Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025 China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025 China
- Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou Province, Guiyang, 550025 China
- National and Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guiyang, China
| | - Yi Zhu
- Plant Protection and Plant Quarantine Station of Guizhou Province, Guiyang, 550001 China
| |
Collapse
|
3
|
D'Angelo M, Martino GP, Blancato VS, Espariz M, Hartke A, Sauvageot N, Benachour A, Alarcón SH, Magni C. Diversity of volatile organic compound production from leucine and citrate in Enterococcus faecium. Appl Microbiol Biotechnol 2019; 104:1175-1186. [PMID: 31828406 DOI: 10.1007/s00253-019-10277-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/23/2019] [Indexed: 01/22/2023]
Abstract
Enterococcus faecium is frequently isolated from fermented food; in particular, they positively contribute to the aroma compound generation in traditional cheese. Citrate fermentation is a desirable property in these bacteria, but this feature is not uniformly distributed among E. faecium strains. In the present study, three selected E. faecium strains, IQ110 (cit-), GM70 (cit+ type I), and Com12 (cit+ type II), were analyzed in their production of aroma compounds in milk. End products and volatile organic compounds (VOCs) were determined by solid-phase micro-extraction combined with gas chromatography mass spectrometry (SPME-GC-MS). Principal component analysis (PCA) of aroma compound profiles revealed a different VOC composition for the three strains. In addition, resting cell experiments of E. faecium performed in the presence of leucine, citrate, or pyruvate as aroma compound precursors allowed us to determine metabolic differences between the studied strains. GM70 (cit+ type I) showed an active citrate metabolism, with increased levels of diacetyl and acetoin generation relative to Com12 or to citrate defective IQ110 strains. In addition, in the experimental conditions tested, a defective citrate-fermenting phenotype for the Com12 strain was found, while its leucine degradation and pyruvate metabolism were conserved. In conclusion, rational selection of E. faecium strains could be performed based on genotypic and phenotypic analyses. This would result in a performing strain, such as GM70, that could positively contribute to flavor, with typical notes of diacetyl, acetoin, 3-methyl butanal, and 3-methyl butanol in an adjuvant culture.
Collapse
Affiliation(s)
- Matilde D'Angelo
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina
- Instituto de Química de Rosario (IQUIR), FBioyF, UNR-CONICET, Suipacha 570, Rosario, Argentina
| | - Gabriela P Martino
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina
| | - Victor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina
- U2RM Stress/Virulence, Normandie Univ, UNICAEN, 14000, Caen, France
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina
- U2RM Stress/Virulence, Normandie Univ, UNICAEN, 14000, Caen, France
| | - Axel Hartke
- U2RM Stress/Virulence, Normandie Univ, UNICAEN, 14000, Caen, France
| | | | | | - Sergio H Alarcón
- Instituto de Química de Rosario (IQUIR), FBioyF, UNR-CONICET, Suipacha 570, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina.
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina.
- U2RM Stress/Virulence, Normandie Univ, UNICAEN, 14000, Caen, France.
| |
Collapse
|
4
|
He Y, Li Z, Zhang H, Hu S, Wang Q, Li J. Genome-wide identification of Chinese shrimp (Fenneropenaeus chinensis) microRNA responsive to low pH stress by deep sequencing. Cell Stress Chaperones 2019; 24:689-695. [PMID: 31209725 PMCID: PMC6629735 DOI: 10.1007/s12192-019-00989-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 10/26/2022] Open
Abstract
pH has a great impact on the distribution, growth, behavior, and physiology in many aquatic animals. Here, we analyzed miRNA expression profiles of Chinese shrimp (Fenneropenaeus chinensis) from control pH (8.2) and low pH (6.5)-treated shrimp. Expression analysis identified 6 known miRNAs and 23 novel miRNAs with significantly different expression between control pH 8.2 and low pH 6.5; the predicted target genes of differentially expressed miRNAs were significantly enriched in organic acid metabolic process, oxidoreductase activity, coenzyme binding, cofactor binding, and collagen trimer. Moreover, target genes were significantly enriched in several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including citrate cycle, pyruvate metabolism, cytokine-cytokine receptor interaction, tight junction, carbon metabolism, etc. Our survey expanded the number of known shrimp miRNAs and provided comprehensive information about miRNA response to low pH stress.
Collapse
Affiliation(s)
- Yuying He
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Zhaoxia Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Haien Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shuo Hu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Qingyin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
5
|
Implications of the expression of Enterococcus faecalis citrate fermentation genes during infection. PLoS One 2018; 13:e0205787. [PMID: 30335810 PMCID: PMC6193673 DOI: 10.1371/journal.pone.0205787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/02/2018] [Indexed: 12/05/2022] Open
Abstract
Citrate is an ubiquitous compound in nature. However, citrate fermentation is present only in a few pathogenic or nonpathogenic microorganisms. The citrate fermentation pathway includes a citrate transporter, a citrate lyase complex, an oxaloacetate decarboxylase and a regulatory system. Enterococcus faecalis is commonly present in the gastro-intestinal microbiota of warm-blooded animals and insect guts. These bacteria can also cause infection and disease in immunocompromised individuals. In the present study, we performed whole genome analysis in Enterococcus strains finding that the complete citrate pathway is present in all of the E. faecalis strains isolated from such diverse habitats as animals, hospitals, water, milk, plants, insects, cheese, etc. These results indicate the importance of this metabolic preservation for persistence and growth of E. faecalis in different niches. We also analyzed the role of citrate metabolism in the E. faecalis pathogenicity. We found that an E. faecalis citrate fermentation-deficient strain was less pathogenic for Galleria mellonella larvae than the wild type. Furthermore, strains with deletions in the oxaloacetate decarboxylase subunits or in the α-acetolactate synthase resulted also less virulent than the wild type strain. We also observed that citrate promoters are induced in blood, urine and also in the hemolymph of G. mellonella. In addition, we showed that citrate fermentation allows E. faecalis to grow better in blood, urine and G. mellonella. The results presented here clearly indicate that citrate fermentation plays an important role in E. faecalis opportunistic pathogenic behavior.
Collapse
|
6
|
Lo R, Ho VTT, Bansal N, Turner MS. The genetic basis underlying variation in production of the flavour compound diacetyl by Lactobacillus rhamnosus strains in milk. Int J Food Microbiol 2018; 265:30-39. [DOI: 10.1016/j.ijfoodmicro.2017.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/01/2017] [Accepted: 10/28/2017] [Indexed: 01/16/2023]
|
7
|
Kajfasz JK, Ganguly T, Hardin EL, Abranches J, Lemos JA. Transcriptome responses of Streptococcus mutans to peroxide stress: identification of novel antioxidant pathways regulated by Spx. Sci Rep 2017; 7:16018. [PMID: 29167560 PMCID: PMC5700188 DOI: 10.1038/s41598-017-16367-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023] Open
Abstract
The oxidative stress regulator Spx is ubiquitously found among Gram-positive bacteria. Previously, we reported identification of two Spx proteins in Streptococcus mutans - SpxA1 was the primary activator of oxidative stress genes whereas SpxA2 served a backup role. Here, we used RNA sequencing to uncover the scope of the H2O2 (peroxide)-stress regulon and to further explore the significance of Spx regulation in S. mutans. The transcriptome data confirmed the relationship between Spx and genes typically associated with oxidative stress, but also identified novel genes and metabolic pathways controlled by Spx during peroxide stress. While individual inactivation of newly identified peroxide stress genes had modest or no obvious consequences to bacterial survival, a phenotype enhancement screen using the ∆spxA1 strain as background for creation of double mutants revealed that four of the five genes inactivated were required for stress survival. Physiological and biochemical assays validated, at least in part, the transcriptome data indicating that SpxA1 coordinates transcriptional changes during peroxide stress that modify global metabolism and facilitate production of antioxidants. Collectively, our findings unraveled the scope of the peroxide stress regulon and expand the repertoire of oxidative stress genes in S. mutans, shedding new light on the role of Spx regulation.
Collapse
Affiliation(s)
- Jessica K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA
| | - Tridib Ganguly
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA
| | - Emily L Hardin
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32608, USA.
| |
Collapse
|
8
|
Zuljan FA, Mortera P, Alarcón SH, Blancato VS, Espariz M, Magni C. Lactic acid bacteria decarboxylation reactions in cheese. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Rossi F, Zotta T, Iacumin L, Reale A. Theoretical insight into the heat shock response (HSR) regulation in Lactobacillus casei and L. rhamnosus. J Theor Biol 2016; 402:21-37. [DOI: 10.1016/j.jtbi.2016.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023]
|
10
|
Chaudhari SS, Thomas VC, Sadykov MR, Bose JL, Ahn DJ, Zimmerman MC, Bayles KW. The LysR-type transcriptional regulator, CidR, regulates stationary phase cell death in Staphylococcus aureus. Mol Microbiol 2016; 101:942-53. [PMID: 27253847 DOI: 10.1111/mmi.13433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 11/29/2022]
Abstract
The Staphylococcus aureus LysR-type transcriptional regulator, CidR, activates the expression of two operons including cidABC and alsSD that display pro- and anti-death functions, respectively. Although several investigations have focused on the functions of different genes associated with these operons, the collective role of the CidR regulon in staphylococcal physiology is not clearly understood. Here we reveal that the primary role of this regulon is to limit acetate-dependent potentiation of cell death in staphylococcal populations. Although both CidB and CidC promote acetate generation and cell death, the CidR-dependent co-activation of CidA and AlsSD counters the effects of CidBC by redirecting intracellular carbon flux towards acetoin formation. From a mechanistic standpoint, we demonstrate that CidB is necessary for full activation of CidC, whereas CidA limits the abundance of CidC in the cell.
Collapse
Affiliation(s)
- Sujata S Chaudhari
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA
| | - Vinai C Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA
| | - Marat R Sadykov
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, MSN 3029, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Daniel J Ahn
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA
| | - Matthew C Zimmerman
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kenneth W Bayles
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA.
| |
Collapse
|
11
|
Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster. Int J Food Microbiol 2016; 218:27-37. [DOI: 10.1016/j.ijfoodmicro.2015.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/24/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023]
|
12
|
Hoogenkamp MA, Crielaard W, Krom BP. Uses and limitations of green fluorescent protein as a viability marker in Enterococcus faecalis: An observational investigation. J Microbiol Methods 2015; 115:57-63. [PMID: 26015063 DOI: 10.1016/j.mimet.2015.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 01/12/2023]
Abstract
Enterococci are capable of producing biofilms that are notoriously difficult to treat and remove, for instance in root canal infections. The tenacious nature of these organisms makes screening of known and novel antimicrobial compounds necessary. While traditionally growth and fluorescence-based screening methods have proven useful, these methods have their limitations when applied to enterococci (e.g. time consuming, no kinetic data, diffusion properties of the fluorescent dyes). The aim of this study was to develop and validate a GFP-based high-throughput screening system to assess the bactericidal activity of a broad range of antimicrobial agents on Enterococcus faecalis and its biofilms. The effect of antimicrobial compounds on cell viability and GFP fluorescence of enterococcal planktonic and biofilm cells was determined using colony forming unit counts, fluorescence spectrophotometry and real-time imaging devices. There was a linear correlation between cell viability and GFP fluorescence. The intensity of the GFP signal was effected by the extracellular pH. For a range of antimicrobials however, there was no correlation between these two parameters. In contrast, for oxidizing agents such as sodium hypochlorite, the antimicrobial of choice for root canal disinfection, there was a correlation between loss of fluorescence and loss of viability. To conclude, the use of a GFP-based system to monitor the antimicrobial activity of compounds on E. faecalis is possible despite significant limitations. This approach is useful for analysis of susceptibility to oxidizing agents. Using real-time measuring devices to follow GFP fluorescence it should be possible to investigate the mode of action and rate of diffusion of oxidizing agents in E. faecalis biofilm.
Collapse
Affiliation(s)
- Michel A Hoogenkamp
- Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Department of Preventive Dentistry, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | - Wim Crielaard
- Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Department of Preventive Dentistry, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Department of Preventive Dentistry, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zhang X, Rao Z, Li J, Zhou J, Yang T, Xu M, Bao T, Zhao X. Improving the acidic stability of Staphylococcus aureus α-acetolactate decarboxylase in Bacillus subtilis by changing basic residues to acidic residues. Amino Acids 2014; 47:707-17. [PMID: 25543264 DOI: 10.1007/s00726-014-1898-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
The α-acetolactate decarboxylase (ALDC) can reduce diacetyl fleetly to promote mature beer. A safe strain Bacillus subtilis WB600 for high-yield production of ALDC was constructed with the ALDC gene saald from Staphylococcus aureus L3-15. SDS-PAGE analysis revealed that S. aureus α-acetolactate decarboxylase (SaALDC) was successfully expressed in recombinant B. siutilis strain. The enzyme SaALDC was purified using Ni-affinity chromatography and showed a maximum activity at 45 °C and pH 6.0. The values of K m and V max were 17.7 μM and 2.06 mM min(-1), respectively. Due to the unstable property of SaALDC at low pH conditions that needed in brewing process, site-directed mutagenesis was proposed for improving the acidic stability of SaALDC. Homology comparative modeling analysis showed that the mutation (K52D) gave rise to the negative-electrostatic potential on the surface of protein while the numbers of hydrogen bonds between the mutation site (N43D) and the around residues increased. Taken together the effect of mutation N43D-K52D, recombinant SaALDCN43D-K52D showed dramatically improved acidic stability with prolonged half-life of 3.5 h (compared to the WT of 1.5 h) at pH 4.0. In a 5-L fermenter, the recombinant B. subtilis strain that could over-express SaALDCN43D-K52D exhibited a high yield of 135.8 U mL(-1) of SaALDC activity, about 320 times higher comparing to 0.42 U mL(-1) of S. aureus L3-15. This work proposed a strategy for improving the acidic stability of SaALDC in the B. subtilis host.
Collapse
Affiliation(s)
- Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zuljan FA, Repizo GD, Alarcon SH, Magni C. α-Acetolactate synthase of Lactococcus lactis contributes to pH homeostasis in acid stress conditions. Int J Food Microbiol 2014; 188:99-107. [DOI: 10.1016/j.ijfoodmicro.2014.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/03/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
15
|
Lee SC, Jung IP, Baig IA, Chien PN, La IJ, Yoon MY. Mutational analysis of critical residues of FAD-independent catabolic acetolactate synthase from Enterococcus faecalis V583. Int J Biol Macromol 2014; 72:104-9. [PMID: 25128823 DOI: 10.1016/j.ijbiomac.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Catabolic acetolactate synthase (cALS) from Enterococcus faecalis is a FAD-independent enzyme, which catalyzes the condensation of two molecules of pyruvate to produce acetolactate. Mutational and kinetic analyses of variants suggested the importance of H111, Q112, and Q411 residues for catalysis in cALS. The wild-type and variants were expressed as equally soluble proteins and co-migrated to a size of 60 kDa on SDS-PAGE. Importantly, H111 in cALS, which is widely present as phenylalanine in many other ThDP-dependent enzymes, plays a crucial role in substrate binding. Interestingly, the H111 variants, H111R and H111F, demonstrated altered specific activity of H111 variants with 17- and 26-fold increases in Km, respectively, compared to wild-type cALS. Furthermore, Q112 variants, Q112E, Q112N, and Q112V, exhibited significantly lower specific activity with 70-, 15-, and 10-fold higher Ks for ThDP, respectively. In the case of Q411, the variant Q411E showed a 10-fold rise in Km and a 20-fold increase in Ks for ThDP. Further, the molecular docking results indicated that the binding mode of ThDP was slightly affected in the variants of cALS. Based on these results, we suggest that H111 plays a role in substrate binding, and further suggest that Q112 and Q411 might be involved in ThDP binding of cALS.
Collapse
Affiliation(s)
- Sang-Choon Lee
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - In-Pil Jung
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Irshad Ahmed Baig
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Pham Ngoc Chien
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Im-Joung La
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Moon-Young Yoon
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
16
|
Thomas VC, Sadykov MR, Chaudhari SS, Jones J, Endres JL, Widhelm TJ, Ahn JS, Jawa RS, Zimmerman MC, Bayles KW. A central role for carbon-overflow pathways in the modulation of bacterial cell death. PLoS Pathog 2014; 10:e1004205. [PMID: 24945831 PMCID: PMC4063974 DOI: 10.1371/journal.ppat.1004205] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/08/2014] [Indexed: 12/17/2022] Open
Abstract
Similar to developmental programs in eukaryotes, the death of a subpopulation of cells is thought to benefit bacterial biofilm development. However mechanisms that mediate a tight control over cell death are not clearly understood at the population level. Here we reveal that CidR dependent pyruvate oxidase (CidC) and α-acetolactate synthase/decarboxylase (AlsSD) overflow metabolic pathways, which are active during staphylococcal biofilm development, modulate cell death to achieve optimal biofilm biomass. Whereas acetate derived from CidC activity potentiates cell death in cells by a mechanism dependent on intracellular acidification and respiratory inhibition, AlsSD activity effectively counters CidC action by diverting carbon flux towards neutral rather than acidic byproducts and consuming intracellular protons in the process. Furthermore, the physiological features that accompany metabolic activation of cell death bears remarkable similarities to hallmarks of eukaryotic programmed cell death, including the generation of reactive oxygen species and DNA damage. Finally, we demonstrate that the metabolic modulation of cell death not only affects biofilm development but also biofilm-dependent disease outcomes. Given the ubiquity of such carbon overflow pathways in diverse bacterial species, we propose that the metabolic control of cell death may be a fundamental feature of prokaryotic development. Many bacterial species including the pathogen Staphylococcus aureus are capable of adhering to surfaces and forming complex communities called biofilms. This mode of growth can be particularly challenging from an infection control standpoint, as they are often refractory to antibiotics and host immune system. Although developmental processes underlying biofilm formation are not entirely clear, recent evidence suggests that cell death of a subpopulation is crucial for its maturation. In this study we provide insight regarding the metabolic pathways that control cell death and demonstrate that acetate, a by-product of glucose catabolism, potentiates a form of cell death that exhibits physiological and biochemical hallmarks of apoptosis in eukaryotic organisms. Finally, we demonstrate that altering the ability of metabolic pathways that regulate acetate mediated cell death in S. aureus affects the outcome of biofilm-related diseases, such as infective endocarditis.
Collapse
Affiliation(s)
- Vinai Chittezham Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Marat R. Sadykov
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sujata S. Chaudhari
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joselyn Jones
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jennifer L. Endres
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Todd J. Widhelm
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jong-Sam Ahn
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Randeep S. Jawa
- Department of Surgery, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Matthew C. Zimmerman
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kenneth W. Bayles
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
17
|
2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge. Int J Food Microbiol 2014; 175:36-44. [DOI: 10.1016/j.ijfoodmicro.2014.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 01/10/2023]
|
18
|
Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. mBio 2013; 4:e00646-13. [PMID: 24065631 PMCID: PMC3781836 DOI: 10.1128/mbio.00646-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The stringent response (SR), mediated by the alarmone (p)ppGpp, is a conserved bacterial adaptation system controlling broad metabolic alterations necessary for survival under adverse conditions. In Enterococcus faecalis, production of (p)ppGpp is controlled by the bifunctional protein RSH (for "Rel SpoT homologue"; also known as RelA) and by the monofunctional synthetase RelQ. Previous characterization of E. faecalis strains lacking rsh, relQ, or both revealed that RSH is responsible for activation of the SR and that alterations in (p)ppGpp production negatively impact bacterial stress survival and virulence. Despite its well-characterized role as the effector of the SR, the significance of (p)ppGpp during balanced growth remains poorly understood. Microarrays of E. faecalis strains producing different basal amounts of (p)ppGpp identified several genes and pathways regulated by modest changes in (p)ppGpp. Notably, expression of numerous genes involved in energy generation were induced in the rsh relQ [(p)ppGpp(0)] strain, suggesting that a lack of basal (p)ppGpp places the cell in a "transcriptionally relaxed" state. Alterations in the fermentation profile and increased production of H2O2 in the (p)ppGpp(0) strain substantiate the observed transcriptional changes. We confirm that, similar to what is seen in Bacillus subtilis, (p)ppGpp directly inhibits the activity of enzymes involved in GTP biosynthesis, and complete loss of (p)ppGpp leads to dysregulation of GTP homeostasis. Finally, we show that the association of (p)ppGpp with antibiotic survival does not relate to the SR but rather relates to basal (p)ppGpp pools. Collectively, this study highlights the critical but still underappreciated role of basal (p)ppGpp pools under balanced growth conditions. IMPORTANCE Drug-resistant bacterial infections continue to pose a significant public health threat by limiting therapeutic options available to care providers. The stringent response (SR), mediated by the accumulation of two modified guanine nucleotides collectively known as (p)ppGpp, is a highly conserved stress response that broadly remodels bacterial physiology to a survival state. Given the strong correlation of the SR with the ability of bacteria to survive antibiotic treatment and the direct association of (p)ppGpp production with bacterial infectivity, understanding how bacteria produce and utilize (p)ppGpp may reveal potential targets for the development of new antimicrobial therapies. Using the multidrug-resistant pathogen Enterococcus faecalis as a model, we show that small alterations to (p)ppGpp levels, well below concentrations needed to trigger the SR, severely affected bacterial metabolism and antibiotic survival. Our findings highlight the often-underappreciated contribution of basal (p)ppGpp levels to metabolic balance and stress tolerance in bacteria.
Collapse
|
19
|
Characterization of recombinant FAD-independent catabolic acetolactate synthase from Enterococcus faecalis V583. Enzyme Microb Technol 2012. [PMID: 23199739 DOI: 10.1016/j.enzmictec.2012.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The catabolic acetolactate synthase (cALS) of Enterococcus faecalis V583 was cloned, expressed in Escherichia coli, and purified to homogeneity. The purified protein had a molecular weight of 60 kDa. The cALS of E. faecalis is highly homologous with other cALSs, while sharing low homology with its anabolic counterparts. The cALS of E. faecalis exhibits optimum activity at a temperature of 37°C and pH 6.8. Based on the enzyme characterization, the apparent K(m) for pyruvate was calculated to be 1.37 mM, while the K(c) for thiamin diphosphate (ThDP) and Mg(2+) were found to be 0.031 μM and 1.27 mM, respectively. Negligible absorbance at 450 nm and lack of activity enhancement upon addition of flavin adenine dinucleotide (FAD) to the assay buffer suggest that the cALS of E. faecalis is not FAD-dependent. The enzyme showed extreme stability against the organic solvent dimethyl sulfoxide (DMSO), whereas the activity decreased to less than 50% in the presence of acetone and ethanol.
Collapse
|