1
|
Retraction: Aeromonas hydrophila flagella glycosylation: Involvement of a lipid carrier. PLoS One 2025; 20:e0324165. [PMID: 40343921 PMCID: PMC12063808 DOI: 10.1371/journal.pone.0324165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
|
2
|
Expansion of Necrosis Depending on Hybrid Motor-Driven Motility of Aeromonas hydrophila in a Murine Wound Infection Model. Microorganisms 2020; 9:microorganisms9010010. [PMID: 33375129 PMCID: PMC7822177 DOI: 10.3390/microorganisms9010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/04/2022] Open
Abstract
The gram-negative bacterium Aeromonas hydrophila is a cause of fulminant and lethal necrotizing soft tissue infections (NSTIs). Suppressing the rapid proliferation of the pathogen and expansion of the necrosis caused in the host is an important issue in clinical practice, but the pathogenic mechanism for the rapid aggravation has not been clarified. In this study, we characterized the function of two types of motor stators in A. hydrophila and explored the role of motility during wound infection. In vitro analysis showed that the motility was reliably maintained while being complemented by the stators. We created a non-motile strain that lacked genes encoding two types of motor stators and analyzed the role of motility in a murine wound infection model. Examination of the bacterial burden in the local infection site and systemic circulation revealed that motility was not essential for the proliferation of A. hydrophila in the host. However, the extent of necrosis at the lesions was lower, and survival times were prolonged in mice infected with the non-motile strain compared with mice infected with the parent strain. These results provide evidence that the rapid expansion of necrosis and the progression to death within a short time period is dependent on the motility of A. hydrophila.
Collapse
|
3
|
Takekawa N, Kojima S, Homma M. Mutational analysis and overproduction effects of MotX, an essential component for motor function of Na+-driven polar flagella of Vibrio. J Biochem 2017; 161:159-166. [PMID: 28173168 DOI: 10.1093/jb/mvw061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial flagellar motor is a rotary motor complex composed of various proteins. The motor contains a central rod, multiple ring-like structures and stators. The Na+-driven polar flagellar motor of the marine bacterium Vibrio alginolyticus has a specific ring, called the ‘T-ring’, which consists of two periplasmic proteins, MotX and MotY. The T-ring is essential for assembly of the torque-generating unit, the PomA/PomB stator complex, into the motor. To investigate the role of the T-ring for motor function, we performed random mutagenesis of the motX gene on a plasmid. The isolated MotX mutants showed nonmotile, slow-motile, and up-motile phenotypes by the expression from the plasmid. Deletion analysis indicated that the C-terminal region and the signal peptide in MotX are not always essential for flagellar motor function. We also found that overproduction of MotX caused the delay of growth and aberrant cell shape. MotX might have unexpected roles not only in flagellar motor function but also in cell morphology control.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Brenzinger S, Dewenter L, Delalez NJ, Leicht O, Berndt V, Paulick A, Berry RM, Thanbichler M, Armitage JP, Maier B, Thormann KM. Mutations targeting the plug-domain of the Shewanella oneidensis proton-driven stator allow swimming at increased viscosity and under anaerobic conditions. Mol Microbiol 2016; 102:925-938. [PMID: 27611183 DOI: 10.1111/mmi.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Shewanella oneidensis MR-1 possesses two different stator units to drive flagellar rotation, the Na+ -dependent PomAB stator and the H+ -driven MotAB stator, the latter possibly acquired by lateral gene transfer. Although either stator can independently drive swimming through liquid, MotAB-driven motors cannot support efficient motility in structured environments or swimming under anaerobic conditions. Using ΔpomAB cells we isolated spontaneous mutants able to move through soft agar. We show that a mutation that alters the structure of the plug domain in MotB affects motor functions and allows cells to swim through media of increased viscosity and under anaerobic conditions. The number and exchange rates of the mutant stator around the rotor were not significantly different from wild-type stators, suggesting that the number of stators engaged is not the cause of increased swimming efficiency. The swimming speeds of planktonic mutant MotAB-driven cells was reduced, and overexpression of some of these stators caused reduced growth rates, implying that mutant stators not engaged with the rotor allow some proton leakage. The results suggest that the mutations in the MotB plug domain alter the proton interactions with the stator ion channel in a way that both increases torque output and allows swimming at decreased pmf values.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbiology and Molecular Biology at the IFZ, Justus-Liebig-Universität Gießen, Gießen, 35392, Germany.,Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany
| | - Lena Dewenter
- Department of Physics, Universität Köln, Cologne, 50674, Germany
| | | | - Oliver Leicht
- Philipps-Universität, Marburg, Germany LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
| | - Volker Berndt
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany
| | - Anja Paulick
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany
| | - Richard M Berry
- Physics Department, University of Oxford, Oxford, OX1 3QU, UK
| | - Martin Thanbichler
- Philipps-Universität, Marburg, Germany LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany.,Max-Planck-Institut für terrestrische Mikrobiologie & LOEWE Center für Synthetische Mikrobiologie, Marburg, 35043, Germany
| | | | - Berenike Maier
- Department of Physics, Universität Köln, Cologne, 50674, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology at the IFZ, Justus-Liebig-Universität Gießen, Gießen, 35392, Germany
| |
Collapse
|
5
|
Merino S, Tomás JM. The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella. Front Microbiol 2016; 7:1150. [PMID: 27507965 PMCID: PMC4960245 DOI: 10.3389/fmicb.2016.01150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022] Open
Abstract
Aeromonas hydrophila sodium-driven polar flagellum has a complex stator-motor. Consist of two sets of redundant and non-exchangeable proteins (PomA/PomB and PomA2/PomB2), which are homologs to other sodium-conducting polar flagellum stator motors; and also two essential proteins (MotX and MotY), that they interact with one of those two redundant pairs of proteins and form the T-ring. In this work, we described an essential protein for polar flagellum stability and rotation which is orthologs to Vibrio spp. FlgT and it is encoded outside of the A. hydrophila polar flagellum regions. The flgT was present in all mesophilic Aeromonas strains tested and also in the non-motile Aeromonas salmonicida. The A. hydrophila ΔflgT mutant is able to assemble the polar flagellum but is more unstable and released into the culture supernatant from the cell upon completion assembly. Presence of FlgT in purified polar hook-basal bodies (HBB) of wild-type strain was confirmed by Western blotting and electron microscopy observations showed an outer ring of the T-ring (H-ring) which is not present in the ΔflgT mutant. Anchoring and motility of proton-driven lateral flagella was not affected in the ΔflgT mutant and specific antibodies did not detect FlgT in purified lateral HBB of wild type strain.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | - Juan M Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| |
Collapse
|
6
|
Kakkanat A, Totsika M, Schaale K, Duell BL, Lo AW, Phan MD, Moriel DG, Beatson SA, Sweet MJ, Ulett GC, Schembri MA. The role of H4 flagella in Escherichia coli ST131 virulence. Sci Rep 2015; 5:16149. [PMID: 26548325 PMCID: PMC4637896 DOI: 10.1038/srep16149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/02/2015] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug resistant clone associated with urinary tract and bloodstream infections. Most ST131 strains exhibit resistance to multiple antibiotics and cause infections associated with limited treatment options. The largest sub-clonal ST131 lineage is resistant to fluoroquinolones, contains the type 1 fimbriae fimH30 allele and expresses an H4 flagella antigen. Flagella are motility organelles that contribute to UPEC colonisation of the upper urinary tract. In this study, we examined the specific role of H4 flagella in ST131 motility and interaction with host epithelial and immune cells. We show that the majority of H4-positive ST131 strains are motile and are enriched for flagella expression during static pellicle growth. We also tested the role of H4 flagella in ST131 through the construction of specific mutants, over-expression strains and isogenic mutants that expressed alternative H1 and H7 flagellar subtypes. Overall, our results revealed that H4, H1 and H7 flagella possess conserved phenotypes with regards to motility, epithelial cell adhesion, invasion and uptake by macrophages. In contrast, H4 flagella trigger enhanced induction of the anti-inflammatory cytokine IL-10 compared to H1 and H7 flagella, a property that may contribute to ST131 fitness in the urinary tract.
Collapse
Affiliation(s)
- Asha Kakkanat
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kolja Schaale
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Duell
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Duarte AS, Cavaleiro E, Pereira C, Merino S, Esteves AC, Duarte EP, Tomás JM, Correia AC. Aeromonas piscicola AH-3 expresses an extracellular collagenase with cytotoxic properties. Lett Appl Microbiol 2014; 60:288-97. [PMID: 25443157 DOI: 10.1111/lam.12373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/10/2014] [Accepted: 11/26/2014] [Indexed: 01/01/2023]
Abstract
UNLABELLED The aim of this study was to investigate the presence and the phenotypic expression of a gene coding for a putative collagenase. This gene (AHA_0517) was identified in Aeromonas hydrophila ATCC 7966 genome and named colAh. We constructed and characterized an Aeromonas piscicola AH-3::colAh knockout mutant. Collagenolytic activity of the wild-type and mutant strains was determined, demonstrating that colAh encodes for a collagenase. ColAh-collagen interaction was assayed by Far-Western blot, and cytopathic effects were investigated in Vero cells. We demonstrated that ColAh is a gluzincin metallopeptidase (approx. 100 kDa), able to cleave and physically interact with collagen, that contributes for Aeromonas collagenolytic activity and cytotoxicity. ColAh possess the consensus HEXXH sequence and a glutamic acid as the third zinc binding positioned downstream the HEXXH motif, but has low sequence similarity and distinct domain architecture to the well-known clostridial collagenases. In addition, these results highlight the importance of exploring new microbial collagenases that may have significant relevance for the health and biotechnological industries. SIGNIFICANCE AND IMPACT OF THE STUDY Collagenases play a central role in processes where collagen digestion is needed, for example host invasion by pathogenic micro-organisms. We identified a new collagenase from Aeromonas using an integrated in silico/in vitro strategy. This enzyme is able to bind and cleave collagen, contributes for AH-3 cytotoxicity and shares low similarity with known bacterial collagenases. This is the first report of an enzyme belonging to the gluzincin subfamily of the M9 family of peptidases in Aeromonas. This study increases the current knowledge on collagenolytic enzymes bringing new perspectives for biotechnology/medical purposes.
Collapse
Affiliation(s)
- A S Duarte
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Aeromonas species are inhabitants of aquatic environments and are able to cause disease in humans and fish among other animals. In aquaculture, they are responsible for the economically important diseases of furunculosis and motile Aeromonas septicaemia (MAS). Whereas gastroenteritis and wound infections are the major human diseases associated with the genus. As they inhabit and survive in diverse environments, aeromonads possess a wide range of colonisation factors. The motile species are able to swim in liquid environments through the action of a single polar flagellum, the flagellin subunits of which are glycosylated; although essential for function the biological role of glycan addition is yet to be determined. Approximately 60% of aeromonads possess a second lateral flagella system that is expressed in viscous environments for swarming over surfaces; both flagellar systems have been shown to be important in the initial colonisation of surfaces. Subsequently, other non-flagellar colonisation factors are employed; these can be both filamentous and non-filamentous. The aeromonads possess a number of fimbrial systems with the bundle-forming MSHA type IV pilus system, having a major role in human cell adherence. Furthermore, a series of outer-membrane proteins have also been implicated in the aeromonad adhesion process. A number of strains are also capable of cell invasion and that maybe linked with the more invasive diseases of bacteraemia or wound infections. These strains employ cell surface factors that allow the colonisation of these niches that protect them from the host's immune system such as S-layers, capsules or particular lipopolysaccharides.
Collapse
Affiliation(s)
- Rebecca Lowry
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Sabela Balboa
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom; Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Beaz-Hidalgo R, Figueras MJ. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. JOURNAL OF FISH DISEASES 2013; 36:371-388. [PMID: 23305319 DOI: 10.1111/jfd.12025] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 05/27/2023]
Abstract
It is widely recognized that Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish, causing significant mortality in both wild and farmed freshwater and marine fish species that damage the economics of the aquaculture sector. The descriptions of the complete genomes of Aeromonas species have allowed the identification of an important number of virulence genes that affect the pathogenic potential of these bacteria. This review will focus on the most relevant information derived from the available Aeromonas genomes in relation to virulence and on the diverse virulence factors that actively participate in host adherence, colonization and infection, including structural components, extracellular factors, secretion systems, iron acquisition and quorum sensing mechanisms.
Collapse
Affiliation(s)
- R Beaz-Hidalgo
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | |
Collapse
|
10
|
Tomás JM. The main Aeromonas pathogenic factors. ISRN MICROBIOLOGY 2012; 2012:256261. [PMID: 23724321 PMCID: PMC3658858 DOI: 10.5402/2012/256261] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella.
Collapse
Affiliation(s)
- J M Tomás
- Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
11
|
Bubendorfer S, Held S, Windel N, Paulick A, Klingl A, Thormann KM. Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32. Mol Microbiol 2011; 83:335-50. [PMID: 22151089 DOI: 10.1111/j.1365-2958.2011.07934.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial flagellar motors are intricate nanomachines in which the stator units and rotor component FliM may be dynamically exchanged during function. Similar to other bacterial species, the gammaproteobacterium Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system along with a corresponding stator unit. Expression of the secondary system occurs during planktonic growth in complex media and leads to the formation of a subpopulation with one or more additional flagella at random positions in addition to the primary polar system. We used physiological and phenotypic characterizations of defined mutants in concert with fluorescent microscopy on labelled components of the two different systems, the stator proteins PomB and MotB, the rotor components FliM(1) and FliM(2), and the auxiliary motor components MotX and MotY, to determine localization, function and dynamics of the proteins in the flagellar motors. The results demonstrate that the polar flagellum is driven by a Na(+)-dependent FliM(1)/PomAB/MotX/MotY flagellar motor while the secondary system is rotated by a H(+)-dependent FliM(2)/MotAB motor. The components were highly specific for their corresponding motor and are unlikely to be extensively swapped or shared between the two flagellar systems under planktonic conditions. The results have implications for both specificity and dynamics of flagellar motor components.
Collapse
Affiliation(s)
- Sebastian Bubendorfer
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | | | | | | | | | | |
Collapse
|