1
|
de Castro Lins P, Hamann PRV, Lima JCB, Gonçalves Barbosa JAR, da Silva Correia JL, de Andrade IA, Knupp Dos Santos DF, Quirino BF, Krüger RH. Biochemical characterization and structure prediction of the Cerrado soil CRB2(1) metagenomic dioxygenase. Enzyme Microb Technol 2024; 182:110544. [PMID: 39527864 DOI: 10.1016/j.enzmictec.2024.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Dioxygenases are enzymes involved in the conversion of polyconic aromatic hydroxycarbons (PAHs), attracting significant biotechnological interest for the conversion of recalcitrant organic compounds. Furthermore, few studies show that dioxygenases can take on the function of resistance genes in clones. This enzymatic versatility opens up new opportunities for elucidating the mechanisms of microbial resistance, as well as its biotechnological application. In this work, a Cerrado soil dioxygenase named CRB2(1) was biochemically characterized. The enzyme was shown to have optimal activity at pH 7; a temperature of 30 °C; and using iron ions as a cofactor for substrate cleavage. The kinetic catalytic parameters of CRB2(1) were Vmax = 0.02281 µM/min and KM = 97.6. Its predicted three-dimensional structure obtained using the Modeller software v9.22 based on the crystal structure of gentisate 1,2-dioxygenase from Silicibacter pomeroyi (GDOsp) (PDB ID 3BU7, resolution 2.80 Å, residues 17-374) revealed substrate binding to the cupin domain, where the active site is located. The analyzed substrates interact directly with the iron ion, coordinated by three histidine residues. Changing the iron ion charge modifies the binding between the active site and the substrates. Currently, there is a demand for enzymes that have biotechnological activities of interest. Metagenomics allows analyzing the biotechnological potential of several organisms at the same time, based on sequence and functional activity analyses.
Collapse
Affiliation(s)
- Philippe de Castro Lins
- Cell Biology Department, Enzymology Laboratory, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | | | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | | | | | - Ikaro Alves de Andrade
- Cell Biology Department, Enzymology Laboratory, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | | | | | - Ricardo Henrique Krüger
- Cell Biology Department, Enzymology Laboratory, University of Brasilia, Brasilia, DF 70910-900, Brazil.
| |
Collapse
|
2
|
Fan K, Feng Q, Li K, Lin J, Wang W, Cao Y, Gai H, Song H, Huang T, Zhu Q, Xiao M. The metabolism of pyrene by a novel Altererythrobacter sp. with in-situ co-substrates: A mechanistic analysis based on pathway, genomics, and enzyme activity. CHEMOSPHERE 2022; 307:135784. [PMID: 35870609 DOI: 10.1016/j.chemosphere.2022.135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Using co-substrates to enhance the metabolic activity of microbes is an effective way for high-molecular-weight polycyclic aromatic hydrocarbons removal in petroleum-contaminated environments. However, the long degradation period and exhausting substrates limit the enhancement of metabolic activity. In this study, Altererythrobacter sp. N1 was screened from petroleum-contaminated soil in Shengli Oilfield, China, which could utilize pyrene as the sole carbon source and energy source. Saturated aromatic fractions and crude oils were used as in-situ co-substrates to enhance pyrene degradation. Enzyme activity was influenced by the different co-substrates. The highest degradation rate (75.98%) was achieved when crude oil was used as the substrate because strain N1 could utilize saturated and aromatic hydrocarbons from crude oil simultaneously to enhance the degrading enzyme activity. Moreover, the phthalate pathway was dominant, while the salicylate pathway was secondary. Furthermore, the Rieske-type aromatic cyclo-dioxygenase gene was annotated in the Altererythrobacter sp. N1 genome for the first time. Therefore, the co-metabolism of pyrene was sustained to achieve a long degradation period without the addition of exogenous substrates. This study is valuable as a potential method for the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Kaiqi Fan
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qingmin Feng
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Kun Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Yanbin Cao
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Hengjun Gai
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hongbing Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Tingting Huang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Quanhong Zhu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Meng Xiao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Baek JH, Kim KH, Lee Y, Jeong SE, Jin HM, Jia B, Jeon CO. Elucidating the biodegradation pathway and catabolic genes of benzophenone-3 in Rhodococcus sp. S2-17. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118890. [PMID: 35085657 DOI: 10.1016/j.envpol.2022.118890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A new bacterium, Rhodococcus sp. S2-17, which could completely degrade an emerging organic pollutant, benzophenone-3 (BP-3), was isolated from contaminated sediment through an enrichment procedure, and its BP-3 catabolic pathway and genes were identified through metabolic intermediate and transcriptomic analyses and biochemical and genetic studies. Metabolic intermediate analysis suggested that strain S2-17 may degrade BP-3 using a catabolic pathway progressing via the intermediates BP-1, 2,4,5-trihydroxy-benzophenone, 3-hydroxy-4-benzoyl-2,4-hexadienedioic acid, 4-benzoyl-3-oxoadipic acid, 3-oxoadipic acid, and benzoic acid. A putative BP-3 catabolic gene cluster including cytochrome P450, flavin-dependent oxidoreductase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, and α/β hydrolase genes was identified through genomic and transcriptomic analyses. Genes encoding the cytochrome P450 complex that demethylates BP-3 to BP-1 were functionally verified through protein expression, and the functions of the other genes were also verified through knockout mutant construction and intermediate analysis. This study suggested that strain S2-17 might have acquired the ability to catabolize BP-3 by recruiting the cytochrome P450 complex and α/β hydrolase, which hydrolyzes 4-benzoyl-3-oxoadipic acid to benzoic acid and 3-oxoadipic acid, genes, providing insights into the recruitment of genes of for the catabolism of emerging organic pollutants.
Collapse
Affiliation(s)
- Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yunhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea; Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Hyun Mi Jin
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Dai C, Ma F, Ma Q, Yang J, Li Y, Yang B, Qu Y. Investigation of indole biodegradation by Cupriavidus sp. strain IDO with emphases on downstream biotransformation and indigo production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8369-8381. [PMID: 34490563 DOI: 10.1007/s11356-021-14444-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Indole, as a typical N-heterocyclic aromatic pollutant, poses risks to living things; however, indole-biotransformation mechanisms remain under-discussed, especially those related to its downstream biotransformation. Here, we systematically investigated the characteristics of indole degradation by strain Cupriavidus sp. IDO. We found that Cupriavidus sp. IDO could utilize 25 to 150 mg/L indole within 40 h and identified three intermediates (2-oxindole, indigo, and isatin). Additionally, integrated genomics and proteomics analysis of the indole biotransformation mechanism in strain IDO revealed 317 proteins showing significant changes (262 upregulated and 55 downregulated) in the presence of indole. Among these, three clusters containing indole oxidoreductase, CoA-thioester ligase, and gentisate 1,2-oxidoreductase were identified as potentially responsible for upstream and downstream indole metabolism. Moreover, HPLC-MS and -omics analysis offered insight into the indole-degradation pathway in strain IDO. Furthermore, the indole oxidoreductase IndAB, which initiates indole degradation, was heterologously expressed in Escherichia coli BL21(DE3). Optimization by the response surface methodology resulted in a maximal production of 135.0 mg/L indigo by the recombination strains in tryptophan medium. This work enriches our understanding of the indole-biodegradation process and provides new insights into multiple indole-degradation pathways in natural environments.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bingyu Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
5
|
Characterization of Gentisate 1,2-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and Its Stabilization by Immobilization on Nickel-Functionalized Magnetic Nanoparticles. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was the biochemical and kinetic characterization of the gentisate 1,2-dioxygenase (GDO) from Pseudarthrobacter phenanthrenivorans Sphe3 and the development of a nanobiocatalyst by its immobilization on Ni2+-functionalized Fe3O4-polydopamine magnetic nanoparticles (Ni2+-PDA-MNPs). This is the first GDO to be immobilized. The gene encoding the GDO was cloned with an N-terminal His-tag and overexpressed in E. coli. The nanoparticles showed a high purification efficiency of GDO from crude cell lysates with a maximum activity recovery of 97%. The immobilized enzyme was characterized by Fourier transform infrared spectroscopy (FTIR). The reaction product was identified by 1H NMR. Both free and immobilized GDO exhibited Michaelis–Menten kinetics with Km values of 25.9 ± 4.4 and 82.5 ± 14.2 μM and Vmax values of 1.2 ± 0.1 and 0.03 ± 0.002 mM*s−1, respectively. The thermal stability of the immobilized GDO was enhanced at 30 °C, 40 °C, and 50 °C, compared to the free GDO. Stored at −20 °C, immobilized GDO retained more than 60% of its initial activity after 30 d, while the free enzyme completely lost its activity after 10 d. Furthermore, the immobilized nanoparticle–enzyme conjugate retained more than 50% enzyme activity up to the fifth cycle.
Collapse
|
6
|
Gentisate 1,2-dioxygenase from the gram-positive bacteria Rhodococcus opacus 1CP: Identical active sites vs. different substrate selectivities. Biochimie 2020; 180:90-103. [PMID: 33122105 DOI: 10.1016/j.biochi.2020.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/10/2020] [Accepted: 10/25/2020] [Indexed: 11/20/2022]
Abstract
Gentisate 1,2-dioxygenases belong to the class III ring-cleaving dioxygenases catalyzing key reactions of aromatic compounds degradation by aerobic microorganisms. In the present work, the results of complete molecular, structural, and functional investigations of the gentisate 1,2-dioxygenase (rho-GDO) from a gram-positive bacterium Rhodococcus opacus 1CP growing on 3-hydroxybenzoate as a sole source of carbon and energy are presented. The purified enzyme showed a narrow substrate specificity. Among fourteen investigated substrate analogues only gentisate was oxidized by the enzyme, what can be potentially applied in biosensor technologies. The rho-GDO encoding gene was identified in the genomic DNA of the R. opacus 1CP. According to phylogenetic analysis, the rho-GDO belongs to the group of apparently most recently acquired activities in bacterial genera Rhodococcus, Arthrobacter, Corynebacterium, Nocardia, Amycolatopsis, Comamonas, and Streptomyces. Homology modeling the rho-GDO 3D-structure demonstrates the composition identity of the first-sphere residues of the active site of rho-GDO and salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans (RCSB PDB: 2PHD), despite of their different substrate specificities. The phenomenon described for the first time for this family of enzymes supposes a more complicated mechanism of substrate specificity than previously imagined, and makes the rho-GDO a convenient model for a novel direction of structure-function relationship studies.
Collapse
|
7
|
Li N, Peng Q, Yao L, He Q, Qiu J, Cao H, He J, Niu Q, Lu Y, Hui F. Roles of the Gentisate 1,2-Dioxygenases DsmD and GtdA in the Catabolism of the Herbicide Dicamba in Rhizorhabdus dicambivorans Ndbn-20. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9287-9298. [PMID: 32786824 DOI: 10.1021/acs.jafc.0c01523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Chlorogentisate is a key intermediate in the catabolism of the herbicide dicamba in R. dicambivorans Ndbn-20. In this study, we identified two gentisate 1,2-dioxygenases (GDOs), DsmD and GtdA, from Ndbn-20. The amino acid sequence similarity between DsmD and GtdA is 51%. Both of them are dimers and showed activities to gentisate and 3-chlorogentisate but not 3,6-dichlorogentisate (3,6-DCGA) or 6-chlorogentisate in vitro. The kcat/Km of DsmD for 3-chlorogentisate was 28.7 times higher than that of GtdA, whereas the kcat/Km of DsmD for gentisate was only one-fourth of that of GtdA. Transcription of dsmD was dramatically induced by 3-chlorogentisate but not gentisate, whereas gtdA was not induced. Disruption of dsmD resulted in a significant decline in the degradation rates of 3-chlorogentisate and dicamba but had no effect on the degradation of gentisate, whereas the result of disruption of gtdA was converse; the disruption of both dsmD and gtdA led to the inability to degrade 3-chlorogentisate and gentisate. This study revealed that 3-chlorogentisate but not gentisate or 3,6-DCGA is the ring-cleavage substrate in the dicamba degradation pathway in R. dicambivorans Ndbn-20; DsmD is specifically responsible for cleavage of 3-chlorogentisate, whereas GtdA is a general GDO involved in the catabolism of various natural aromatic compounds.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Qian Peng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Li Yao
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Qin He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qiuhong Niu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Yunfeng Lu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, Henan 473000, China
| | - Fengli Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
8
|
Jroundi F, Descostes M, Povedano-Priego C, Sánchez-Castro I, Suvannagan V, Grizard P, Merroun ML. Profiling native aquifer bacteria in a uranium roll-front deposit and their role in biogeochemical cycle dynamics: Insights regarding in situ recovery mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137758. [PMID: 32179349 DOI: 10.1016/j.scitotenv.2020.137758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 05/13/2023]
Abstract
A uranium-mineralized sandy aquifer, planned for mining by means of uranium in situ recovery (U ISR), harbors a reservoir of bacterial life that may influence the biogeochemical cycles surrounding uranium roll-front deposits. Since microorganisms play an important role at all stages of U ISR, a better knowledge of the resident bacteria before any ISR actuations is essential to face environmental quality assessment. The focus here was on the characterization of bacteria residing in an aquifer surrounding a uranium roll-front deposit that forms part of an ISR facility project at Zoovch Ovoo (Mongolia). Water samples were collected following the natural redox zonation inherited in the native aquifer, including the mineralized orebody, as well as compartments located both upstream (oxidized waters) and downstream (reduced waters) of this area. An imposed chemical zonation for all sensitive redox elements through the roll-front system was observed. In addition, high-throughput sequencing data showed that the bacterial community structure was shaped by the redox gradient and oxygen availability. Several interesting bacteria were identified, including sulphate-reducing (e.g. Desulfovibrio, Nitrospira), iron-reducing (e.g. Gallionella, Sideroxydans), iron-oxidizing (e.g. Rhodobacter, Albidiferax, Ferribacterium), and nitrate-reducing bacteria (e.g. Pseudomonas, Aquabacterium), which may also be involved in metal reduction (e.g. Desulfovibrio, Ferribacterium, Pseudomonas, Albidiferax, Caulobacter, Zooglea). Canonical correspondence analysis (CCA) and co-occurrence patterns confirmed strong correlations among the bacterial genera, suggesting either shared/preferred environmental conditions or the performance of similar/complementary functions. As a whole, the bacterial community residing in each aquifer compartment would appear to define an ecologically functional ecosystem, containing suitable microorganisms (e.g. acidophilic bacteria) prone to promote the remediation of the acidified aquifer by natural attenuation. Assessing the composition and structure of the aquifer's native bacteria is a prerequisite for understanding natural attenuation and predicting the role of bacterial input in improving ISR efficiency.
Collapse
Affiliation(s)
- Fadwa Jroundi
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | | | - Cristina Povedano-Priego
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | - Iván Sánchez-Castro
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | | | - Pierre Grizard
- ORANO Mining, 125 avenue de Paris, F-92330 Châtillon, France.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
9
|
Li X, Chu Z, Du X, Qiu Y, Li Y. Combined molecular docking, homology modelling and density functional theory studies to modify dioxygenase to efficiently degrade aromatic hydrocarbons. RSC Adv 2019; 9:11465-11475. [PMID: 35520246 PMCID: PMC9063381 DOI: 10.1039/c8ra10663k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/06/2019] [Indexed: 01/16/2023] Open
Abstract
To promote the biodegradation of aromatic hydrocarbons in petroleum-contaminated soils, naphthalene dioxygenase (NDO), which is the key metabolic enzyme that degrades aromatic hydrocarbons, was modified using molecular docking and homology modelling. The novel NDO enzymes screened can efficiently degrade the target aromatic hydrocarbons naphthalene, anthracene, pyrene and benzo[a]pyrene. The docking showed that the key amino acid residues at the binding site of the NDO enzyme include both hydrophilic residues (Asn201, Asp205, His208, His213, His295 and Asn297) and hydrophobic residues (Phe202, Ala206, Val209, Leu307, Phe352 and Trp358), and the hydrophilic residues were replaced by hydrophobic residues to design 54 kinds of NDO enzyme modification schemes. A total of 14 kinds of novel NDO enzymes designed were found to simultaneously increase the binding affinity to the target aromatic hydrocarbons. The energy barrier and rate constant of the degradation reaction for the NDO enzyme modification were calculated using Gaussian09 software and the KiSThelP program. The novel NDO-7 enzyme exhibited decreases in the energy barrier of 76.28, 26.35, 4.39 and 1.88 kcal mol−1 and increases in the rate constant of 54, 18, 12 and 5 orders of magnitude in the degradation reactions with naphthalene, anthracene, pyrene and benzo[a]pyrene, respectively. These results provide a theoretical basis for the efficient degradation of aromatic hydrocarbons and the modification of their key metabolic enzymes. To promote the biodegradation of aromatic hydrocarbons in petroleum-contaminated soils, naphthalene dioxygenase (NDO), which is the key metabolic enzyme that degrades aromatic hydrocarbons, was modified using molecular docking and homology modelling.![]()
Collapse
Affiliation(s)
- Xingchun Li
- State Key Laboratory of Petroleum Pollution Control
- Beijing 102206
- China
| | - Zhenhua Chu
- College of Environmental Science and Engineering
- North China Electric Power University
- Beijing 102206
- China
| | - Xianyuan Du
- State Key Laboratory of Petroleum Pollution Control
- Beijing 102206
- China
| | - Youli Qiu
- College of Environmental Science and Engineering
- North China Electric Power University
- Beijing 102206
- China
| | - Yu Li
- College of Environmental Science and Engineering
- North China Electric Power University
- Beijing 102206
- China
| |
Collapse
|
10
|
Kim KH, Jia X, Jia B, Jeon CO. Identification and Characterization of l-Malate Dehydrogenases and the l-Lactate-Biosynthetic Pathway in Leuconostoc mesenteroides ATCC 8293. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8086-8093. [PMID: 29998731 DOI: 10.1021/acs.jafc.8b02649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One putative l-lactate dehydrogenase gene (l- ldh) and three putative d- ldh genes from Leuconostoc mesenteroides ATCC 8293 were overexpressed, and their enzymatic properties were investigated. Only one gene showed d-LDH activity, catalyzing pyruvate and d-lactate interconversion, whereas the other genes displayed l- and d-malate dehydrogenase (MDH) activity, catalyzing oxaloacetate and l- and d-malate interconversion, suggesting that strain ATCC 8293 may not harbor an l- ldh gene. Putative phosphoenolpyruvate carboxylase (PEPC)- and malolactic enzyme (MLE)-encoding genes were identified from strain ATCC 8293, and sequence analysis showed that they could exhibit PEPC and MLE activities, respectively. l-Lactate production and transcriptional expression of the mle gene in this strain were highly increased in the presence of l-malate. We propose that in strain ATCC 8293, which lacks an l- ldh gene, l-lactate is produced through sequential enzymatic conversions from phosphoenolpyruvate to oxaloacetate, then l-malate, and finally l-lactate by PEPC, l-MDH, and MLE, respectively.
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Life Science , Chung-Ang University , 84, HeukSeok-Ro , Seoul 06974 , Republic of Korea
| | - Xiaomeng Jia
- Department of Life Science , Chung-Ang University , 84, HeukSeok-Ro , Seoul 06974 , Republic of Korea
| | - Baolei Jia
- Department of Life Science , Chung-Ang University , 84, HeukSeok-Ro , Seoul 06974 , Republic of Korea
| | - Che Ok Jeon
- Department of Life Science , Chung-Ang University , 84, HeukSeok-Ro , Seoul 06974 , Republic of Korea
| |
Collapse
|
11
|
Kim KH, Jia B, Jeon CO. Identification of Trans-4-Hydroxy-L-Proline as a Compatible Solute and Its Biosynthesis and Molecular Characterization in Halobacillus halophilus. Front Microbiol 2017; 8:2054. [PMID: 29104571 PMCID: PMC5655121 DOI: 10.3389/fmicb.2017.02054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Halobacillus halophilus, a moderately halophilic bacterium, accumulates a variety of compatible solutes including glycine betaine, glutamate, glutamine, proline, and ectoine to cope with osmotic stress. Non-targeted analysis of intracellular organic compounds using 1H-NMR showed that a large amount of trans-4-hydroxy-L-proline (Hyp), which has not been reported as a compatible solute in H. halophilus, was accumulated in response to high NaCl salinity, suggesting that Hyp may be an important compatible solute in H. halophilus. Candidate genes encoding proline 4-hydroxylase (PH-4), which hydroxylates L-proline to generate Hyp, were retrieved from the genome of H. halophilus through domain searches based on the sequences of known PH-4 proteins. A gene, HBHAL_RS11735, which was annotated as a multidrug DMT transporter permease in GenBank, was identified as the PH-4 gene through protein expression analysis in Escherichia coli. The PH-4 gene constituted a transcriptional unit with a promoter and a rho-independent terminator, and it was distantly located from the proline biosynthetic gene cluster (pro operon). Transcriptional analysis showed that PH-4 gene expression was NaCl concentration-dependent, and was specifically induced by chloride anion, similar to the pro operon. Accumulation of intracellular Hyp was also observed in other bacteria, suggesting that Hyp may be a widespread compatible solute in halophilic and halotolerant bacteria.
Collapse
Affiliation(s)
| | | | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
12
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
13
|
Huang L, Hu H, Tang H, Liu Y, Xu P, Shi J, Lin K, Luo Q, Cui C. Identification and Characterization of a Novel Gentisate 1,2-Dioxygenase Gene from a Halophilic Martelella Strain. Sci Rep 2015; 5:14307. [PMID: 26394696 PMCID: PMC4585797 DOI: 10.1038/srep14307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/24/2015] [Indexed: 01/27/2023] Open
Abstract
Halophilic Martelella strain AD-3, isolated from highly saline petroleum-contaminated soil, can efficiently degrade polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene and anthracene, in 3-5% salinity. Gentisic acid is a key intermediate in the microbial degradation of PAH compounds. However, there is little information on PAH degradation by moderately halophilic bacteria. In this study, a 1,077-bp long gene encoding gentisate 1,2-dioxygenase (GDO) from a halophilic Martelella strain AD-3 was cloned, sequenced, and expressed in Escherichia coli. The recombinant enzyme GDO was purified and characterized in detail. By using the (18)O isotope experiment and LC-MS analysis, the sources of the two oxygen atoms added onto maleylpyruvate were identified as H2O and O2, respectively. The Km and kcat values for gentisic acid were determined to be 26.64 μM and 161.29 s(-1), respectively. In addition, optimal GDO activity was observed at 30 °C, pH 7.0, and at 12% salinity. Site-directed mutagenesis demonstrated the importance of four highly conserved His residues at positions 155, 157, 167, and 169 for enzyme activity. This finding provides new insights into mechanism and variety of gentisate 1,2-dioxygenase for PAH degradation in high saline conditions.
Collapse
Affiliation(s)
- Ling Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jie Shi
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Qishi Luo
- Shanghai Engineering Research Center of Contaminated Sites Remediation, Shanghai Institute for Design & Research in Environmental Engineering Co. Ltd., Shanghai 200232, People’s Republic of China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
14
|
Eppinger E, Ferraroni M, Bürger S, Steimer L, Peng G, Briganti F, Stolz A. Function of different amino acid residues in the reaction mechanism of gentisate 1,2-dioxygenases deduced from the analysis of mutants of the salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1425-37. [PMID: 26093111 DOI: 10.1016/j.bbapap.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022]
Abstract
The genome of the α-proteobacterium Pseudaminobacter salicylatoxidans codes for a ferrous iron containing ring-fission dioxygenase which catalyzes the 1,2-cleavage of (substituted) salicylate(s), gentisate (2,5-dihydroxybenzoate), and 1-hydroxy-2-naphthoate. Sequence alignments suggested that the "salicylate 1,2-dioxygenase" (SDO) from this strain is homologous to gentisate 1,2-dioxygenases found in bacteria, archaea and fungi. In the present study the catalytic mechanism of the SDO and gentisate 1,2-dioxygenases in general was analyzed based on sequence alignments, mutational and previously performed crystallographic studies and mechanistic comparisons with "extradiol- dioxygenases" which cleave aromatic nuclei in the 2,3-position. Different highly conserved amino acid residues that were supposed to take part in binding and activation of the organic substrates were modified in the SDO by site-specific mutagenesis and the enzyme variants subsequently analyzed for the conversion of salicylate, gentisate and 1-hydroxy-2-naphthoate. The analysis of enzyme variants which carried exchanges in the positions Arg83, Trp104, Gly106, Gln108, Arg127, His162 and Asp174 demonstrated that Arg83 and Arg127 were indispensable for enzymatic activity. In contrast, residual activities were found for variants carrying mutations in the residues Trp104, Gly106, Gln108, His162, and Asp174 and some of these mutants still could oxidize gentisate, but lost the ability to convert salicylate. The results were used to suggest a general reaction mechanism for gentisate-1,2-dioxygenases and to assign to certain amino acid residues in the active site specific functions in the cleavage of (substituted) salicylate(s).
Collapse
Affiliation(s)
- Erik Eppinger
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentin, Italy
| | - Sibylle Bürger
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Lenz Steimer
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Grace Peng
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Fabrizio Briganti
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentin, Italy
| | - Andreas Stolz
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany.
| |
Collapse
|
15
|
Recovery of plasmid pEMB1, whose toxin-antitoxin system stabilizes an ampicillin resistance-conferring β-lactamase gene in Escherichia coli, from natural environments. Appl Environ Microbiol 2014; 81:40-7. [PMID: 25304509 DOI: 10.1128/aem.02691-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Non-culture-based procedures were used to investigate plasmids showing ampicillin resistance properties in two different environments: remote mountain soil (Mt. Jeombong) and sludge (Tancheon wastewater treatment plant). Total DNA extracted from the environmental samples was directly transformed into Escherichia coli TOP10, and a single and three different plasmids were obtained from the mountain soil and sludge samples, respectively. Interestingly, the restriction fragment length polymorphism pattern of the plasmid from the mountain soil sample, designated pEMB1, was identical to the pattern of one of the three plasmids from the sludge sample. Complete DNA sequencing of plasmid pEMB1 (8,744 bp) showed the presence of six open reading frames, including a β-lactamase gene. Using BLASTX, the orf5 and orf6 genes were suggested to encode a CopG family transcriptional regulator and a plasmid stabilization system, respectively. Functional characterization of these genes using a knockout orf5 plasmid (pEMB1ΔparD) and the cloning and expression of orf6 (pET21bparE) indicated that these genes were antitoxin (parD) and toxin (parE) genes. Plasmid stability tests using pEMB1 and pEMB1ΔparDE in E. coli revealed that the orf5 and orf6 genes enhanced plasmid maintenance in the absence of ampicillin. Using a PCR-based survey, pEMB1-like plasmids were additionally detected in samples from other human-impacted sites (sludge samples) and two other remote mountain soil samples, suggesting that plasmids harboring a β-lactamase gene with a ParD-ParE toxin-antitoxin system occurs broadly in the environment. This study extends knowledge about the dissemination and persistence of antibiotic resistance genes in naturally occurring microbial populations.
Collapse
|
16
|
Chowdhury PP, Sarkar J, Basu S, Dutta TK. Metabolism of 2-hydroxy-1-naphthoic acid and naphthalene via gentisic acid by distinctly different sets of enzymes in Burkholderia sp. strain BC1. Microbiology (Reading) 2014; 160:892-902. [DOI: 10.1099/mic.0.077495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia sp. strain BC1, a soil bacterium, isolated from a naphthalene balls manufacturing waste disposal site, is capable of utilizing 2-hydroxy-1-naphthoic acid (2H1NA) and naphthalene individually as the sole source of carbon and energy. To deduce the pathway for degradation of 2H1NA, metabolites isolated from resting cell culture were identified by a combination of chromatographic and spectrometric analyses. Characterization of metabolic intermediates, oxygen uptake studies and enzyme activities revealed that strain BC1 degrades 2H1NA via 2-naphthol, 1,2,6-trihydroxy-1,2-dihydronaphthalene and gentisic acid. In addition, naphthalene was found to be degraded via 1,2-dihydroxy-1,2-dihydronaphthalene, salicylic acid and gentisic acid, with the putative involvement of the classical nag pathway. Unlike most other Gram-negative bacteria, metabolism of salicylic acid in strain BC1 involves a dual pathway, via gentisic acid and catechol, with the latter being metabolized by catechol 1,2-dioxygenase. Involvement of a non-oxidative decarboxylase in the enzymic transformation of 2H1NA to 2-naphthol indicates an alternative catabolic pathway for the bacterial degradation of hydroxynaphthoic acid. Furthermore, the biochemical observations on the metabolism of structurally similar compounds, naphthalene and 2-naphthol, by similar but different sets of enzymes in strain BC1 were validated by real-time PCR analyses.
Collapse
Affiliation(s)
- Piyali Pal Chowdhury
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, India
| | - Jayita Sarkar
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, India
| | - Soumik Basu
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, India
| | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, India
| |
Collapse
|
17
|
Lee HJ, Kim SY, Kim PJ, Madsen EL, Jeon CO. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. FEMS Microbiol Ecol 2014; 88:195-212. [DOI: 10.1111/1574-6941.12282] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hyo Jung Lee
- Department of Life Science; Chung-Ang University; Seoul Korea
| | - Sang Yoon Kim
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | - Pil Joo Kim
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | | | - Che Ok Jeon
- Department of Life Science; Chung-Ang University; Seoul Korea
| |
Collapse
|
18
|
Jung JY, Lee SH, Jin HM, Hahn Y, Madsen EL, Jeon CO. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int J Food Microbiol 2013; 163:171-9. [DOI: 10.1016/j.ijfoodmicro.2013.02.022] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/25/2022]
|
19
|
Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 2011; 14:1091-117. [PMID: 22026719 DOI: 10.1111/j.1462-2920.2011.02613.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The relevance of the β-proteobacterial Burkholderiales order in the degradation of a vast array of aromatic compounds, including several priority pollutants, has been largely assumed. In this review, the presence and organization of genes encoding oxygenases involved in aromatics biodegradation in 80 Burkholderiales genomes is analysed. This genomic analysis underscores the impressive catabolic potential of this bacterial lineage, comprising nearly all of the central ring-cleavage pathways reported so far in bacteria and most of the peripheral pathways involved in channelling of a broad diversity of aromatic compounds. The more widespread pathways in Burkholderiales include protocatechuate ortho ring-cleavage, catechol ortho ring-cleavage, homogentisate ring-cleavage and phenylacetyl-CoA ring-cleavage pathways found in at least 60% of genomes analysed. In general, a genus-specific pattern of positional ordering of biodegradative genes is observed in the catabolic clusters of these pathways indicating recent events in its evolutionary history. In addition, a significant bias towards secondary chromosomes, now termed chromids, is observed in the distribution of catabolic genes across multipartite genomes, which is consistent with a genus-specific character. Strains isolated from environmental sources such as soil, rhizosphere, sediment or sludge show a higher content of catabolic genes in their genomes compared with strains isolated from human, animal or plant hosts, but no significant difference is found among Alcaligenaceae, Burkholderiaceae and Comamonadaceae families, indicating that habitat is more of a determinant than phylogenetic origin in shaping aromatic catabolic versatility.
Collapse
Affiliation(s)
- Danilo Pérez-Pantoja
- Center for Advanced Studies in Ecology and Biodiversity, Millennium Nucleus in Plant Functional Genomics, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|