1
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. eLife 2025; 13:RP98409. [PMID: 39819645 PMCID: PMC11741522 DOI: 10.7554/elife.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Scot P Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
2
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591247. [PMID: 39464112 PMCID: PMC11507673 DOI: 10.1101/2024.04.26.591247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: elementary body (EB) and reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. To test this, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
|
3
|
Eto SF, Fernandes DC, Baldassi AC, Balbuena TS, da Costa Alecrim JV, Almeida de Carvalho FC, Lima C, Lopes-Ferreira M, Pizauro JM. Proteomic analysis capsule synthesis and redox mechanisms in the intracellular survival of group B Streptococcus in fish microglia. FISH & SHELLFISH IMMUNOLOGY 2021; 118:34-50. [PMID: 34464686 DOI: 10.1016/j.fsi.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/20/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Group B Streptococcus (GBS) causes meningitis in neonates and Nile tilapia (Oreochromis niloticus). The molecular mechanisms regulating the intracellular survival of this pathogen in the host cell are complex and crucial for the progression of infection. Thus, we propose the use of GBS-infected Nile tilapia microglia as an in vitro model system simulating infection caused by homologous bacteria in humans. We used this model to evaluate the phagocytic activity, as well as the functional aspects of the capsular proteins A, B, C, and D and the major redox enzymes, and the synergistic role of mechanisms/proteins involved in blocking phagocytic process. We observed that in the intracellular phase, GBS showed enhanced synthesis of the polysaccharide capsule and used superoxide dismutase, thioredoxin, NADH oxidase, and alkyl hydroperoxide reductase to scavenge reactive oxygen species and reactive nitrogen species produced by the host cell. Furthermore, although these virulence mechanisms were effective during the initial hours of infection, they were not able to subvert microglial responses, which partially neutralized the infection. Altogether, our findings provided important information regarding the intracellular survival mechanisms of GBS and perspectives for the production of new drugs and vaccines, through the druggability analysis of specific proteins. In conclusion, tilapia microglia serve as a potent in vitro experimental model for the study of meningitis.
Collapse
Affiliation(s)
- Silas Fernandes Eto
- Department of Postgraduate in Health Sciences-PROCISA, Federal University of Roraima (UFRR), Boa Vista, 69310-000, Brazil.
| | - Dayanne Carla Fernandes
- Immunochemistry Laboratory, Butantan Institute, (CeTICs/FAPESP), Vital Brazil Avenue, 1500, Butantã, 05503-009, São Paulo, Brazil
| | - Amanda Cristina Baldassi
- Department of Technology, School of Agrarian and Veterinary Sciences, Sao Paulo State University (Unesp), Jaboticabal, 14884-900, Sao Paulo/ SP, Brazil
| | - Thiago Santana Balbuena
- Department of Technology, School of Agrarian and Veterinary Sciences, Sao Paulo State University (Unesp), Jaboticabal, 14884-900, Sao Paulo/ SP, Brazil
| | - João Victor da Costa Alecrim
- Department of Postgraduate in Health Sciences-PROCISA, Federal University of Roraima (UFRR), Boa Vista, 69310-000, Brazil
| | | | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantã, 05503-009, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantã, 05503-009, São Paulo, Brazil
| | - João Martins Pizauro
- Department of Technology, School of Agrarian and Veterinary Sciences, Sao Paulo State University (Unesp), Jaboticabal, 14884-900, Sao Paulo/ SP, Brazil
| |
Collapse
|
4
|
Ferric Uptake Regulator Fur Coordinates Siderophore Production and Defense against Iron Toxicity and Oxidative Stress and Contributes to Virulence in Chromobacterium violaceum. Appl Environ Microbiol 2020; 86:AEM.01620-20. [PMID: 32859594 DOI: 10.1128/aem.01620-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Iron is a highly reactive metal that participates in several processes in prokaryotic and eukaryotic cells. Hosts and pathogens compete for iron in the context of infection. Chromobacterium violaceum, an environmental Gram-negative bacterial pathogen, relies on siderophores to overcome iron limitation in the host. In this work, we studied the role of the ferric uptake regulator Fur in the physiology and virulence of C. violaceum A Δfur mutant strain showed decreased growth and fitness under regular in vitro growth conditions and presented high sensitivity to iron and oxidative stresses. Furthermore, the absence of fur caused derepression of siderophore production and reduction in swimming motility and biofilm formation. Consistent with these results, the C. violaceum Δfur mutant was highly attenuated for virulence and liver colonization in mice. In contrast, a manganese-selected spontaneous fur mutant showed only siderophore overproduction and sensitivity to oxidative stress, indicating that Fur remained partially functional in this strain. We found that mutations in genes related to siderophore biosynthesis and a putative CRISPR-Cas locus rescued the Δfur mutant growth defects, indicating that multiple Fur-regulated processes contribute to maintaining bacterial cell fitness. Overall, our data indicated that Fur is conditionally essential in C. violaceum mainly by protecting cells from iron overload and oxidative damage. The requirement of Fur for virulence highlights the importance of iron in the pathogenesis of C. violaceum IMPORTANCE Maintenance of iron homeostasis, i.e., avoiding both deficiency and toxicity of this metal, is vital to bacteria and their hosts. Iron sequestration by host proteins is a crucial strategy to combat bacterial infections. In bacteria, the ferric uptake regulator Fur coordinates the expression of several iron-related genes. Sometimes, Fur can also regulate several other processes. In this work, we performed an in-depth phenotypic characterization of fur mutants in the human opportunistic pathogen Chromobacterium violaceum We determined that fur is a conditionally essential gene necessary for proper growth under regular conditions and is fully required for survival under iron and oxidative stresses. Fur also controlled several virulence-associated traits, such as swimming motility, biofilm formation, and siderophore production. Consistent with these results, a C. violaceum fur null mutant showed attenuation of virulence. Therefore, our data established Fur as a major player required for C. violaceum to manage iron, including during infection in the host.
Collapse
|
5
|
Nonoyama S, Kishida K, Sakai K, Nagata Y, Ohtsubo Y, Tsuda M. A transcriptional regulator, IscR, of Burkholderia multivorans acts as both repressor and activator for transcription of iron-sulfur cluster-biosynthetic isc operon. Res Microbiol 2020; 171:319-330. [PMID: 32628999 DOI: 10.1016/j.resmic.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022]
Abstract
Bacterial iron-sulfur (Fe-S) clusters are essential cofactors for many metabolic pathways, and Fe-S cluster-containing proteins (Fe-S proteins) regulate the expression of various important genes. However, biosynthesis of such clusters has remained unknown in genus Burkholderia. Here, we clarified that Burkholderia multivorans ATCC 17616 relies on the ISC system for the biosynthesis of Fe-S clusters, and that the biosynthetic genes are organized as an isc operon, whose first gene encodes IscR, a transcriptional regulatory Fe-S protein. Transcription of the isc operon was repressed and activated under iron-rich and -limiting conditions, respectively, and Fur, an iron-responsive global transcriptional regulator, was indicated to indirectly regulate the expression of isc operon. Further analysis using a ΔiscR mutant in combination with a constitutive expression system of IscR and its derivatives indicated transcriptional repression and activation of isc operon by holo- and apo-forms of IscR, respectively, through their binding to the sequences within an isc promoter-containing (Pisc) fragment. Biochemical analysis using the Pisc fragment suggested that the apo-IscR binding sequence differs from the holo-IscR binding sequence. The results obtained in this study revealed a unique regulatory system for the expression of the ATCC 17616 isc operon that has not been observed in other genera.
Collapse
Affiliation(s)
- Shouta Nonoyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Kouhei Kishida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Keiichiro Sakai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| |
Collapse
|
6
|
Zhang B, Gu H, Yang Y, Bai H, Zhao C, Si M, Su T, Shen X. Molecular Mechanisms of AhpC in Resistance to Oxidative Stress in Burkholderia thailandensis. Front Microbiol 2019; 10:1483. [PMID: 31338075 PMCID: PMC6626918 DOI: 10.3389/fmicb.2019.01483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Burkholderia thailandensis is a model organism for human pathogens Burkholderia mallei and Burkholderia pseudomallei. The study of B. thailandensis peroxiredoxin is helpful for understanding the survival, pathogenic infection, and antibiotic resistance of its homologous species. Alkyl hydroperoxide reductase subunit C (AhpC) is an important peroxiredoxin involved in oxidative damage defense. Here, we report that BthAhpC exhibits broad specificity for peroxide substrates, including inorganic and organic peroxides and peroxynitrite. AhpC catalyzes the reduction of oxidants using the N-terminal conserved Cys57 as a peroxidatic Cys and the C-terminal conserved Cys171 and Cys173 as resolving Cys. These three conserved Cys residues play critical roles in the catalytic mechanism. AhpD directly interacts with AhpC as an electron donor, and the conserved Cys residues in active site of AhpD are important for AhpC reduction. AhpC is directly repressed by OxyR as shown by identifying the OxyR binding site in the ahpC promoter with a DNA binding assay. This work sheds light on the function of AhpC in the peroxides and peroxynitrite damage response in B. thailandensis and homologous species.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Haonan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Tao Su
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Chen Z, Huang Z, He Y, Xiao X, Wei Z. Effect of UV on De-NOxperformance and microbial community of a hybrid catalytic membrane biofilm reactor. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/121/3/032024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
The Small Protein HemP Is a Transcriptional Activator for the Hemin Uptake Operon in Burkholderia multivorans ATCC 17616. Appl Environ Microbiol 2017. [PMID: 28625994 DOI: 10.1128/aem.00479-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderiamultivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon.IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the role of HemP in betaproteobacterial species was elucidated for the first time, to our knowledge, in this study. The HemP protein was also found to have two additional properties that have not been reported for functional homologues in other species; one is that HemP is able to bind to the promoter-containing region of the hmu operon to directly activate its transcription, and the other is that HemP is also required for the expression of an unknown hemin uptake system.
Collapse
|
9
|
Kolpen M, Kragh KN, Bjarnsholt T, Line L, Hansen CR, Dalbøge CS, Hansen N, Kühl M, Høiby N, Jensen PØ. Denitrification by cystic fibrosis pathogens - Stenotrophomonas maltophilia is dormant in sputum. Int J Med Microbiol 2014; 305:1-10. [PMID: 25441256 DOI: 10.1016/j.ijmm.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Chronic Pseudomonas aeruginosa lung infection is the most severe complication for cystic fibrosis (CF) patients. Infected endobronchial mucus of CF patients contains anaerobic zones mainly due to the respiratory burst of polymorphonuclear leukocytes. We have recently demonstrated ongoing denitrification in sputum from patients infected with P. aeruginosa. Therefore we aimed to investigate, whether the pathogenicity of several known CF pathogens is correlated to their ability to perform denitrification. METHODS We measured denitrification with N(2)O microsensors in concert with anaerobic growth measurements by absorbance changes and colony counting in isolates from 32 CF patients chronically infected with the highly pathogenic bacteria P. aeruginosa, Achromobacter xylosoxidans, Burkholderia multivorans or the less pathogenic bacterium Stenotrophomonas maltophilia. Consumption of NO(3)(-) and NO(2)(-) was estimated by the Griess Assay. All isolates were assayed during 2 days of incubation in anaerobic LB broth with NO(3)(-) or NO(2)(-). PNA FISH staining of 16S rRNA was used to estimate the amount of ribosomes per bacterial cells and thereby the in situ growth rate of S. maltophilia in sputum. RESULTS Supplemental NO(3)(-) caused increased production of N(2)O by P. aeruginosa, A. xylosoxidans and B. multivorans and increased growth for all pathogens. Growth was, however, lowest for S. maltophilia. NO(3)(-) was metabolized by all pathogens, but only P. aeruginosa was able to remove NO(2)(-). S. maltophilia had limited growth in sputum as seen by the weak PNA FISH staining. CONCLUSIONS All four pathogens were able to grow anaerobically by NO(3)(-) reduction. Denitrification as demonstrated by N(2)O production was, however, not found in S. maltophilia isolates. The ability to perform denitrification may contribute to the pathogenicity of the infectious isolates since complete denitrification promotes faster anaerobic growth. The inability of S. maltophilia to proliferate by denitrification and therefore grow in the anaerobic CF sputum may explain its low pathogenicity in CF patients.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Laura Line
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Christine Rønne Hansen
- Department of Paediatrics, Copenhagen CF Centre, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | - Nana Hansen
- Department of Veterinary Disease Biology, Veterinary Clinical Microbiology, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark; Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
10
|
Nagata Y, Senbongi J, Ishibashi Y, Sudo R, Miyakoshi M, Ohtsubo Y, Tsuda M. Identification of Burkholderia multivorans ATCC 17616 genetic determinants for fitness in soil by using signature-tagged mutagenesis. MICROBIOLOGY-SGM 2014; 160:883-891. [PMID: 24530988 DOI: 10.1099/mic.0.077057-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify bacterial genetic determinants for fitness in a soil environment, signature-tagged mutagenesis (STM) was applied to a soil bacterium, Burkholderia multivorans ATCC 17616. This strain was randomly mutagenized by each of 36 different signature-tagged plasposons, and 36 mutants with different tags were grouped as a set. A total of 192 sets consisting of 6912 independent mutants were each inoculated into soil and incubated. Two-step STM screening based on quantitative real-time PCR of total DNAs extracted from the resulting soil samples using the tag-specific primers led to the selection of 39 mutant candidates that exhibited a reduction in relative competitive fitness during incubation in the soil, and 32 plasposon-insertion sites were determined. Among them, mutants having plasposon insertion in fur, deaD or hrpA exhibited reduced fitness during incubation in soil when compared with the control strain. The deficiency in the soil fitness of the fur mutant was recovered by the introduction of the wild-type fur gene, indicating that the fur gene is one of the genetic determinants for fitness in the soil.
Collapse
Affiliation(s)
- Yuji Nagata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Junko Senbongi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yoko Ishibashi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Rie Sudo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Masatoshi Miyakoshi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Masataka Tsuda
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|