1
|
Zhang J, Chai Q, Goodwin PH, Zhu W, Xia M, Sun R, Xu W, Wu C, Song Y, Dong Q, Yang L. FpCBS Affects a Diverse Range of Functions of Fusarium pseudograminearum Impacting Its Virulence to Wheat. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40405798 DOI: 10.1111/pce.15622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/24/2025]
Abstract
A cystathionine β-synthase (CBS) gene, FpCBS, of the wheat crown rot pathogen, Fusarium pseudograminearum, was identified. FpCBS was highly expressed during conidiation and the early phases of infection. Compared to the wild-type and FpCBS complemented strains, the FpCBS deletion strain had a similar hyphal morphology and growth rate but reduced conidiation. In culture, the FpCBS deletion strain showed broad-scale changes with a decrease in H2S levels, changes in sulphur-containing amino acids and 1207 differentially expressed proteins. The deletion strain also showed reduced deoxynivalenol (DON) production, cellophane penetration ability, antioxidant capacity, as well as increased hyphal iron levels, sensitivity to H2O2 and lipid peroxidation. During infection, the ΔFpcbs strain showed diminished virulence to wheat with fewer penetration structures, and there was a stronger host defence response with wheat epidermal cells having thickened walls and greater reactive oxygen species accumulation. Transcriptomic analysis of infected leaves showed 1954 differentially expressed genes in the FpCBS deletion strain compared to the wild-type strain. This included genes for sulphur metabolism, antioxidative defence, plant cell wall-degrading enzymes and trichothecene production. FpCBS not only plays a pivotal role in sulphur metabolism and H2S production, but it is also important for a broad range of fungal functions, including iron homoeostasis, mycotoxin production and development (conidiation and penetration structures). These factors may all contribute to varying extents to the significant decrease in virulence of the FpCBS deletion strain. The findings have shown that FpCBS is important for much more than sulphur metabolism and H2S synthesis. However, its role in virulence highlights its potential as a novel target for developing strategies to control wheat crown rot.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Qiuyuan Chai
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Wenqian Zhu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Mingcong Xia
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Runhong Sun
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Wen Xu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Chao Wu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Yajing Song
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Qianqian Dong
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| | - Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Biopesticide Engineering Research Center, Henan International Joint Laboratory of Crop Protection, Zhengzhou, P. R. China
| |
Collapse
|
2
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
3
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
4
|
Meng Q, Li Y, Xu Y, Wang Y. Acetobacter and lactobacillus alleviate the symptom of insulin resistance by blocking the JNK-JAK/STAT pathway in Drosophila melanogaster. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166901. [PMID: 37774935 DOI: 10.1016/j.bbadis.2023.166901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The dysregulation of intestinal microbiota is well-known to be one of the main causes of insulin resistance in both vertebrates and invertebrates. Specially, the acetobacter and lactobacillus have been identified as potentially capable of alleviating insulin resistance. However, the molecular mechanism underlying this effect requires further elucidation. In this study, we employed Drosophila melanogaster (fruit fly) as a model organism to delineate how intestinal microbiota disrupts the host intestinal signaling pathway, contributing to insulin resistance. Our findings demonstrate that a long-term high-sugar diet lead to a reduction in the general diversity of intestinal microbiota in flies, as well as a marked decrease in the abundances of acetobacter and lactobacillus. Furthermore, we observed that symptoms of insulin resistance were alleviated by feeding flies with acetobacter or lactobacillus, indicating that these microorganisms play an essential role in maintaining blood sugar homeostasis in flies. Conversely, when all intestinal microbiota was removed, flies show severe symptoms of insulin resistance, confirming that the critical role of intestinal microbiota in maintaining host blood sugar homeostasis. Our studies suggested that the intestinal but not fat body JNK pathway mediates the communication of intestinal microbiota and host insulin pathway. In flies, downregulation of JNK activity alleviates symptoms of insulin resistance by decreasing the activity of the JAK/STAT pathway. However, this offsets the therapeutic effects of supplying flies with acetobacter or lactobacillus, suggesting that the therapeutic function of these microorganisms is based on their interaction with JNK-JAK/STAT axis. Taken together, our study reveals that acetobacter and lactobacillus alleviate insulin resistance symptoms in a JNK-JAK/STAT pathway-dependent manner, indicating the therapeutic potential of probiotic supplementation and regulation of the activities of JNK-JAK/STAT pathway for diabetes control.
Collapse
Affiliation(s)
- Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
Keitel L, Braun K, Finger M, Kosfeld U, Yordanov S, Büchs J. Carbon dioxide and trace oxygen concentrations impact growth and product formation of the gut bacterium Phocaeicola vulgatus. BMC Microbiol 2023; 23:391. [PMID: 38062358 PMCID: PMC10701953 DOI: 10.1186/s12866-023-03127-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The promising yet barely investigated anaerobic species Phocaeicola vulgatus (formerly Bacteroides vulgatus) plays a vital role for human gut health and effectively produces organic acids. Among them is succinate, a building block for high-value-added chemicals. Cultivating anaerobic bacteria is challenging, and a detailed understanding of P. vulgatus growth and metabolism is required to improve succinate production. One significant aspect is the influence of different gas concentrations. CO2 is required for the growth of P. vulgatus. However, it is a greenhouse gas that should not be wasted. Another highly interesting aspect is the sensitivity of P. vulgatus towards O2. In this work, the effects of varying concentrations of both gases were studied in the in-house developed Respiratory Activity MOnitoring System (RAMOS), which provides online monitoring of CO2, O2, and pressure under gassed conditions. The RAMOS was combined with a gas mixing system to test CO2 and O2 concentrations in a range of 0.25-15.0 vol% and 0.0-2.5 vol%, respectively. RESULTS Changing the CO2 concentration in the gas supply revealed a CO2 optimum of 3.0 vol% for total organic acid production and 15.0 vol% for succinate production. It was demonstrated that the organic acid composition changed depending on the CO2 concentration. Furthermore, unrestricted growth of P. vulgatus up to an O2 concentration of 0.7 vol% in the gas supply was proven. The viability decreased rapidly at concentrations larger than or equal to 1.3 vol% O2. CONCLUSIONS The study showed that P. vulgatus requires little CO2, has a distinct O2 tolerance and is therefore well suited for industrial applications.
Collapse
Affiliation(s)
- Laura Keitel
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Kristina Braun
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Maurice Finger
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Udo Kosfeld
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Stanislav Yordanov
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Eng T, Banerjee D, Menasalvas J, Chen Y, Gin J, Choudhary H, Baidoo E, Chen JH, Ekman A, Kakumanu R, Diercks YL, Codik A, Larabell C, Gladden J, Simmons BA, Keasling JD, Petzold CJ, Mukhopadhyay A. Maximizing microbial bioproduction from sustainable carbon sources using iterative systems engineering. Cell Rep 2023; 42:113087. [PMID: 37665664 DOI: 10.1016/j.celrep.2023.113087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Maximizing the production of heterologous biomolecules is a complex problem that can be addressed with a systems-level understanding of cellular metabolism and regulation. Specifically, growth-coupling approaches can increase product titers and yields and also enhance production rates. However, implementing these methods for non-canonical carbon streams is challenging due to gaps in metabolic models. Over four design-build-test-learn cycles, we rewire Pseudomonas putida KT2440 for growth-coupled production of indigoidine from para-coumarate. We explore 4,114 potential growth-coupling solutions and refine one design through laboratory evolution and ensemble data-driven methods. The final growth-coupled strain produces 7.3 g/L indigoidine at 77% maximum theoretical yield in para-coumarate minimal medium. The iterative use of growth-coupling designs and functional genomics with experimental validation was highly effective and agnostic to specific hosts, carbon streams, and final products and thus generalizable across many systems.
Collapse
Affiliation(s)
- Thomas Eng
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepanwita Banerjee
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Menasalvas
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer Gin
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hemant Choudhary
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
| | - Edward Baidoo
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian Hua Chen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Ekman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramu Kakumanu
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuzhong Liu Diercks
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Codik
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Carolyn Larabell
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John Gladden
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
| | - Blake A Simmons
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay D Keasling
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; QB3 Institute, University of California, Berkeley, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, 2970 Horsholm, Denmark; Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Christopher J Petzold
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Huang C, Zeng Y, Hu K, Jiang Y, Zhang Y, Lu Q, Liu YE, Gao S, Wang S, Luo X, Mai B. Anaerobic biotransformation of two novel brominated flame retardants: Kinetics, isotope fractionation and reaction mechanisms. WATER RESEARCH 2023; 243:120360. [PMID: 37481998 DOI: 10.1016/j.watres.2023.120360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
1,2,5,6-tetrabromocyclooctane (TBCO) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), as safer alternatives to traditional brominated flame retardants, have been extensively detected in various environmental media and pose emerging risks. However, much less is known about their fate in the environment. Anaerobic microbial transformation is a key pathway for the natural attenuation of contaminants. This study investigated, for the first time, the microbial transformation behaviors of β-TBCO and DPTE by Dehalococcoides mccartyi strain CG1. The results indicated that both β-TBCO and DPTE could be easily transformed by D. mccartyi CG1 with kobs values of 0.0218 ± 0.0015 h-1 and 0.0089 ± 0.0003 h-1, respectively. In particular, β-TBCO seemed to undergo dibromo-elimination and then epoxidation to form 4,5-dibromo-9-oxabicyclo[6.1.0]nonane, while DPTE experienced debromination at the benzene ring (ortho-bromine being removed prior to para-bromine) rather than at the carbon chain. Additionally, pronounced carbon and bromine isotope fractionations were observed during biotransformation of β-TBCO and DPTE, suggesting that C-Br bond breaking is the rate-limiting step of their biotransformation. Finally, coupled with identified products and isotope fractionation patterns, β-elimination (E2) and Sn2-nucleophilic substitution were considered the most likely microbial transformation mechanisms for β-TBCO and DPTE, respectively. This work provides important information for assessing the potential of natural attenuation and environmental risks of β-TBCO and DPTE.
Collapse
Affiliation(s)
- Chenchen Huang
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Keqi Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Yin-E Liu
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Impaired Succinate Oxidation Prevents Growth and Influences Drug Susceptibility in Mycobacterium tuberculosis. mBio 2022; 13:e0167222. [PMID: 35856639 PMCID: PMC9426501 DOI: 10.1128/mbio.01672-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Succinate is a major focal point in mycobacterial metabolism and respiration, serving as both an intermediate of the tricarboxylic acid (TCA) cycle and a direct electron donor for the respiratory chain. Mycobacterium tuberculosis encodes multiple enzymes predicted to be capable of catalyzing the oxidation of succinate to fumarate, including two different succinate dehydrogenases (Sdh1 and Sdh2) and a separate fumarate reductase (Frd) with possible bidirectional behavior. Previous attempts to investigate the essentiality of succinate oxidation in M. tuberculosis have relied on the use of single-gene deletion mutants, raising the possibility that the remaining enzymes could catalyze succinate oxidation in the absence of the other. To address this, we report on the use of mycobacterial CRISPR interference (CRISPRi) to construct single, double, and triple transcriptional knockdowns of sdhA1, sdhA2, and frdA in M. tuberculosis. We show that the simultaneous knockdown of sdhA1 and sdhA2 is required to prevent succinate oxidation and overcome the functional redundancy within these enzymes. Succinate oxidation was demonstrated to be essential for the optimal growth of M. tuberculosis, with the combined knockdown of sdhA1 and sdhA2 significantly impairing the activity of the respiratory chain and preventing growth on a range of carbon sources. Moreover, impaired succinate oxidation was shown to influence the activity of cell wall-targeting antibiotics and bioenergetic inhibitors against M. tuberculosis. Together, these data provide fundamental insights into mycobacterial physiology, energy metabolism, and antimicrobial susceptibility. IMPORTANCE New drugs are urgently required to combat the tuberculosis epidemic that claims 1.5 million lives annually. Inhibitors of mycobacterial energy metabolism have shown significant promise clinically; however, further advancing this nascent target space requires a more fundamental understanding of the respiratory enzymes and pathways used by Mycobacterium tuberculosis. Succinate is a major focal point in mycobacterial metabolism and respiration; yet, the essentiality of succinate oxidation and the consequences of inhibiting this process are poorly defined. In this study, we demonstrate that impaired succinate oxidation prevents the optimal growth of M. tuberculosis on a range of carbon sources and significantly reduces the activity of the electron transport chain. Moreover, we show that impaired succinate oxidation both positively and negatively influences the activity of a variety of antituberculosis drugs. Combined, these findings provide fundamental insights into mycobacterial physiology and drug susceptibility that will be useful in the continued development of bioenergetic inhibitors.
Collapse
|
9
|
Patrick S. A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology (Reading) 2022; 168. [DOI: 10.1099/mic.0.001156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteroides fragilis
is an obligately anaerobic Gram-negative bacterium and a major colonizer of the human large colon where
Bacteroides
is a predominant genus. During the growth of an individual clonal population, an astonishing number of reversible DNA inversion events occur, driving within-strain diversity. Additionally, the
B. fragilis
pan-genome contains a large pool of diverse polysaccharide biosynthesis loci, DNA restriction/modification systems and polysaccharide utilization loci, which generates remarkable between-strain diversity. Diversity clearly contributes to the success of
B. fragilis
within its normal habitat of the gastrointestinal (GI) tract and during infection in the extra-intestinal host environment. Within the GI tract,
B. fragilis
is usually symbiotic, for example providing localized nutrients for the gut epithelium, but
B. fragilis
within the GI tract may not always be benign. Metalloprotease toxin production is strongly associated with colorectal cancer.
B. fragilis
is unique amongst bacteria; some strains export a protein >99 % structurally similar to human ubiquitin and antigenically cross-reactive, which suggests a link to autoimmune diseases.
B. fragilis
is not a primary invasive enteric pathogen; however, if colonic contents contaminate the extra-intestinal host environment, it successfully adapts to this new habitat and causes infection; classically peritoneal infection arising from rupture of an inflamed appendix or GI surgery, which if untreated, can progress to bacteraemia and death. In this review selected aspects of
B. fragilis
adaptation to the different habitats of the GI tract and the extra-intestinal host environment are considered, along with the considerable challenges faced when studying this highly variable bacterium.
Collapse
Affiliation(s)
- Sheila Patrick
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| |
Collapse
|
10
|
Aerobic Conditions and Endogenous Reactive Oxygen Species Reduce the Production of Infectious MS2 Phage by Escherichia coli. Viruses 2021; 13:v13071376. [PMID: 34372580 PMCID: PMC8310082 DOI: 10.3390/v13071376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Most of the defective/non-infectious enteric phages and viruses that end up in wastewater originate in human feces. Some of the causes of this high level of inactivity at the host stage are unknown. There is a significant gap between how enteric phages are environmentally transmitted and how we might design molecular tools that would only detect infectious ones. Thus, there is a need to explain the low proportion of infectious viral particles once replicated. By analyzing lysis plaque content, we were able to confirm that, under aerobic conditions, Escherichia coli produce low numbers of infectious MS2 phages (I) than the total number of phages indicated by the genome copies (G) with an I/G ratio of around 2%. Anaerobic conditions of replication and ROS inhibition increase the I/G ratio to 8 and 25%, respectively. These data cannot only be explained by variations in the total numbers of MS2 phages produced or in the metabolism of E. coli. We therefore suggest that oxidative damage impacts the molecular replication and assembly of MS2 phages.
Collapse
|
11
|
Wargnies M, Plazolles N, Schenk R, Villafraz O, Dupuy JW, Biran M, Bachmaier S, Baudouin H, Clayton C, Boshart M, Bringaud F. Metabolic selection of a homologous recombination-mediated gene loss protects Trypanosoma brucei from ROS production by glycosomal fumarate reductase. J Biol Chem 2021; 296:100548. [PMID: 33741344 PMCID: PMC8065229 DOI: 10.1016/j.jbc.2021.100548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.
Collapse
Affiliation(s)
- Marion Wargnies
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Nicolas Plazolles
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Robin Schenk
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Oriana Villafraz
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | | | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Sabine Bachmaier
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Hélène Baudouin
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZBMH), Universität Heidelberg, Heidelberg, Germany
| | - Michael Boshart
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France.
| |
Collapse
|
12
|
Yekani M, Baghi HB, Vahed SZ, Ghanbari H, Hosseinpur R, Azargun R, Azimi S, Memar MY. Tightly controlled response to oxidative stress; an important factor in the tolerance of Bacteroides fragilis. Res Microbiol 2021; 172:103798. [PMID: 33485914 DOI: 10.1016/j.resmic.2021.103798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
The exposure of Bacteroides fragilis to highly oxygenated tissues induces an oxidative stress due to a shift from the reduced condition of the gastrointestinal tract to an aerobic environment of host tissues. The potent and effective responses to reactive oxygen species (ROS) make the B. fragilis tolerant to atmospheric oxygen for several days. The response to oxidative stress in B. fragilis is a complicated event that is induced and regulated by different agents. In this review, we will focus on the B. fragilis response to oxidative stress and present an overview of the regulators of responses to oxidative stress in this bacterium.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Ghanbari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasul Hosseinpur
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Azargun
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Somayeh Azimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb Pathog 2020; 149:104506. [PMID: 32950639 DOI: 10.1016/j.micpath.2020.104506] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis is a most frequent anaerobic pathogen isolated from human infections, particularly found in the abdominal cavity. Different factors contribute to the pathogenesis and persistence of B. fragilis at infection sites. The knowledge of the virulence factors can provide applicable information for finding alternative options for the antibiotic therapy and treatment of B. fragilis caused infections. Herein, a comprehensive review of the important B. fragilis virulence factors was prepared. In addition to B. fragilis toxin (BFT) and its potential role in the diarrhea and cancer development, some other important virulence factors and characteristics of B. fragilis are described including capsular polysaccharides, iron acquisition, resistance to antimicrobial agents, and survival during the prolonged oxidative stress, quorum sensing, and secretion systems.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee,Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Khademian M, Imlay JA. Do reactive oxygen species or does oxygen itself confer obligate anaerobiosis? The case of Bacteroides thetaiotaomicron. Mol Microbiol 2020; 114:333-347. [PMID: 32301184 DOI: 10.1111/mmi.14516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Bacteroides thetaiotaomicron was examined to determine whether its obligate anaerobiosis is imposed by endogenous reactive oxygen species or by molecular oxygen itself. Previous analyses established that aerated B. thetaiotaomicron loses some enzyme activities due to a high rate of endogenous superoxide formation. However, the present study establishes that another key step in central metabolism is poisoned by molecular oxygen itself. Pyruvate dissimilation was shown to depend upon two enzymes, pyruvate:formate lyase (PFL) and pyruvate:ferredoxin oxidoreductase (PFOR), that lose activity upon aeration. PFL is a glycyl-radical enzyme whose vulnerability to oxygen is already understood. The rate of PFOR damage was unaffected by the level of superoxide or peroxide, showing that molecular oxygen itself is the culprit. The cell cannot repair PFOR, which amplifies the impact of damage. The rates of PFOR and fumarase inactivation are similar, suggesting that superoxide dismutase is calibrated so the oxygen- and superoxide-sensitive enzymes are equally sensitive to aeration. The physiological purpose of PFL and PFOR is to degrade pyruvate without disrupting the redox balance, and they do so using catalytic mechanisms that are intrinsically vulnerable to oxygen. In this way, the anaerobic excellence and oxygen sensitivity of B. thetaiotaomicron are two sides of the same coin.
Collapse
Affiliation(s)
- Maryam Khademian
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| |
Collapse
|
15
|
Ito T, Gallegos R, Matano LM, Butler NL, Hantman N, Kaili M, Coyne MJ, Comstock LE, Malamy MH, Barquera B. Genetic and Biochemical Analysis of Anaerobic Respiration in Bacteroides fragilis and Its Importance In Vivo. mBio 2020; 11:e03238-19. [PMID: 32019804 PMCID: PMC7002350 DOI: 10.1128/mbio.03238-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
In bacteria, the respiratory pathways that drive molecular transport and ATP synthesis include a variety of enzyme complexes that utilize different electron donors and acceptors. This property allows them to vary the efficiency of energy conservation and to generate different types of electrochemical gradients (H+ or Na+). We know little about the respiratory pathways in Bacteroides species, which are abundant in the human gut, and whether they have a simple or a branched pathway. Here, we combined genetics, enzyme activity measurements, and mammalian gut colonization assays to better understand the first committed step in respiration, the transfer of electrons from NADH to quinone. We found that a model gut Bacteroides species, Bacteroides fragilis, has all three types of putative NADH dehydrogenases that typically transfer electrons from the highly reducing molecule NADH to quinone. Analyses of NADH oxidation and quinone reduction in wild-type and deletion mutants showed that two of these enzymes, Na+-pumping NADH:quinone oxidoreductase (NQR) and NADH dehydrogenase II (NDH2), have NADH dehydrogenase activity, whereas H+-pumping NADH:ubiquinone oxidoreductase (NUO) does not. Under anaerobic conditions, NQR contributes more than 65% of the NADH:quinone oxidoreductase activity. When grown in rich medium, none of the single deletion mutants had a significant growth defect; however, the double Δnqr Δndh2 mutant, which lacked almost all NADH:quinone oxidoreductase activity, had a significantly increased doubling time. Despite unaltered in vitro growth, the single nqr deletion mutant was unable to competitively colonize the gnotobiotic mouse gut, confirming the importance of NQR to respiration in B. fragilis and the overall importance of respiration to this abundant gut symbiont.IMPORTANCEBacteroides species are abundant in the human intestine and provide numerous beneficial properties to their hosts. The ability of Bacteroides species to convert host and dietary glycans and polysaccharides to energy is paramount to their success in the human gut. We know a great deal about the molecules that these bacteria extract from the human gut but much less about how they convert those molecules into energy. Here, we show that B. fragilis has a complex respiratory pathway with two different enzymes that transfer electrons from NADH to quinone and a third enzyme complex that may use an electron donor other than NADH. Although fermentation has generally been believed to be the main mechanism of energy generation in Bacteroides, we found that a mutant lacking one of the NADH:quinone oxidoreductases was unable to compete with the wild type in the mammalian gut, revealing the importance of respiration to these abundant gut symbionts.
Collapse
Affiliation(s)
- Takeshi Ito
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Rene Gallegos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Leigh M Matano
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole L Butler
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Noam Hantman
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew Kaili
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michael J Coyne
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael H Malamy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
16
|
Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe. Proc Natl Acad Sci U S A 2018; 115:E3266-E3275. [PMID: 29559534 DOI: 10.1073/pnas.1800120115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron, a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families-[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes-whose homologs, in contrast, remain active in aerobic Escherichia coli Inactivation-rate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron, they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.
Collapse
|
17
|
The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species. mBio 2017; 8:mBio.01873-16. [PMID: 28049145 PMCID: PMC5210497 DOI: 10.1128/mbio.01873-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. IMPORTANCE Whether in sediments or pathogenic biofilms, the structures of microbial communities are configured around the sensitivities of their members to oxygen. Oxygen triggers the intracellular formation of reactive oxygen species (ROS), and the sensitivity of a microbe to oxygen likely depends upon the rates at which ROS are formed inside it. This study supports that idea, as an obligate anaerobe was confirmed to generate ROS very rapidly upon aeration. However, the suspected source of the ROS was disproven, as the fumarate reductase of the anaerobe did not display the high oxidation rate of its E. coli homologue. Evidently, adjustments in its electronic structure can suppress the tendency of an enzyme to generate ROS. Importantly, this outcome suggests that evolutionary pressure may succeed in modifying redox enzymes and thereby diminishing the stress that an organism experiences in oxic environments. The actual source of ROS in the anaerobe remains to be discovered.
Collapse
|
18
|
Valladares RB, Graves C, Wright K, Gardner CL, Lorca GL, Gonzalez CF. H2O2 production rate in Lactobacillus johnsonii is modulated via the interplay of a heterodimeric flavin oxidoreductase with a soluble 28 Kd PAS domain containing protein. Front Microbiol 2015; 6:716. [PMID: 26236298 PMCID: PMC4500961 DOI: 10.3389/fmicb.2015.00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/29/2015] [Indexed: 01/09/2023] Open
Abstract
Host and commensals crosstalk, mediated by reactive oxygen species (ROS), has triggered a growing scientific interest to understand the mechanisms governing such interaction. However, the majority of the scientific studies published do not evaluate the ROS production by commensals bacteria. In this context we recently showed that Lactobacillus johnsonii N6.2, a strain of probiotic value, modulates the activity of the critical enzymes 2,3-indoleamine dioxygenase via H2O2 production. L. johnsonii N6.2 by decreasing IDO activity, is able to modify the tryptophan/kynurenine ratio in the host blood with further systemic consequences. Understanding the mechanisms of H2O2 production is critical to predict the probiotic value of these strains and to optimize bacterial biomass production in industrial processes. We performed a transcriptome analysis to identify genes differentially expressed in L. johnsonii N6.2 cells collected from cultures grown under different aeration conditions. Herein we described the biochemical characteristics of a heterodimeric FMN reductase (FRedA/B) whose in vitro activity is controlled by LjPAS protein with a typical Per-Arnst-Sim (PAS) sensor domain. Interestingly, LjPAS is fused to the FMN reductase domains in other lactobacillaceae. In L. johnsonii, LjPAS is encoded by an independent gene which expression is repressed under anaerobic conditions (>3 fold). Purified LjPAS was able to slow down the FRedA/B initial activity rate when the holoenzyme precursors (FredA, FredB, and FMN) were mixed in vitro. Altogether the results obtained suggest that LjPAS module regulates the H2O2 production helping the cells to minimize oxidative stress in response to environmental conditions.
Collapse
Affiliation(s)
- Ricardo B Valladares
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Christina Graves
- Department of Periodontology, College of Medicine, University of Florida Gainesville, FL, USA
| | - Kaitlyn Wright
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| |
Collapse
|
19
|
Nicholson SA, Smalley D, Smith CJ, Abratt VR. The recA operon: A novel stress response gene cluster in Bacteroides fragilis. Res Microbiol 2014; 165:290-9. [PMID: 24703997 PMCID: PMC4059497 DOI: 10.1016/j.resmic.2014.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 01/13/2023]
Abstract
Bacteroides fragilis, an opportunistic pathogen of humans, is a leading cause of bacteraemias and anaerobic abscesses which are often treated with metronidazole, a drug which damages DNA. This study investigated the responses of the B. fragilis recA three gene operon to the stress experienced during metronidazole treatment and exposure to reactive oxygen species simulating those generated by the host immune system during infection. A transcriptionally regulated response was observed using quantitative RT-PCR after metronidazole and hydrogen peroxide treatment, with all three genes being upregulated under stress conditions. In vivo and in vitro analysis of the functional role of the second gene of the operon was done using heterologous complementation and protein expression (in Escherichia coli), with subsequent biochemical assay. This gene encoded a functional bacterioferritin co-migratory protein (BCP) which was thiol-specific and had antioxidant properties, including protection of the glutamine synthetase III enzyme. This in vitro data supports the hypothesis that the genes of the operon may be involved in protection of the bacteria from the oxidative burst during tissue invasion and may play a significant role in bacterial survival and metronidazole resistance during treatment of B. fragilis infections.
Collapse
Affiliation(s)
- Samantha A Nicholson
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Private Bag, 7701, South Africa
| | - Darren Smalley
- Department of Microbiology and Immunology, East Carolina University, Greenville, NC 27834, USA
| | - C Jeffrey Smith
- Department of Microbiology and Immunology, East Carolina University, Greenville, NC 27834, USA
| | - Valerie R Abratt
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Private Bag, 7701, South Africa.
| |
Collapse
|
20
|
Kassem II, Khatri M, Sanad YM, Wolboldt M, Saif YM, Olson JW, Rajashekara G. The impairment of methylmenaquinol:fumarate reductase affects hydrogen peroxide susceptibility and accumulation in Campylobacter jejuni. Microbiologyopen 2014; 3:168-81. [PMID: 24515965 PMCID: PMC3996566 DOI: 10.1002/mbo3.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/07/2013] [Accepted: 12/26/2013] [Indexed: 12/18/2022] Open
Abstract
The methylmenaquinol:fumarate reductase (Mfr) of Campylobacter jejuni is a periplasmic respiratory (redox) protein that contributes to the metabolism of fumarate and displays homology to succinate dehydrogenase (Sdh). Since chemically oxidized redox-enzymes, including fumarate reductase and Sdh, contribute to the generation of oxidative stress in Escherichia coli, we assessed the role of Mfr in C. jejuni after exposure to hydrogen peroxide (H2 O2 ). Our results show that a Mfr mutant (∆mfrA) strain was less susceptible to H2 O2 as compared to the wildtype (WT). Furthermore, the H2 O2 concentration in the ∆mfrA cultures was significantly higher than that of WT after exposure to the oxidant. In the presence of H2 O2 , catalase (KatA) activity and katA expression were significantly lower in the ∆mfrA strain as compared to the WT. Exposure to H2 O2 resulted in a significant decrease in total intracellular iron in the ∆mfrA strain as compared to WT, while the addition of iron to the growth medium mitigated H2 O2 susceptibility and accumulation in the mutant. The ∆mfrA strain was significantly more persistent in RAW macrophages as compared to the WT. Scanning electron microscopy showed that infection with the ∆mfrA strain caused prolonged changes to the macrophages' morphology, mainly resulting in spherical-shaped cells replete with budding structures and craters. Collectively, our results suggest a role for Mfr in maintaining iron homeostasis in H2 O2 stressed C. jejuni, probably via affecting the concentrations of intracellular iron.
Collapse
Affiliation(s)
- Issmat I Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | | | | | | | | | | | | |
Collapse
|
21
|
Mishra S, Imlay JA. An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to scavenge hydrogen peroxide. Mol Microbiol 2013; 90:1356-71. [PMID: 24164536 DOI: 10.1111/mmi.12438] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2013] [Indexed: 12/17/2022]
Abstract
Obligate anaerobes are periodically exposed to oxygen, and it has been conjectured that on such occasions their low-potential biochemistry will predispose them to rapid ROS formation. We sought to identify scavenging enzymes that might protect the anaerobe Bacteroides thetaiotaomicron from the H2 O2 that would be formed. Genetic analysis of eight candidate enzymes revealed that four of these scavenge H2 O2 in vivo: rubrerythrins 1 and 2, AhpCF, and catalase E. The rubrerythrins served as key peroxidases under anoxic conditions. However, they quickly lost activity upon aeration, and AhpCF and catalase were induced to compensate. The AhpCF is an NADH peroxidase that effectively degraded low micromolar levels of H2 O2 , while the catalytic cycle of catalase enabled it to quickly degrade higher concentrations that might arise from exogenous sources. Using a non-scavenging mutant we verified that endogenous H2 O2 formation was much higher in aerated B. thetaiotaomicron than in Escherichia coli. Indeed, the OxyR stress response to H2 O2 was induced when B. thetaiotaomicron was aerated, and in that circumstance this response was necessary to forestall cell death. Thus aeration is a serious threat for this obligate anaerobe, and to cope it employs a set of defences that includes a repertoire of complementary scavenging enzymes.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | | |
Collapse
|
22
|
Rocha ER, Smith CJ. Ferritin-like family proteins in the anaerobe Bacteroides fragilis: when an oxygen storm is coming, take your iron to the shelter. Biometals 2013; 26:577-91. [PMID: 23842847 DOI: 10.1007/s10534-013-9650-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023]
Abstract
Bacteroides are gram-negative anaerobes and one of the most abundant members the lower GI tract microflora where they play an important role in normal intestinal physiology. Disruption of this commensal relationship has a great impact on human health and disease. Bacteroides spp. are significant opportunistic pathogens causing infections when the mucosal barrier integrity is disrupted following predisposing conditions such as GI surgery, perforated or gangrenous appendicitis, perforated ulcer, diverticulitis, trauma and inflammatory bowel diseases. B. fragilis accounts for 60-90 % of all anaerobic infections despite being a minor component of the genus (<1 % of the flora). Clinical strains of B. fragilis are among the most aerotolerant anaerobes. When shifted from anaerobic to aerobic conditions B. fragilis responds to oxidative stress by inducing the expression of an extensive set of genes involved in protection against oxygen derived radicals and iron homeostasis. In Bacteroides, little is known about the metal/oxidative stress interactions and the mobilization of intra-cellular non-heme iron during the oxidative stress response has been largely overlooked. Here we present an overview of the work carried out to demonstrate that both oxygen-detoxifying enzymes and iron-storage proteins are essential for B. fragilis to survive an adverse oxygen-rich environment. Some species of Bacteroides have acquired multiple homologues of the iron storage and detoxifying ferritin-like proteins but some species contain none. The proteins found in Bacteroides are classical mammalian H-type non-heme ferritin (FtnA), non-specific DNA binding and starvation protein (Dps) and the newly characterized bacterial Dps-Like miniferritin protein. The full contribution of ferritin-like proteins to pathophysiology of commensal and opportunistic pathogen Bacteroides spp. still remains to be elucidated.
Collapse
Affiliation(s)
- Edson R Rocha
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
23
|
Respiratory proteins contribute differentially to Campylobacter jejuni's survival and in vitro interaction with hosts' intestinal cells. BMC Microbiol 2012; 12:258. [PMID: 23148765 PMCID: PMC3541246 DOI: 10.1186/1471-2180-12-258] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/09/2012] [Indexed: 12/03/2022] Open
Abstract
Background The genetic features that facilitate Campylobacter jejuni’s adaptation to a wide range of environments are not completely defined. However, whole genome expression studies showed that respiratory proteins (RPs) were differentially expressed under varying conditions and stresses, suggesting further unidentified roles for RPs in C. jejuni’s adaptation. Therefore, our objectives were to characterize the contributions of selected RPs to C. jejuni’s i- key survival phenotypes under different temperature (37°C vs. 42°C) and oxygen (microaerobic, ambient, and oxygen-limited/anaerobic) conditions and ii- its interactions with intestinal epithelial cells from disparate hosts (human vs. chickens). Results C. jejuni mutant strains with individual deletions that targeted five RPs; nitrate reductase (ΔnapA), nitrite reductase (ΔnrfA), formate dehydrogenase (ΔfdhA), hydrogenase (ΔhydB), and methylmenaquinol:fumarate reductase (ΔmfrA) were used in this study. We show that only the ΔfdhA exhibited a decrease in motility; however, incubation at 42°C significantly reduced the deficiency in the ΔfdhA’s motility as compared to 37°C. Under all tested conditions, the ΔmfrA showed a decreased susceptibility to hydrogen peroxide (H2O2), while the ΔnapA and the ΔfdhA showed significantly increased susceptibility to the oxidant as compared to the wildtype. Further, the susceptibility of the ΔnapA to H2O2 was significantly more pronounced at 37°C. The biofilm formation capability of individual RP mutants varied as compared to the wildtype. However, the impact of the deletion of certain RPs affected biofilm formation in a manner that was dependent on temperature and/or oxygen concentration. For example, the ΔmfrA displayed significantly deficient and increased biofilm formation under microaerobic conditions at 37°C and 42°C, respectively. However, under anaerobic conditions, the ΔmfrA was only significantly impaired in biofilm formation at 42°C. Additionally, the RPs mutants showed differential ability for infecting and surviving in human intestinal cell lines (INT-407) and primary chicken intestinal epithelial cells, respectively. Notably, the ΔfdhA and the ΔhydB were deficient in interacting with both cell types, while the ΔmfrA displayed impairments only in adherence to and invasion of INT-407. Scanning electron microscopy showed that the ΔhydB and the ΔfdhA exhibited filamentous and bulging (almost spherical) cell shapes, respectively, which might be indicative of defects in cell division. Conclusions We conclude that the RPs contribute to C. jejuni’s motility, H2O2 resistance, biofilm formation, and in vitro interactions with hosts’ intestinal cells. Further, the impact of certain RPs varied in response to incubation temperature and/or oxygen concentration. Therefore, RPs may facilitate the prevalence of C. jejuni in a variety of niches, contributing to the pathogen’s remarkable potential for adaptation.
Collapse
|
24
|
Inactivation of a single gene enables microaerobic growth of the obligate anaerobe Bacteroides fragilis. Proc Natl Acad Sci U S A 2012; 109:12153-8. [PMID: 22778399 DOI: 10.1073/pnas.1203796109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteroides fragilis can replicate in atmospheres containing ≤0.05% oxygen, but higher concentrations arrest growth by an unknown mechanism. Here we show that inactivation of a single gene, oxe (i.e., oxygen enabled) in B. fragilis allows for growth in concentrations as high as 2% oxygen while increasing the tolerance of this organism to room air. Known components of the oxidative stress response including the ahpC, kat, batA-E, and tpx genes were not individually important for microaerobic growth. However, a Δoxe strain scavenged H(2)O(2) at a faster rate than WT, indicating that reactive oxygen species may play a critical role in limiting growth of this organism to low-oxygen environments. Clinical isolates of B. fragilis displayed a greater capacity for growth under microaerobic conditions than fecal isolates, with some encoding polymorphisms in oxe. Additionally, isolation of oxygen-enabled mutants of Bacteroides thetaiotaomicron suggests that Oxe may mediate growth arrest of other anaerobes in oxygenated environments.
Collapse
|