1
|
Kutraite I, Augustiniene E, Malys N. Hydroxybenzoic acids: Microbial metabolism, pathway engineering and products. Biotechnol Adv 2025; 81:108571. [PMID: 40154763 DOI: 10.1016/j.biotechadv.2025.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Hydroxybenzoic acids (HBAs) are plant secondary metabolites exhibiting antioxidant, antiviral, anticancer and antibacterial activities. A high and constantly increasing demand for these compounds underlines the need for novel and efficient production methods, as commonly applied plant extraction and chemical synthesis approaches are susceptible to low yields and are environmentally hazardous. Switching to biotechnology and replacing petroleum-based chemicals has potential to improve eco-efficiency in sustainable bioeconomy. With the increased focus on the production of materials using renewable resources and bio-based feedstocks, microbial fermentation and engineering drives the development and optimization of sustainable bioproduction. This systematic review summarizes current knowledge of microbial HBAs metabolism and biosynthesis. Here, the existing challenges are highlighted and the potential strategies for improved microbial production of HBAs are identified. Key aspects of HBAs metabolism and complexity of the factors related to bacterial strain selection, titer, and bioprocess strategy are examined. The opportunities of HBAs bioproduction using engineered microbial cell factories are discussed in detail and insights for synthesis improvement are presented.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Ernesta Augustiniene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
2
|
Kazaz S, Tripathi J, Tian Y, Turumtay H, Chin D, Pamukçu İ, Nimavat M, Turumtay EA, Baidoo EEK, Scown CD, Eudes A. In planta production of the nylon precursor beta-ketoadipate. J Biotechnol 2025; 404:102-111. [PMID: 40228630 DOI: 10.1016/j.jbiotec.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Beta-ketoadipate (βKA) is an intermediate of the βKA pathway involved in the degradation of aromatic compounds in several bacteria and fungi. Beta-ketoadipate also represents a promising chemical for the manufacturing of performance-advantaged nylons. We established a strategy for the in planta synthesis of βKA via manipulation of the shikimate pathway and the expression of bacterial enzymes from the βKA pathway. Using Nicotiana benthamiana as a transient expression system, we demonstrated the efficient conversion of protocatechuate (PCA) to βKA when plastid-targeted bacterial-derived PCA 3,4-dioxygenase (PcaHG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaB) were co-expressed with 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB). This metabolic pathway was reconstituted in Arabidopsis by introducing a construct (pAtβKA) with stacked pcaG, pcaH, and pcaB genes into a PCA-overproducing genetic background that expresses AroG and QsuB (referred as QsuB-2). The resulting QsuB-2 x pAtβKA stable lines displayed βKA titers as high as 0.25 % on a dry weight basis in stems, along with a drastic reduction in lignin content and improvement of biomass saccharification efficiency compared to wild-type controls, and without any significant reduction in biomass yields. Using biomass sorghum as a potential crop for large-scale βKA production, techno-economic analysis indicated that βKA accumulated at titers of 0.25 % and 4 % on a dry weight basis could be competitively priced in the range of $2.04-34.49/kg and $0.47-2.12/kg, respectively, depending on the selling price of the residual biomass recovered after βKA extraction. This study lays the foundation for a more environmentally-friendly synthesis of βKA using plants as production hosts.
Collapse
Affiliation(s)
- Sami Kazaz
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jaya Tripathi
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yang Tian
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Halbay Turumtay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dylan Chin
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Rausser College of Natural Resources, University of California-Berkeley, Berkeley, CA 94720, USA
| | - İrem Pamukçu
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Monikaben Nimavat
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Emine Akyuz Turumtay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Corinne D Scown
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Energy & Biosciences Institute, University of California-Berkeley, Berkeley, CA 94720, USA; Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Kuatsjah E, Schwartz A, Zahn M, Tornesakis K, Kellermyer ZA, Ingraham MA, Woodworth SP, Ramirez KJ, Cox PA, Pickford AR, Salvachúa D. Biochemical and structural characterization of enzymes in the 4-hydroxybenzoate catabolic pathway of lignin-degrading white-rot fungi. Cell Rep 2024; 43:115002. [PMID: 39589922 DOI: 10.1016/j.celrep.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species. Here, we characterize seven enzymes from two WRF, Trametes versicolor and Gelatoporia subvermispora, which constitute a four-enzyme cascade from 4-hydroxybenzoate to β-ketoadipate via the hydroxyquinol pathway. Furthermore, we solve the crystal structure of four of these enzymes and identify mechanistic differences with the closest bacterial and fungal structural homologs. Overall, this research expands our understanding of aromatic catabolism by WRF and establishes an alternative strategy for the conversion of lignin-related compounds to the valuable molecule β-ketoadipate, contributing to the development of biological processes for lignin valorization.
Collapse
Affiliation(s)
- Eugene Kuatsjah
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Alexa Schwartz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA; Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Michael Zahn
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Konstantinos Tornesakis
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Paul A Cox
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
4
|
Li J, Jiang F, Pi C, Bao T, Gao L, Wu X. Multi-omic profiling of a novel Myrothecium species reveals its potential mechanism of lignin degradation. Int J Biol Macromol 2024; 282:137134. [PMID: 39486701 DOI: 10.1016/j.ijbiomac.2024.137134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Lignin utilization is one of the key challenges in the valorziation of lignocellulose. Filamentous fungi are promising candidates for lignin degradation and mineralization. However, novel lignin-degrading species are underexplored and the mechanism of lignin degradation is not fully understood. Here we isolated and characterized a novel species, Myrothecium wuxin, capable of utilizing lignosulfonate as the sole carbon source. To understand the mechanism of lignin degradation, genomic, transcriptomic and metabolic analyses were performed. The genome was sequenced, and assembled to a size of 48.55 Mb, with a contig N50 size of 5.67Mb. A total of 14,221 protein-coding genes were predicted, including a high number of potential ligninolytic enzymes. Transcriptomic analysis revealed a pronounced effect of lignosulfonate on gene expression profiles. More than twenty intermediate aromatic metabolites were identified during lignosulfonate utilization. Through genomic annotation, the genes potentially involved in lignin degradation were identified, and more than nine metabolic pathways of lignin-derived aromatic intermediates were predicted, including the homogentisate pathway, benzoic acid pathway, as well as the tree-branched β-ketoadipate pathway. The genomic information will provide a valuable resource for lignin degradation, while the elucidated catabolic pathways and associated enzymes provide exciting biotechnological opportunities for lignin valorization and production of valuable chemicals.
Collapse
Affiliation(s)
- Jinyang Li
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Fangting Jiang
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Changyu Pi
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tongtong Bao
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Le Gao
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Xin Wu
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
5
|
Brejová B, Hodorová V, Mutalová S, Cillingová A, Tomáška Ľ, Vinař T, Nosek J. Chromosome-level genome assembly of the yeast Lodderomyces beijingensis reveals the genetic nature of metabolic adaptations and identifies subtelomeres as hotspots for amplification of mating type loci. DNA Res 2024; 31:dsae014. [PMID: 38686638 PMCID: PMC11100356 DOI: 10.1093/dnares/dsae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Lodderomyces beijingensis is an ascosporic ascomycetous yeast. In contrast to related species Lodderomyces elongisporus, which is a recently emerging human pathogen, L. beijingensis is associated with insects. To provide an insight into its genetic makeup, we investigated the genome of its type strain, CBS 14171. We demonstrate that this yeast is diploid and describe the high contiguity nuclear genome assembly consisting of eight chromosome-sized contigs with a total size of about 15.1 Mbp. We find that the genome sequence contains multiple copies of the mating type loci and codes for essential components of the mating pheromone response pathway, however, the missing orthologs of several genes involved in the meiotic program raise questions about the mode of sexual reproduction. We also show that L. beijingensis genome codes for the 3-oxoadipate pathway enzymes, which allow the assimilation of protocatechuate. In contrast, the GAL gene cluster underwent a decay resulting in an inability of L. beijingensis to utilize galactose. Moreover, we find that the 56.5 kbp long mitochondrial DNA is structurally similar to known linear mitochondrial genomes terminating on both sides with covalently closed single-stranded hairpins. Finally, we discovered a new double-stranded RNA mycovirus from the Totiviridae family and characterized its genome sequence.
Collapse
Affiliation(s)
- Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, 842 48 Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, 842 48 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
6
|
Duran K, Kohlstedt M, van Erven G, Klostermann CE, America AHP, Bakx E, Baars JJP, Gorissen A, de Visser R, de Vries RP, Wittmann C, Comans RNJ, Kuyper TW, Kabel MA. From 13C-lignin to 13C-mycelium: Agaricus bisporus uses polymeric lignin as a carbon source. SCIENCE ADVANCES 2024; 10:eadl3419. [PMID: 38640242 PMCID: PMC11029805 DOI: 10.1126/sciadv.adl3419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.
Collapse
Affiliation(s)
- Katharina Duran
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A 1.5, 66123 Saarbrücken, Germany
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Cynthia E. Klostermann
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen Netherlands
| | - Antoine H. P. America
- Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Edwin Bakx
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Johan J. P. Baars
- Plant Breeding, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- CNC Grondstoffen, Driekronenstraat 6, 6596 MA Milsbeek, Netherlands
| | - Antonie Gorissen
- IsoLife bv, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Ries de Visser
- IsoLife bv, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A 1.5, 66123 Saarbrücken, Germany
| | - Rob N. J. Comans
- Soil Chemistry and Chemical Soil Quality Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| |
Collapse
|
7
|
Martins TM, Bento A, Martins C, Tomé AS, Moreira CJS, Silva Pereira C. Bringing up to date the toolkit for the catabolism of aromatic compounds in fungi: The unexpected 1,2,3,5-tetrahydroxybenzene central pathway. Microb Biotechnol 2024; 17:e14371. [PMID: 38064205 PMCID: PMC10832562 DOI: 10.1111/1751-7915.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 02/03/2024] Open
Abstract
Saprophytic fungi are able to catabolize many plant-derived aromatics, including, for example, gallate. The catabolism of gallate in fungi is assumed to depend on the five main central pathways, i.e., of the central intermediates' catechol, protocatechuate, hydroxyquinol, homogentisate and gentisate, but a definitive demonstration is lacking. To shed light on this process, we analysed the transcriptional reprogramming of the growth of Aspergillus terreus on gallate compared with acetate as the control condition. Surprisingly, the results revealed that the five main central pathways did not exhibit significant positive regulation. Instead, an in-depth analysis identified four highly expressed and upregulated genes that are part of a conserved gene cluster found in numerous species of fungi, though not in Aspergilli. The cluster comprises a monooxygenase gene and a fumarylacetoacetate hydrolase-like gene, which are recognized as key components of catabolic pathways responsible for aromatic compound degradation. The other two genes encode proteins with no reported enzymatic activities. Through functional analyses of gene deletion mutants in Aspergillus nidulans, the conserved short protein with no known domains could be linked to the conversion of the novel metabolite 5-hydroxydienelatone, whereas the DUF3500 gene likely encodes a ring-cleavage enzyme for 1,2,3,5-tetrahydroxybenzene. These significant findings establish the existence of a new 1,2,3,5-tetrahydroxybenzene central pathway for the catabolism of gallate and related compounds (e.g. 2,4,6-trihydroxybenzoate) in numerous fungi where this catabolic gene cluster was observed.
Collapse
Affiliation(s)
- Tiago M. Martins
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| | - Artur Bento
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
- Present address:
Center for Integrative Genomics, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Ana S. Tomé
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| | - Carlos J. S. Moreira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| |
Collapse
|
8
|
Meier A, Worch S, Hartmann A, Marzec M, Mock HP, Bode R, Kunze G, Matthes F. Characterization of Catechol-1,2-Dioxygenase (Acdo1p) From Blastobotrys raffinosifermentans and Investigation of Its Role in the Catabolism of Aromatic Compounds. Front Microbiol 2022; 13:872298. [PMID: 35722288 PMCID: PMC9204233 DOI: 10.3389/fmicb.2022.872298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Gallic acid, protocatechuic acid, catechol, and pyrogallol are only a few examples of industrially relevant aromatics. Today much attention is paid to the development of new microbial factories for the environmentally friendly biosynthesis of industrially relevant chemicals with renewable resources or organic pollutants as the starting material. The non-conventional yeast, Blastobotrys raffinosifermentans, possesses attractive properties for industrial bio-production processes such as thermo- and osmotolerance. An additional advantage is its broad substrate spectrum, with tannins at the forefront. The present study is dedicated to the characterization of catechol-1,2-dioxygenase (Acdo1p) and the analysis of its function in B. raffinosifermentans tannic acid catabolism. Acdo1p is a dimeric protein with higher affinity for catechol (K M = 0.004 ± 0.001 mM, k cat = 15.6 ± 0.4 s-1) than to pyrogallol (K M = 0.1 ± 0.02 mM, k cat = 10.6 ± 0.4 s-1). It is an intradiol dioxygenase and its reaction product with catechol as the substrate is cis,cis-muconic acid. B. raffinosifermentans G1212/YIC102-AYNI1-ACDO1-6H, which expresses the ACDO1 gene under the control of the strong nitrate-inducible AYNI1 promoter, achieved a maximum catechol-1,2-dioxygenase activity of 280.6 U/L and 26.9 U/g of dry cell weight in yeast grown in minimal medium with nitrate as the nitrogen source and 1.5% glucose as the carbon source. In the same medium with glucose as the carbon source, catechol-1,2-dioxygenase activity was not detected for the control strain G1212/YIC102 with ACDO1 expression under the regulation of its respective endogenous promoter. Gene expression analysis showed that ACDO1 is induced by gallic acid and protocatechuic acid. In contrast to the wild-type strain, the B. raffinosifermentans strain with a deletion of the ACDO1 gene was unable to grow on medium supplemented with gallic acid or protocatechuic acid as the sole carbon source. In summary, we propose that due to its substrate specificity, its thermal stability, and its ability to undergo long-term storage without significant loss of activity, B. raffinosifermentans catechol-1,2-dioxygenase (Acdo1p) is a promising enzyme candidate for industrial applications.
Collapse
Affiliation(s)
- Anna Meier
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Sebastian Worch
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Anja Hartmann
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Marek Marzec
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Hans-Peter Mock
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Rüdiger Bode
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Gotthard Kunze
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Falko Matthes
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
9
|
Ali SS, Al-Tohamy R, Mohamed TM, Mahmoud YAG, Ruiz HA, Sun L, Sun J. Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:35. [PMID: 35379342 PMCID: PMC8981686 DOI: 10.1186/s13068-022-02131-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
Abstract
Biodiesel is a renewable fuel that can be produced from a range of organic and renewable feedstock including fresh or vegetable oils, animal fats, and oilseed plants. In recent years, the lignin-based aromatic wastes, such as various aromatic waste polymers from agriculture, or organic dye wastewater from textile industry, have attracted much attention in academia, which can be uniquely selected as a potential renewable feedstock for biodiesel product converted by yeast cell factory technology. This current investigation indicated that the highest percentage of lipid accumulation can be achieved as high as 47.25% by an oleaginous yeast strain, Meyerozyma caribbica SSA1654, isolated from a wood-feeding termite gut system, where its synthetic oil conversion ability can reach up to 0.08 (g/l/h) and the fatty acid composition in yeast cells represents over 95% of total fatty acids that are similar to that of vegetable oils. Clearly, the use of oleaginous yeasts, isolated from wood-feeding termites, for synthesizing lipids from aromatics is a clean, efficient, and competitive path to achieve "a sustainable development" towards biodiesel production. However, the lacking of potent oleaginous yeasts to transform lipids from various aromatics, and an unknown metabolic regulation mechanism presented in the natural oleaginous yeast cells are the fundamental challenge we have to face for a potential cell factory development. Under this scope, this review has proposed a novel concept and approach strategy in utilization of oleaginous yeasts as the cell factory to convert aromatic wastes to lipids as the substrate for biodiesel transformation. Therefore, screening robust oleaginous yeast strain(s) from wood-feeding termite gut system with a set of the desirable specific tolerance characteristics is essential. In addition, to reconstruct a desirable metabolic pathway/network to maximize the lipid transformation and accumulation rate from the aromatic wastes with the applications of various "omics" technologies or a synthetic biology approach, where the work agenda will also include to analyze the genome characteristics, to develop a new base mutation gene editing technology, as well as to clarify the influence of the insertion position of aromatic compounds and other biosynthetic pathways in the industrial chassis genome on the expressional level and genome stability. With these unique designs running with a set of the advanced biotech approaches, a novel metabolic pathway using robust oleaginous yeast developed as a cell factory concept can be potentially constructed, integrated and optimized, suggesting that the hypothesis we proposed in utilizing aromatic wastes as a feedstock towards biodiesel product is technically promising and potentially applicable in the near future.
Collapse
Affiliation(s)
- Sameh S. Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| | - Tarek M. Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila Mexico
| | - Lushan Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
10
|
Cillingová A, Tóth R, Mojáková A, Zeman I, Vrzoňová R, Siváková B, Baráth P, Neboháčová M, Klepcová Z, Brázdovič F, Lichancová H, Hodorová V, Brejová B, Vinař T, Mutalová S, Vozáriková V, Mutti G, Tomáška Ľ, Gácser A, Gabaldón T, Nosek J. Transcriptome and proteome profiling reveals complex adaptations of Candida parapsilosis cells assimilating hydroxyaromatic carbon sources. PLoS Genet 2022; 18:e1009815. [PMID: 35255079 PMCID: PMC8929692 DOI: 10.1371/journal.pgen.1009815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/17/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in β-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.
Collapse
Affiliation(s)
- Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Renáta Tóth
- HCEMM-USZ Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Anna Mojáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Igor Zeman
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Romana Vrzoňová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Barbara Siváková
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Neboháčová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Klepcová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Filip Brázdovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Hana Lichancová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Giacomo Mutti
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Atilla Gácser
- HCEMM-USZ Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
11
|
Mixão V, del Olmo V, Hegedűsová E, Saus E, Pryszcz L, Cillingová A, Nosek J, Gabaldón T. Genome analysis of five recently described species of the CUG-Ser clade uncovers Candida theae as a new hybrid lineage with pathogenic potential in the Candida parapsilosis species complex. DNA Res 2022; 29:6570588. [PMID: 35438177 PMCID: PMC9046093 DOI: 10.1093/dnares/dsac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
Candida parapsilosis species complex comprises three important pathogenic species: Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. The majority of C. orthopsilosis and all C. metapsilosis isolates sequenced thus far are hybrids, and most of the parental lineages remain unidentified. This led to the hypothesis that hybrids with pathogenic potential were formed by the hybridization of non-pathogenic lineages that thrive in the environment. In a search for the missing hybrid parentals, and aiming to get a better understanding of the evolution of the species complex, we sequenced, assembled and analysed the genome of five close relatives isolated from the environment: Candida jiufengensis, Candida pseudojiufengensis, Candida oxycetoniae, Candida margitis and Candida theae. We found that the linear conformation of mitochondrial genomes in Candida species emerged multiple times independently. Furthermore, our analyses discarded the possible involvement of these species in the mentioned hybridizations, but identified C. theae as an additional hybrid in the species complex. Importantly, C. theae was recently associated with a case of infection, and we also uncovered the hybrid nature of this clinical isolate. Altogether, our results reinforce the hypothesis that hybridization is widespread among Candida species, and potentially contributes to the emergence of lineages with opportunistic pathogenic behaviour.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Valentina del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Eva Hegedűsová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Leszek Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Barcelona 08010, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| |
Collapse
|
12
|
|
13
|
Meng L, Sun C, Gao L, Saleem M, Li B, Wang C. Hydroxybenzoate hydroxylase genes underlying protocatechuic acid production in Valsa mali are required for full pathogenicity in apple trees. MOLECULAR PLANT PATHOLOGY 2021; 22:1370-1382. [PMID: 34390112 PMCID: PMC8518569 DOI: 10.1111/mpp.13119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Valsa mali is the causative agent of apple tree valsa canker, which causes significant losses in apple production. It produces various toxic compounds that kill plant cells, facilitating infection. Among these, protocatechuic acid exhibits the highest phytotoxic activity. However, those genes involved in toxin production have not been studied. In this study we identified four hydroxybenzoate hydroxylase genes (VmHbh1, VmHbh2, VmHbh3, and VmHbh4) from the transcriptome of V. mali. The VmHbh protein had high enzymatic activities of hydroxybenzoate hydroxylase, which could convert 4-hydroxybenzoate to protocatechuic acid. These four VmHbh genes all had highly elevated transcript levels during the V. mali infection process, especially VmHbh1 and VmHbh4, with 26.0- and 53.4-fold increases, respectively. Mutants of the four genes were generated to study whether VmHbhs are required for V. mali pathogenicity. Of the four genes, the VmHbh1 and VmHbh4 deletion mutants considerably attenuated V. mali virulence in apple leaves and in twigs, coupled with much reduced toxin levels. The VmHbh2 and VmHbh3 deletion mutants promoted the transcript levels of the other VmHbhs, suggesting functional redundancies of VmHbhs in V. mali virulence. The results provide insights into the functions of VmHbhs in the production of protocatechuic acid by V. mali during its infection of apple trees.
Collapse
Affiliation(s)
- Lulu Meng
- College of Plant Health and MedicineKey Laboratory of Integrated Crop Pest Management of Shandong ProvinceShandong Province Key Laboratory of Applied MycologyQingdao Agricultural UniversityQingdaoChina
| | - Cuicui Sun
- College of Plant Health and MedicineKey Laboratory of Integrated Crop Pest Management of Shandong ProvinceShandong Province Key Laboratory of Applied MycologyQingdao Agricultural UniversityQingdaoChina
| | - Liyong Gao
- College of Plant Health and MedicineKey Laboratory of Integrated Crop Pest Management of Shandong ProvinceShandong Province Key Laboratory of Applied MycologyQingdao Agricultural UniversityQingdaoChina
| | - Muhammad Saleem
- Department of Biological SciencesAlabama State UniversityMontgomeryAlabamaUSA
| | - Baohua Li
- College of Plant Health and MedicineKey Laboratory of Integrated Crop Pest Management of Shandong ProvinceShandong Province Key Laboratory of Applied MycologyQingdao Agricultural UniversityQingdaoChina
| | - Caixia Wang
- College of Plant Health and MedicineKey Laboratory of Integrated Crop Pest Management of Shandong ProvinceShandong Province Key Laboratory of Applied MycologyQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
14
|
Abstract
Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.
Collapse
|
15
|
Lubbers RJM, Dilokpimol A, Nousiainen PA, Cioc RC, Visser J, Bruijnincx PCA, de Vries RP. Vanillic acid and methoxyhydroquinone production from guaiacyl units and related aromatic compounds using Aspergillus niger cell factories. Microb Cell Fact 2021; 20:151. [PMID: 34344380 PMCID: PMC8336404 DOI: 10.1186/s12934-021-01643-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. RESULTS Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. CONCLUSIONS This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Paula A Nousiainen
- Department of Chemistry, University of Helsinki, A. I. Virtasen Aukio 1, P.O. Box 55, 00014, Helsinki, Finland
| | - Răzvan C Cioc
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Pieter C A Bruijnincx
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Mixão V, Hegedűsová E, Saus E, Pryszcz LP, Cillingová A, Nosek J, Gabaldón T. Genome analysis of Candida subhashii reveals its hybrid nature and dual mitochondrial genome conformations. DNA Res 2021; 28:6299387. [PMID: 34129020 PMCID: PMC8311171 DOI: 10.1093/dnares/dsab006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Candida subhashii belongs to the CUG-Ser clade, a group of phylogenetically closely related yeast species that includes some human opportunistic pathogens, such as Candida albicans. Despite being present in the environment, C. subhashii was initially described as the causative agent of a case of peritonitis. Considering the relevance of whole-genome sequencing and analysis for our understanding of genome evolution and pathogenicity, we sequenced, assembled and annotated the genome of C. subhashii type strain. Our results show that C. subhashii presents a highly heterozygous genome and other signatures that point to a hybrid ancestry. The presence of functional pathways for assimilation of hydroxyaromatic compounds goes in line with the affiliation of this yeast with soil microbial communities involved in lignin decomposition. Furthermore, we observed that different clones of this strain may present circular or linear mitochondrial DNA. Re-sequencing and comparison of strains with differential mitochondrial genome topology revealed five candidate genes potentially associated with this conformational change: MSK1, SSZ1, ALG5, MRPL9 and OYE32.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Eva Hegedűsová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Leszek P Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Andrea Cillingová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Jozef Nosek
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
17
|
Production of Protocatechuic Acid from p-Hydroxyphenyl (H) Units and Related Aromatic Compounds Using an Aspergillus niger Cell Factory. mBio 2021; 12:e0039121. [PMID: 34154420 PMCID: PMC8262893 DOI: 10.1128/mbio.00391-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protocatechuic acid (3,4-dihydroxybenzoic acid) is a chemical building block for polymers and plastics. In addition, protocatechuic acid has many properties of great pharmaceutical interest. Much research has been performed in creating bacterial protocatechuic acid production strains, but no protocatechuic acid-producing fungal cell factories have been described. The filamentous fungus Aspergillus niger can produce protocatechuic acid as an intermediate of the benzoic acid metabolic pathway. Recently, the p-hydroxybenzoate-m-hydroxylase (phhA) and protocatechuate 3,4-dioxygenase (prcA) of A. niger have been identified. It has been shown that the prcA deletion mutant is still able to grow on protocatechuic acid. This led to the identification of an alternative pathway that converts protocatechuic acid to hydroxyquinol (1,3,4-trihydroxybenzene). However, the gene involved in the hydroxylation of protocatechuic acid to hydroxyquinol remained unidentified. Here, we describe the identification of protocatechuate hydroxylase (decarboxylating) (PhyA) by using whole-genome transcriptome data. The identification of phyA enabled the creation of a fungal cell factory that is able to accumulate protocatechuic acid from benzyl alcohol, benzaldehyde, benzoic acid, caffeic acid, cinnamic acid, cinnamyl alcohol, m-hydroxybenzoic acid, p-hydroxybenzyl alcohol, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, p-anisyl alcohol, p-anisaldehyde, p-anisic acid, p-coumaric acid, and protocatechuic aldehyde. IMPORTANCE Aromatic compounds have broad applications and are used in many industries, such as the cosmetic, food, fragrance, paint, plastic, pharmaceutical, and polymer industries. The majority of aromatic compounds are synthesized from fossil sources, which are becoming limited. Plant biomass is the most abundant renewable resource on Earth and can be utilized to produce chemical building blocks, fuels, and bioplastics through fermentations with genetically modified microorganisms. Therefore, knowledge about the metabolic pathways and the genes and enzymes involved is essential to create efficient strategies for producing valuable aromatic compounds such as protocatechuic acid. Protocatechuic acid has many pharmaceutical properties but also can be used as a chemical building block to produce polymers and plastics. Here, we show that the fungus Aspergillus niger can be engineered to produce protocatechuic acid from plant-derived aromatic compounds and contributes to creating alternative methods for the production of platform chemicals. .
Collapse
|
18
|
Vrzoňová R, Tóth R, Siváková B, Moťovská A, Gaplovská-Kyselá K, Baráth P, Tomáška Ľ, Gácser A, Gabaldón T, Nosek J, Neboháčová M. OCT1 - a yeast mitochondrial thiolase involved in the 3-oxoadipate pathway. FEMS Yeast Res 2021; 21:6293844. [PMID: 34089318 DOI: 10.1093/femsyr/foab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
The 3-oxoacyl-CoA thiolases catalyze the last step of the fatty acid β-oxidation pathway. In yeasts and plants, this pathway takes place exclusively in peroxisomes, whereas in animals it occurs in both peroxisomes and mitochondria. In contrast to baker's yeast Saccharomyces cerevisiae, yeast species from the Debaryomycetaceae family also encode a thiolase with predicted mitochondrial localization. These yeasts are able to utilize a range of hydroxyaromatic compounds via the 3-oxoadipate pathway the last step of which is catalyzed by 3-oxoadipyl-CoA thiolase and presumably occurs in mitochondria. In this work, we studied Oct1p, an ortholog of this enzyme from Candida parapsilosis. We found that the cells grown on a 3-oxoadipate pathway substrate exhibit increased levels of the OCT1 mRNA. Deletion of both OCT1 alleles impairs the growth of C. parapsilosis cells on 3-oxoadipate pathway substrates and this defect can be rescued by expression of the OCT1 gene from a plasmid vector. Subcellular localization experiments and LC-MS/MS analysis of enriched organellar fraction-proteins confirmed the presence of Oct1p in mitochondria. Phylogenetic profiling of Oct1p revealed an intricate evolutionary pattern indicating multiple horizontal gene transfers among different fungal groups.
Collapse
Affiliation(s)
- Romana Vrzoňová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Barbara Siváková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Anna Moťovská
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Katarína Gaplovská-Kyselá
- Faculty of Natural Sciences, Department of Genetics, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Faculty of Natural Sciences, Department of Genetics, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Institute for Research in Biomedicine (IRB), Jordi Girona 29, 08034 Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jozef Nosek
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martina Neboháčová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
19
|
A Review on the Utilization of Lignin as a Fermentation Substrate to Produce Lignin-Modifying Enzymes and Other Value-Added Products. Molecules 2021; 26:molecules26102960. [PMID: 34065753 PMCID: PMC8156730 DOI: 10.3390/molecules26102960] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The lignocellulosic biomass is comprised of three major components: cellulose, hemicellulose, and lignin. Among these three, cellulose and hemicellulose were already used for the generation of simple sugars and subsequent value-added products. However, lignin is the least applied material in this regard because of its complex and highly variable nature. Regardless, lignin is the most abundant material, and it can be used to produce value-added products such as lignin-modifying enzymes (LMEs), polyhydroxyalkanoates (PHAs), microbial lipids, vanillin, muconic acid, and many others. This review explores the potential of lignin as the microbial substrate to produce such products. A special focus was given to the different types of lignin and how each one can be used in different microbial and biochemical pathways to produce intermediate products, which can then be used as the value-added products or base to make other products. This review paper will summarize the effectiveness of lignin as a microbial substrate to produce value-added products through microbial fermentations. First, basic structures of lignin along with its types and chemistry are discussed. The subsequent sections highlight LMEs and how such enzymes can enhance the value of lignin by microbial degradation. A major focus was also given to the value-added products that can be produced from lignin.
Collapse
|
20
|
Weng C, Peng X, Han Y. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:84. [PMID: 33812391 PMCID: PMC8019502 DOI: 10.1186/s13068-021-01934-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/19/2021] [Indexed: 05/23/2023]
Abstract
Lignin, the most abundant renewable aromatic compound in nature, is an excellent feedstock for value-added bioproducts manufacturing; while the intrinsic heterogeneity and recalcitrance of which hindered the efficient lignin biorefinery and utilization. Compared with chemical processing, bioprocessing with microbial and enzymatic catalysis is a clean and efficient method for lignin depolymerization and conversion. Generally, lignin bioprocessing involves lignin decomposition to lignin-based aromatics via extracellular microbial enzymes and further converted to value-added bioproducts through microbial metabolism. In the review, the most recent advances in degradation and conversion of lignin to value-added bioproducts catalyzed by microbes and enzymes were summarized. The lignin-degrading microorganisms of white-rot fungi, brown-rot fungi, soft-rot fungi, and bacteria under aerobic and anaerobic conditions were comparatively analyzed. The catalytic metabolism of the microbial lignin-degrading enzymes of laccase, lignin peroxidase, manganese peroxidase, biphenyl bond cleavage enzyme, versatile peroxidase, and β-etherize was discussed. The microbial metabolic process of H-lignin, G-lignin, S-lignin based derivatives, protocatechuic acid, and catechol was reviewed. Lignin was depolymerized to lignin-derived aromatic compounds by the secreted enzymes of fungi and bacteria, and the aromatics were converted to value-added compounds through microbial catalysis and metabolic engineering. The review also proposes new insights for future work to overcome the recalcitrance of lignin and convert it to value-added bioproducts by microbial and enzymatic catalysis.
Collapse
Affiliation(s)
- Caihong Weng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Developing an effective approach for microbial biosynthesis of hydroxyhydroquinone. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Westphal AH, Tischler D, van Berkel WJH. Natural diversity of FAD-dependent 4-hydroxybenzoate hydroxylases. Arch Biochem Biophys 2021; 702:108820. [PMID: 33684360 DOI: 10.1016/j.abb.2021.108820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/05/2023]
Abstract
4-Hydroxybenzoate 3-hydroxylase (PHBH) is the most extensively studied group A flavoprotein monooxygenase (FPMO). PHBH is almost exclusively found in prokaryotes, where its induction, usually as a consequence of lignin degradation, results in the regioselective formation of protocatechuate, one of the central intermediates in the global carbon cycle. In this contribution we introduce several less known FAD-dependent 4-hydroxybenzoate hydroxylases. Phylogenetic analysis showed that the enzymes discussed here reside in distinct clades of the group A FPMO family, indicating their separate divergence from a common ancestor. Protein homology modelling revealed that the fungal 4-hydroxybenzoate 3-hydroxylase PhhA is structurally related to phenol hydroxylase (PHHY) and 3-hydroxybenzoate 4-hydroxylase (3HB4H). 4-Hydroxybenzoate 1-hydroxylase (4HB1H) from yeast catalyzes an oxidative decarboxylation reaction and is structurally similar to 3-hydroxybenzoate 6-hydroxylase (3HB6H), salicylate hydroxylase (SALH) and 6-hydroxynicotinate 3-monooxygenase (6HNMO). Genome mining suggests that the 4HB1H activity is widespread in the fungal kingdom and might be responsible for the oxidative decarboxylation of vanillate, an import intermediate in lignin degradation. 4-Hydroxybenzoyl-CoA 1-hydroxylase (PhgA) catalyzes an intramolecular migration reaction (NIH shift) during the three-step conversion of 4-hydroxybenzoate to gentisate in certain Bacillus species. PhgA is phylogenetically related to 4-hydroxyphenylacetate 1-hydroxylase (4HPA1H). In summary, this paper shines light on the natural diversity of group A FPMOs that are involved in the aerobic microbial catabolism of 4-hydroxybenzoate.
Collapse
Affiliation(s)
- Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands.
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Germany.
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
23
|
Twists and Turns in the Salicylate Catabolism of Aspergillus terreus, Revealing New Roles of the 3-Hydroxyanthranilate Pathway. mSystems 2021; 6:6/1/e00230-20. [PMID: 33500329 PMCID: PMC7842363 DOI: 10.1128/msystems.00230-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aspergilli are versatile cell factories used in industry for the production of organic acids, enzymes, and pharmaceutical drugs. To date, bio-based production of organic acids relies on food substrates. In fungi, salicylate catabolism was believed to proceed only through the catechol branch of the 3-oxoadipate pathway, as shown, e.g., in Aspergillus nidulans. However, the observation of a transient accumulation of gentisate upon the cultivation of Aspergillus terreus in salicylate medium questions this concept. To address this, we have run a comparative analysis of the transcriptome of these two species after growth in salicylate using acetate as a control condition. The results revealed the high complexity of the salicylate metabolism in A. terreus with the concomitant positive regulation of several pathways for the catabolism of aromatic compounds. This included the unexpected joint action of two pathways—3-hydroxyanthranilate and nicotinate—possibly crucial for the catabolism of aromatics in this fungus. Importantly, the 3-hydroxyanthranilate catabolic pathway in fungi is described here for the first time, whereas new genes participating in the nicotinate metabolism are also proposed. The transcriptome analysis showed also for the two species an intimate relationship between salicylate catabolism and secondary metabolism. This study emphasizes that the central pathways for the catabolism of aromatic hydrocarbons in fungi hold many mysteries yet to be discovered. IMPORTANCE Aspergilli are versatile cell factories used in industry for the production of organic acids, enzymes, and pharmaceutical drugs. To date, bio-based production of organic acids relies on food substrates. These processes are currently being challenged to switch to renewable nonfood raw materials—a reality that should inspire the use of lignin-derived aromatic monomers. In this context, aspergilli emerge at the forefront of future bio-based approaches due to their industrial relevance and recognized prolific catabolism of aromatic compounds. Notwithstanding considerable advances in the field, there are still important knowledge gaps in the central catabolism of aromatic hydrocarbons in fungi. Here, we disclose a novel central pathway, 3-hydroxyanthranilate, defying previously established ideas on the central metabolism of the aromatic amino acid tryptophan in Ascomycota. We also observe that the catabolism of the aromatic salicylate greatly activated the secondary metabolism, furthering the significance of using lignin-derived aromatic hydrocarbons as a distinctive biomass source.
Collapse
|
24
|
Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger. Appl Environ Microbiol 2019; 85:AEM.01786-19. [PMID: 31540981 DOI: 10.1128/aem.01786-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/13/2019] [Indexed: 11/20/2022] Open
Abstract
Ring cleavage dioxygenases catalyze the critical ring-opening step in the catabolism of aromatic compounds. The archetypal filamentous fungus Aspergillus niger previously has been reported to be able to utilize a range of monocyclic aromatic compounds as sole sources of carbon and energy. The genome of A. niger has been sequenced, and deduced amino acid sequences from a large number of gene models show various levels of similarity to bacterial intradiol ring cleavage dioxygenases, but no corresponding enzyme has been purified and characterized. Here, the cloning, heterologous expression, purification, and biochemical characterization of four nonheme iron(III)-containing intradiol dioxygenases (NRRL3_02644, NRRL3_04787, NRRL3_05330, and NRRL3_01405) from A. niger are reported. Purified enzymes were tested for their ability to cleave model catecholate substrates, and their apparent kinetic parameters were determined. Comparisons of k cat /Km values show that NRRL3_02644 and NRRL3_05330 are specific for hydroxyquinol (1,2,4-trihydroxybenzene), and phylogenetic analysis shows that these two enzymes are related to bacterial hydroxyquinol 1,2-dioxygenases. A high-activity catechol 1,2-dioxygenase (NRRL3_04787), which is phylogenetically related to other characterized and putative fungal catechol 1,2-dioxygenases, was also identified. The fourth enzyme (NRRL3_01405) appears to be a novel homodimeric Fe(III)-containing protocatechuate 3,4-dioxygenase that is phylogenetically distantly related to heterodimeric bacterial protocatechuate 3,4-dioxygenases. These investigations provide experimental evidence for the molecular function of these proteins and open the way to further investigations of the physiological roles for these enzymes in fungal metabolism of aromatic compounds.IMPORTANCE Aromatic ring opening using molecular oxygen is one of the critical steps in the degradation of aromatic compounds by microorganisms. While enzymes catalyzing this step have been well-studied in bacteria, their counterparts from fungi are poorly characterized despite the abundance of genes annotated as ring cleavage dioxygenases in fungal genomes. Aspergillus niger degrades a variety of aromatic compounds, and its genome harbors 5 genes encoding putative intracellular intradiol dioxygenases. The ability to predict the substrate specificities of the encoded enzymes from sequence data are limited. Here, we report the characterization of four purified intradiol ring cleavage dioxygenases from A. niger, revealing two hydroxyquinol-specific dioxygenases, a catechol dioxygenase, and a unique homodimeric protocatechuate dioxygenase. Their characteristics, as well as their phylogenetic relationships to predicted ring cleavage dioxygenases from other fungal species, provide insights into their molecular functions in aromatic compound metabolism by this fungus and other fungi.
Collapse
|
25
|
Li X, Zheng Y. Biotransformation of lignin: Mechanisms, applications and future work. Biotechnol Prog 2019; 36:e2922. [PMID: 31587530 DOI: 10.1002/btpr.2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023]
Abstract
As one of the most abundant polymers in biosphere, lignin has attracted extensive attention as a kind of promising feedstock for biofuel and bio-based products. However, the utilization of lignin presents various challenges in that its complex composition and structure and high resistance to degradation. Lignin conversion through biological platform harnesses the catalytic power of microorganisms to decompose complex lignin molecules and obtain value-added products through biosynthesis. Given the heterogeneity of lignin, various microbial metabolic pathways are involved in lignin bioconversion processes, which has been characterized in extensive research work. With different types of lignin substrates (e.g., model compounds, technical lignin, and lignocellulosic biomass), several bacterial and fungal species have been proved to own lignin-degrading abilities and accumulate microbial products (e.g., lipid and polyhydroxyalkanoates), while the lignin conversion efficiencies are still relatively low. Genetic and metabolic strategies have been developed to enhance lignin biodegradation by reprogramming microbial metabolism, and diverse products, such as vanillin and dicarboxylic acids were also produced from lignin. This article aims at presenting a comprehensive review on lignin bioconversion including lignin degradation mechanisms, metabolic pathways, and applications for the production of value-added bioproducts. Advanced techniques on genetic and metabolic engineering are also covered in the recent development of biological platforms for lignin utilization. To conclude this article, the existing challenges for efficient lignin bioprocessing are analyzed and possible directions for future work are proposed.
Collapse
Affiliation(s)
- Xiang Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas
| |
Collapse
|
26
|
Kowalczyk JE, Peng M, Pawlowski M, Lipzen A, Ng V, Singan V, Wang M, Grigoriev IV, Mäkelä MR. The White-Rot Basidiomycete Dichomitus squalens Shows Highly Specific Transcriptional Response to Lignocellulose-Related Aromatic Compounds. Front Bioeng Biotechnol 2019; 7:229. [PMID: 31616664 PMCID: PMC6763618 DOI: 10.3389/fbioe.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic plant biomass is an important feedstock for bio-based economy. In particular, it is an abundant renewable source of aromatic compounds, which are present as part of lignin, as side-groups of xylan and pectin, and in other forms, such as tannins. As filamentous fungi are the main organisms that modify and degrade lignocellulose, they have developed a versatile metabolism to convert the aromatic compounds that are toxic at relatively low concentrations to less toxic ones. During this process, fungi form metabolites some of which represent high-value platform chemicals or important chemical building blocks, such as benzoic, vanillic, and protocatechuic acid. Especially basidiomycete white-rot fungi with unique ability to degrade the recalcitrant lignin polymer are expected to perform highly efficient enzymatic conversions of aromatic compounds, thus having huge potential for biotechnological exploitation. However, the aromatic metabolism of basidiomycete fungi is poorly studied and knowledge on them is based on the combined results of studies in variety of species, leaving the overall picture in each organism unclear. Dichomitus squalens is an efficiently wood-degrading white-rot basidiomycete that produces a diverse set of extracellular enzymes targeted for lignocellulose degradation, including oxidative enzymes that act on lignin. Our recent study showed that several intra- and extracellular aromatic compounds were produced when D. squalens was cultivated on spruce wood, indicating also versatile aromatic metabolic abilities for this species. In order to provide the first molecular level systematic insight into the conversion of plant biomass derived aromatic compounds by basidiomycete fungi, we analyzed the transcriptomes of D. squalens when grown with 10 different lignocellulose-related aromatic monomers. Significant differences for example with respect to the expression of lignocellulose degradation related genes, but also putative genes encoding transporters and catabolic pathway genes were observed between the cultivations supplemented with the different aromatic compounds. The results demonstrate that the transcriptional response of D. squalens is highly dependent on the specific aromatic compounds present suggesting that instead of a common regulatory system, fine-tuned regulation is needed for aromatic metabolism.
Collapse
Affiliation(s)
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Megan Pawlowski
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Martins TM, Martins C, Silva Pereira C. Multiple degrees of separation in the central pathways of the catabolism of aromatic compounds in fungi belonging to the Dikarya sub-Kingdom. Adv Microb Physiol 2019; 75:177-203. [PMID: 31655737 DOI: 10.1016/bs.ampbs.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The diversity and abundance of aromatic compounds in nature is crucial for proper metabolism in all biological systems, and also impacts greatly the development of many industrial processes. Naturally, understanding their catabolism becomes fundamental for many scientific fields of research, from clinical and environmental to technological. The genetic basis of the central pathways for the catabolism of aromatic compounds in fungi, particularly of benzene derivatives, remains however poorly understood largely overlooking their significance. In some Dikarya species the genes of the central pathways are clustered in the genome, often in an array with peripheral pathway genes, even if the existence of a specific pathway does not necessarily mean that the composing genes are clustered. The current availability of many annotated fungal genomes in the postgenomic era creates conditions to reach a more holistic view of these processes through target analysis of the central pathways gene clusters. Inspired by this, we have critically analyzed the established biochemical and genetic data on the catabolism of aromatic compounds in Dikarya after dissecting the presence and distribution of central catabolic gene clusters (at times including also details on gene diversity, order and orientation) and of peripheral genes. Our methodological approach illustrates the multiple degrees of separation in these central pathways gene clusters across Dikarya. Surprisingly, they show a great degree of similarity irrespectively of the Dikarya division, emphasizing that knowledge established on either phyla can guide the identification of clusters of comparable composition (in-cluster plus peripheral genes) in uncharacterized species.
Collapse
Affiliation(s)
- Tiago M Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| |
Collapse
|
28
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
29
|
Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 2019; 103:3979-4002. [PMID: 30963208 PMCID: PMC6486533 DOI: 10.1007/s00253-019-09692-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database ( www.elignindatabase.com ), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| | - Krithika Ravi
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
30
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
31
|
Brejová B, Lichancová H, Brázdovič F, Hegedűsová E, Forgáčová Jakúbková M, Hodorová V, Džugasová V, Baláž A, Zeiselová L, Cillingová A, Neboháčová M, Raclavský V, Tomáška Ľ, Lang BF, Vinař T, Nosek J. Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Curr Genet 2018; 65:539-560. [PMID: 30456648 DOI: 10.1007/s00294-018-0904-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023]
Abstract
The yeast Magnusiomyces capitatus is an opportunistic human pathogen causing rare yet severe infections, especially in patients with hematological malignancies. Here, we report the 20.2 megabase genome sequence of an environmental strain of this species as well as the genome sequences of eight additional isolates from human and animal sources providing an insight into intraspecies variation. The distribution of single-nucleotide variants is indicative of genetic recombination events, supporting evidence for sexual reproduction in this heterothallic yeast. Using RNAseq-aided annotation, we identified genes for 6518 proteins including several expanded families such as kexin proteases and Hsp70 molecular chaperones. Several of these families are potentially associated with the ability of M. capitatus to infect and colonize humans. For the purpose of comparative analysis, we also determined the genome sequence of a closely related yeast, Magnusiomyces ingens. The genome sequences of M. capitatus and M. ingens exhibit many distinct features and represent a basis for further comparative and functional studies.
Collapse
Affiliation(s)
- Bronislava Brejová
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Hana Lichancová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Filip Brázdovič
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Eva Hegedűsová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Viktória Hodorová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimíra Džugasová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lucia Zeiselová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrea Cillingová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martina Neboháčová
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladislav Raclavský
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Ľubomír Tomáška
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Tomáš Vinař
- Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Nosek
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
32
|
Rocheleau H, Al-Harthi R, Ouellet T. Degradation of salicylic acid by Fusarium graminearum. Fungal Biol 2018; 123:77-86. [PMID: 30654960 DOI: 10.1016/j.funbio.2018.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022]
Abstract
Fusarium head blight (FHB) is a major cereal crop disease, caused most frequently by the fungus Fusarium graminearum. We have previously demonstrated that F. graminearum can utilize SA as sole source of carbon to grow. In this current study, we further characterized selected four fungal SA-responsive genes that are predicted to encode salicylic acid (SA)-degrading enzymes and we used a gene replacement approach to characterize them further. These included two genes predicted to encode a salicylate 1-monooxygenase, FGSG_03657 and FGSG_09063, a catechol 1, 2-dioxygenase gene, FGSG_03667, and a 2, 3-dihydroxybenzoic acid decarboxylase gene, FGSG_09061. For each gene, three independent gene replacement strains were assayed for their ability to degrade salicylic acid in liquid culture. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were shown to be essential for SA degradation, while a loss of 2, 3-dihydroxybenzoic acid decarboxylase FGSG_09061 caused only a partial reduction of SA degradation and a loss of salicylate 1-monooxygenase FGSG_09063 had no effect when compared to wild type culture. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were identified as the first two key enzyme steps of SA degradation via catechol in the β-ketoadipate pathway. Expression profiles for all four genes were also determined in liquid culture and in planta. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were co-expressed and their expression was substrate dependent in liquid culture; however their expression was uncoupled in planta. Disruption of the gene for catechol 1, 2-dioxygenase FGSG_03667 was shown to have no effect on fungal virulence on wheat. Our results with 2, 3-dihydroxybenzoic acid decarboxylase FGSG_09061 raise the possibility of an alternate non-oxidative decarboxylation pathway for the conversion of SA to catechol via 2, 3-dihydrozybenzoic acid and for a connection between the oxidative and the non-oxidative decarboxylation pathways for SA conversion.
Collapse
Affiliation(s)
- Hélène Rocheleau
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada.
| | - Reem Al-Harthi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, 30 Marie Currie, Ottawa, ON K1N 6N5, Canada.
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
33
|
Comparative Transcriptome Analysis Reveals the Mechanism Underlying 3,5-Dibromo-4-Hydroxybenzoate Catabolism via a New Oxidative Decarboxylation Pathway. Appl Environ Microbiol 2018; 84:AEM.02467-17. [PMID: 29305508 DOI: 10.1128/aem.02467-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
The compound 3,5-dibromo-4-hydroxybenzoate (DBHB) is both anthropogenically released into and naturally produced in the environment, and its environmental fate is of great concern. Aerobic and anaerobic reductive dehalogenations are the only two reported pathways for DBHB catabolism. In this study, a new oxidative decarboxylation pathway for DBHB catabolism was identified in a DBHB-utilizing strain, Pigmentiphaga sp. strain H8. The genetic determinants underlying this pathway were elucidated based on comparative transcriptome analysis and subsequent experimental validation. A gene cluster comprising orf420 to orf426, with transcripts that were about 33- to 4,400-fold upregulated in DBHB-induced cells compared with those in uninduced cells, was suspected to be involved in DBHB catabolism. The gene odcA (orf420), which is essential for the initial catabolism of DBHB, encodes a novel NAD(P)H-dependent flavin monooxygenase that mediates the oxidative decarboxylation of DBHB to 2,6-dibromohydroquinone (2,6-DBHQ). The substrate specificity of the purified OdcA indicated that the 4-hydroxyl group and its ortho-halogen(s) are important for hydroxylation of the C-1 site carboxyl group by OdcA. 2,6-DBHQ is then ring cleaved by the dioxygenase OdcB (Orf425) to 2-bromomaleylacetate, which is finally transformed to β-ketoadipate by the maleylacetate reductase OdcC (Orf426). These results provide a better understanding of the molecular mechanism underlying the catabolic diversity of halogenated para-hydroxybenzoates.IMPORTANCE Halogenated hydroxybenzoates (HBs), which are widely used synthetic precursors for chemical products and common metabolic intermediates from halogenated aromatics, exert considerable adverse effects on human health and ecological security. Microbial catabolism plays key roles in the dissipation of halogenated HBs in the environment. In this study, the discovery of a new catabolic pathway for 3,5-dibromo-4-hydroxybenzoate (DBHB) and clarification of the genetic determinants underlying the pathway broaden our knowledge of the catabolic diversity of halogenated HBs in microorganisms. Furthermore, the NAD(P)H-dependent flavin monooxygenase OdcA identified in Pigmentiphaga sp. strain H8 represents a novel 1-monooxygenase for halogenated para-HBs found in prokaryotes and enhances our knowledge of the decarboxylative hydroxylation of (halogenated) para-HBs.
Collapse
|
34
|
Cillingová A, Zeman I, Tóth R, Neboháčová M, Dunčková I, Hölcová M, Jakúbková M, Gérecová G, Pryszcz LP, Tomáška Ľ, Gabaldón T, Gácser A, Nosek J. Eukaryotic transporters for hydroxyderivatives of benzoic acid. Sci Rep 2017; 7:8998. [PMID: 28827635 PMCID: PMC5566891 DOI: 10.1038/s41598-017-09408-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022] Open
Abstract
Several yeast species catabolize hydroxyderivatives of benzoic acid. However, the nature of carriers responsible for transport of these compounds across the plasma membrane is currently unknown. In this study, we analyzed a family of genes coding for permeases belonging to the major facilitator superfamily (MFS) in the pathogenic yeast Candida parapsilosis. Our results revealed that these transporters are functionally equivalent to bacterial aromatic acid: H+ symporters (AAHS) such as GenK, MhbT and PcaK. We demonstrate that the genes HBT1 and HBT2 encoding putative transporters are highly upregulated in C. parapsilosis cells assimilating hydroxybenzoate substrates and the corresponding proteins reside in the plasma membrane. Phenotypic analyses of knockout mutants and hydroxybenzoate uptake assays provide compelling evidence that the permeases Hbt1 and Hbt2 transport the substrates that are metabolized via the gentisate (3-hydroxybenzoate, gentisate) and 3-oxoadipate pathway (4-hydroxybenzoate, 2,4-dihydroxybenzoate and protocatechuate), respectively. Our data support the hypothesis that the carriers belong to the AAHS family of MFS transporters. Phylogenetic analyses revealed that the orthologs of Hbt permeases are widespread in the subphylum Pezizomycotina, but have a sparse distribution among Saccharomycotina lineages. Moreover, these analyses shed additional light on the evolution of biochemical pathways involved in the catabolic degradation of hydroxyaromatic compounds.
Collapse
Affiliation(s)
- Andrea Cillingová
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Igor Zeman
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Martina Neboháčová
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Ivana Dunčková
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Mária Hölcová
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Michaela Jakúbková
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Gabriela Gérecová
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic.,Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, 1030, Vienna, Austria
| | - Leszek P Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Doctor Aiguader 88, 08003, Barcelona, Spain.,International Institute of Molecular and Cell Biology in Warsaw, 4 Trojdena Street, 02-109, Warsaw, Poland
| | - Ľubomír Tomáška
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Doctor Aiguader 88, 08003, Barcelona, Spain.,Departament de Ciències Experimentals I de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Jozef Nosek
- Departments of Biochemistry and Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15, Bratislava, Slovak Republic.
| |
Collapse
|
35
|
Montersino S, Te Poele E, Orru R, Westphal AH, Barendregt A, Heck AJR, van der Geize R, Dijkhuizen L, Mattevi A, van Berkel WJH. 3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Contains a Phosphatidylinositol Cofactor. Front Microbiol 2017; 8:1110. [PMID: 28670303 PMCID: PMC5472690 DOI: 10.3389/fmicb.2017.01110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 01/05/2023] Open
Abstract
3-Hydroxybenzoate 6-hydroxylase (3HB6H, EC 1.13.14.26) is a FAD-dependent monooxygenase involved in the catabolism of aromatic compounds in soil microorganisms. 3HB6H is unique among flavoprotein hydroxylases in that it harbors a phospholipid ligand. The purified protein obtained from expressing the gene encoding 3HB6H from Rhodococcus jostii RHA1 in the host Escherichia coli contains a mixture of phosphatidylglycerol and phosphatidylethanolamine, which are the major constituents of E. coli's cytoplasmic membrane. Here, we purified 3HB6H (RjHB6H) produced in the host R. jostii RHA#2 by employing a newly developed actinomycete expression system. Biochemical and biophysical analysis revealed that Rj3HB6H possesses similar catalytic and structural features as 3HB6H, but now contains phosphatidylinositol, which is a specific constituent of actinomycete membranes. Native mass spectrometry suggests that the lipid cofactor stabilizes monomer-monomer contact. Lipid analysis of 3HB6H from Pseudomonas alcaligenes NCIMB 9867 (Pa3HB6H) produced in E. coli supports the conclusion that 3HB6H enzymes have an intrinsic ability to bind phospholipids with different specificity, reflecting the membrane composition of their bacterial host.
Collapse
Affiliation(s)
- Stefania Montersino
- Laboratory of Biochemistry, Wageningen University and ResearchWageningen, Netherlands
| | - Evelien Te Poele
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Roberto Orru
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University and ResearchWageningen, Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Research, Utrecht UniversityUtrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Research, Utrecht UniversityUtrecht, Netherlands
| | - Robert van der Geize
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University and ResearchWageningen, Netherlands
| |
Collapse
|
36
|
Zeman I, Neboháčová M, Gérecová G, Katonová K, Jánošíková E, Jakúbková M, Centárová I, Dunčková I, Tomáška L, Pryszcz LP, Gabaldón T, Nosek J. Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis. G3 (BETHESDA, MD.) 2016; 6:4047-4058. [PMID: 27707801 PMCID: PMC5144973 DOI: 10.1534/g3.116.034389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/01/2016] [Indexed: 12/23/2022]
Abstract
The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p) and 3-oxoadipyl-CoA thiolase (Oct1p) catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.
Collapse
Affiliation(s)
- Igor Zeman
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Martina Neboháčová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Gabriela Gérecová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Kornélia Katonová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Eva Jánošíková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Michaela Jakúbková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Ivana Centárová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Ivana Dunčková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - L'ubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| | - Leszek P Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Departament de Ciències Experimentals I de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, 842 15, Slovak Republic
| |
Collapse
|
37
|
Biological valorization of low molecular weight lignin. Biotechnol Adv 2016; 34:1318-1346. [DOI: 10.1016/j.biotechadv.2016.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
38
|
Yang Y, Zhou H, Du G, Feng K, Feng T, Fu X, Liu J, Zeng Y. A Monooxygenase from
Boreostereum vibrans
Catalyzes Oxidative Decarboxylation in a Divergent Vibralactone Biosynthesis Pathway. Angew Chem Int Ed Engl 2016; 55:5463-6. [PMID: 27007916 DOI: 10.1002/anie.201510928] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/09/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Yan‐Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Gang Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke‐Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Xiao‐Li Fu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| | - Ji‐Kai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| |
Collapse
|
39
|
Yang Y, Zhou H, Du G, Feng K, Feng T, Fu X, Liu J, Zeng Y. A Monooxygenase from
Boreostereum vibrans
Catalyzes Oxidative Decarboxylation in a Divergent Vibralactone Biosynthesis Pathway. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan‐Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Gang Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke‐Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Xiao‐Li Fu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| | - Ji‐Kai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| |
Collapse
|
40
|
Jung DH, Kim EJ, Jung E, Kazlauskas RJ, Choi KY, Kim BG. Production ofp-hydroxybenzoic acid fromp-coumaric acid byBurkholderia glumaeBGR1. Biotechnol Bioeng 2015; 113:1493-503. [DOI: 10.1002/bit.25908] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Da-Hye Jung
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-7442 South Korea
| | - Eun-Jung Kim
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-7442 South Korea
| | - Eunok Jung
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-7442 South Korea
| | - Romas J Kazlauskas
- Department of Biochemistry; Molecular Biology & Biophysics and The Biotechnology Institute; University of Minnesota; Saint Paul Minnesota 55108
| | - Kwon-Young Choi
- Department of Environmental Engineering; College of Engineering; Ajou University; Suwon 443-749 Kyeonggi-do South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-7442 South Korea
- Institute of Bioengineering; Seoul National University; Seoul 151-742 South Korea
| |
Collapse
|
41
|
Eppinger E, Ferraroni M, Bürger S, Steimer L, Peng G, Briganti F, Stolz A. Function of different amino acid residues in the reaction mechanism of gentisate 1,2-dioxygenases deduced from the analysis of mutants of the salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1425-37. [PMID: 26093111 DOI: 10.1016/j.bbapap.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022]
Abstract
The genome of the α-proteobacterium Pseudaminobacter salicylatoxidans codes for a ferrous iron containing ring-fission dioxygenase which catalyzes the 1,2-cleavage of (substituted) salicylate(s), gentisate (2,5-dihydroxybenzoate), and 1-hydroxy-2-naphthoate. Sequence alignments suggested that the "salicylate 1,2-dioxygenase" (SDO) from this strain is homologous to gentisate 1,2-dioxygenases found in bacteria, archaea and fungi. In the present study the catalytic mechanism of the SDO and gentisate 1,2-dioxygenases in general was analyzed based on sequence alignments, mutational and previously performed crystallographic studies and mechanistic comparisons with "extradiol- dioxygenases" which cleave aromatic nuclei in the 2,3-position. Different highly conserved amino acid residues that were supposed to take part in binding and activation of the organic substrates were modified in the SDO by site-specific mutagenesis and the enzyme variants subsequently analyzed for the conversion of salicylate, gentisate and 1-hydroxy-2-naphthoate. The analysis of enzyme variants which carried exchanges in the positions Arg83, Trp104, Gly106, Gln108, Arg127, His162 and Asp174 demonstrated that Arg83 and Arg127 were indispensable for enzymatic activity. In contrast, residual activities were found for variants carrying mutations in the residues Trp104, Gly106, Gln108, His162, and Asp174 and some of these mutants still could oxidize gentisate, but lost the ability to convert salicylate. The results were used to suggest a general reaction mechanism for gentisate-1,2-dioxygenases and to assign to certain amino acid residues in the active site specific functions in the cleavage of (substituted) salicylate(s).
Collapse
Affiliation(s)
- Erik Eppinger
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentin, Italy
| | - Sibylle Bürger
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Lenz Steimer
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Grace Peng
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Fabrizio Briganti
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentin, Italy
| | - Andreas Stolz
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany.
| |
Collapse
|
42
|
Gérecová G, Neboháčová M, Zeman I, Pryszcz LP, Tomáška Ľ, Gabaldón T, Nosek J. Metabolic gene clusters encoding the enzymes of two branches of the 3-oxoadipate pathway in the pathogenic yeast Candida albicans. FEMS Yeast Res 2015; 15:fov006. [DOI: 10.1093/femsyr/fov006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
|
43
|
Martins TM, Hartmann DO, Planchon S, Martins I, Renaut J, Silva Pereira C. The old 3-oxoadipate pathway revisited: New insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans. Fungal Genet Biol 2015; 74:32-44. [DOI: 10.1016/j.fgb.2014.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/06/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
|
44
|
Greene GH, McGary KL, Rokas A, Slot JC. Ecology drives the distribution of specialized tyrosine metabolism modules in fungi. Genome Biol Evol 2014; 6:121-32. [PMID: 24391152 PMCID: PMC3914699 DOI: 10.1093/gbe/evt208] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene clusters encoding accessory or environmentally specialized metabolic pathways likely play a significant role in the evolution of fungal genomes. Two such gene clusters encoding enzymes associated with the tyrosine metabolism pathway (KEGG #00350) have been identified in the filamentous fungus Aspergillus fumigatus. The l-tyrosine degradation (TD) gene cluster encodes a functional module that facilitates breakdown of the phenolic amino acid, l-tyrosine through a homogentisate intermediate, but is also involved in the production of pyomelanin, a fungal pathogenicity factor. The gentisate catabolism (GC) gene cluster encodes a functional module likely involved in phenolic compound degradation, which may enable metabolism of biphenolic stilbenes in multiple lineages. Our investigation of the evolution of the TD and GC gene clusters in 214 fungal genomes revealed spotty distributions partially shaped by gene cluster loss and horizontal gene transfer (HGT). Specifically, a TD gene cluster shows evidence of HGT between the extremophilic, melanized fungi Exophiala dermatitidis and Baudoinia compniacensis, and a GC gene cluster shows evidence of HGT between Sordariomycete and Dothideomycete grass pathogens. These results suggest that the distribution of specialized tyrosine metabolism modules is influenced by both the ecology and phylogeny of fungal species.
Collapse
|
45
|
Abstract
White campion (Silene latifolia) is a dioecious plant that emits 1,2-dimethoxybenzene (veratrole), a potent pollinator attractant to the nocturnal moth Hadena bicruris. Little is known about veratrole biosynthesis, although methylation of 2-methoxyphenol (guaiacol), another volatile emitted from white campion flowers, has been proposed. Here, we explore the biosynthetic route to veratrole. Feeding white campion flowers with [(13)C9]l-phenylalanine increased guaiacol and veratrole emission, and a significant portion of these volatile molecules contained the stable isotope. When white campion flowers were treated with the phenylalanine ammonia lyase inhibitor 2-aminoindan-2-phosphonic acid, guaiacol and veratrole levels were reduced by 50% and 63%, respectively. Feeding with benzoic acid (BA) or salicylic acid (SA) increased veratrole emission 2-fold, while [(2)H5]BA and [(2)H6]SA feeding indicated that the benzene ring of both guaiacol and veratrole is derived from BA via SA. We further report guaiacol O-methyltransferase (GOMT) activity in the flowers of white campion. The enzyme was purified to apparent homogeneity, and the peptide sequence matched that encoded by a recently identified complementary DNA (SlGOMT1) from a white campion flower expressed sequence tag database. Screening of a small population of North American white campion plants for floral volatile emission revealed that not all plants emitted veratrole or possessed GOMT activity, and SlGOMT1 expression was only observed in veratrole emitters. Collectively these data suggest that veratrole is derived by the methylation of guaiacol, which itself originates from phenylalanine via BA and SA, and therefore implies a novel branch point of the general phenylpropanoid pathway.
Collapse
|
46
|
Subbotina NM, Kolomytseva MP, Golovleva LA. Metabolism of 3-hydroxybenzoate and gentisate by strain Rhodococcus opacus 1CP. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712030137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis. PLoS One 2012; 7:e35750. [PMID: 22563396 PMCID: PMC3338533 DOI: 10.1371/journal.pone.0035750] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/24/2012] [Indexed: 01/09/2023] Open
Abstract
Candida orthopsilosis is closely related to the fungal pathogen Candida parapsilosis. However, whereas C. parapsilosis is a major cause of disease in immunosuppressed individuals and in premature neonates, C. orthopsilosis is more rarely associated with infection. We sequenced the C. orthopsilosis genome to facilitate the identification of genes associated with virulence. Here, we report the de novo assembly and annotation of the genome of a Type 2 isolate of C. orthopsilosis. The sequence was obtained by combining data from next generation sequencing (454 Life Sciences and Illumina) with paired-end Sanger reads from a fosmid library. The final assembly contains 12.6 Mb on 8 chromosomes. The genome was annotated using an automated pipeline based on comparative analysis of genomes of Candida species, together with manual identification of introns. We identified 5700 protein-coding genes in C. orthopsilosis, of which 5570 have an ortholog in C. parapsilosis. The time of divergence between C. orthopsilosis and C. parapsilosis is estimated to be twice as great as that between Candida albicans and Candida dubliniensis. There has been an expansion of the Hyr/Iff family of cell wall genes and the JEN family of monocarboxylic transporters in C. parapsilosis relative to C. orthopsilosis. We identified one gene from a Maltose/Galactoside O-acetyltransferase family that originated by horizontal gene transfer from a bacterium to the common ancestor of C. orthopsilosis and C. parapsilosis. We report that TFB3, a component of the general transcription factor TFIIH, undergoes alternative splicing by intron retention in multiple Candida species. We also show that an intein in the vacuolar ATPase gene VMA1 is present in C. orthopsilosis but not C. parapsilosis, and has a patchy distribution in Candida species. Our results suggest that the difference in virulence between C. parapsilosis and C. orthopsilosis may be associated with expansion of gene families.
Collapse
|
48
|
Montersino S, van Berkel WJH. Functional annotation and characterization of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:433-42. [PMID: 22207056 DOI: 10.1016/j.bbapap.2011.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 12/11/2022]
Abstract
The genome of Rhodococcus jostii RHA1 contains an unusually large number of oxygenase encoding genes. Many of these genes have yet an unknown function, implying that a notable part of the biochemical and catabolic biodiversity of this Gram-positive soil actinomycete is still elusive. Here we present a multiple sequence alignment and phylogenetic analysis of putative R. jostii RHA1 flavoprotein hydroxylases. Out of 18 candidate sequences, three hydroxylases are absent in other available Rhodococcus genomes. In addition, we report the biochemical characterization of 3-hydroxybenzoate 6-hydroxylase (3HB6H), a gentisate-producing enzyme originally mis-annotated as salicylate hydroxylase. R. jostii RHA1 3HB6H expressed in Escherichia coli is a homodimer with each 47kDa subunit containing a non-covalently bound FAD cofactor. The enzyme has a pH optimum around pH 8.3 and prefers NADH as external electron donor. 3HB6H is active with a series of 3-hydroxybenzoate analogues, bearing substituents in ortho- or meta-position of the aromatic ring. Gentisate, the physiological product, is a non-substrate effector of 3HB6H. This compound is not hydroxylated but strongly stimulates the NADH oxidase activity of the enzyme.
Collapse
|