1
|
Gibson KH, Botting JM, Al-Otaibi N, Maitre K, Bergeron J, Starai VJ, Hoover TR. Control of the flagellation pattern in Helicobacter pylori by FlhF and FlhG. J Bacteriol 2023; 205:e0011023. [PMID: 37655916 PMCID: PMC10521351 DOI: 10.1128/jb.00110-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
FlhF and FlhG control the location and number of flagella, respectively, in many polar-flagellated bacteria. The roles of FlhF and FlhG are not well characterized in bacteria that have multiple polar flagella, such as Helicobacter pylori. Deleting flhG in H. pylori shifted the flagellation pattern where most cells had approximately four flagella to a wider and more even distribution in flagellar number. As reported in other bacteria, deleting flhF in H. pylori resulted in reduced motility, hypoflagellation, and the improper localization of flagella to nonpolar sites. Motile variants of H. pylori ∆flhF mutants that had a higher proportion of flagella localizing correctly to the cell pole were isolated, but we were unable to identify the genetic determinants responsible for the increased localization of flagella to the cell pole. One motile variant though produced more flagella than the ΔflhF parental strain, which apparently resulted from a missense mutation in fliF (encodes the MS ring protein), which changed Asn-255 to aspartate. Recombinant FliFN255D, but not recombinant wild-type FliF, formed ordered ring-like assemblies in vitro that were ~50 nm wide and displayed the MS ring architecture. We infer from these findings that the FliFN225D variant forms the MS ring more effectively in vivo in the absence of FlhF than wild-type FliF. IMPORTANCE Helicobacter pylori colonizes the human stomach where it can cause a variety of diseases, including peptic ulcer disease and gastric cancer. H. pylori uses flagella for motility, which is required for host colonization. FlhG and FlhF control the flagellation patterns in many bacteria. We found that in H. pylori, FlhG ensures that cells have approximately equal number of flagella and FlhF is needed for flagellum assembly and localization. FlhF is proposed to facilitate the assembly of FliF into the MS ring, which is one of the earliest structures formed in flagellum assembly. We identified a FliF variant that assembles the MS ring in the absence of FlhF, which supports the proposed role of FlhF in facilitating MS ring assembly.
Collapse
Affiliation(s)
| | - Jack M. Botting
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Natalie Al-Otaibi
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Kriti Maitre
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Julien Bergeron
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
A Positively Selected fur-R88H Mutation Enhances Helicobacter pylori Fitness in a High-Salt Environment and Alters Fur-Dependent Regulation of Gene Expression. Infect Immun 2023; 91:e0042022. [PMID: 36633416 PMCID: PMC9933627 DOI: 10.1128/iai.00420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.
Collapse
|
3
|
Insights into the Orchestration of Gene Transcription Regulators in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms232213688. [PMID: 36430169 PMCID: PMC9696931 DOI: 10.3390/ijms232213688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens employ a general strategy to overcome host defenses by coordinating the virulence gene expression using dedicated regulatory systems that could raise intricate networks. During the last twenty years, many studies of Helicobacter pylori, a human pathogen responsible for various stomach diseases, have mainly focused on elucidating the mechanisms and functions of virulence factors. In parallel, numerous studies have focused on the molecular mechanisms that regulate gene transcription to attempt to understand the physiological changes of the bacterium during infection and adaptation to the environmental conditions it encounters. The number of regulatory proteins deduced from the genome sequence analyses responsible for the correct orchestration of gene transcription appears limited to 14 regulators and three sigma factors. Furthermore, evidence is accumulating for new and complex circuits regulating gene transcription and H. pylori virulence. Here, we focus on the molecular mechanisms used by H. pylori to control gene transcription as a function of the principal environmental changes.
Collapse
|
4
|
A Polar Flagellar Transcriptional Program Mediated by Diverse Two-Component Signal Transduction Systems and Basal Flagellar Proteins Is Broadly Conserved in Polar Flagellates. mBio 2020; 11:mBio.03107-19. [PMID: 32127455 PMCID: PMC7064773 DOI: 10.1128/mbio.03107-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Relative to peritrichous bacteria, polar flagellates possess regulatory systems that order flagellar gene transcription differently and produce flagella in specific numbers only at poles. How transcriptional and flagellar biogenesis regulatory systems are interlinked to promote the correct synthesis of polar flagella in diverse species has largely been unexplored. We found evidence for many Gram-negative polar flagellates encoding two-component signal transduction systems with activity linked to the formation of flagellar type III secretion systems to enable production of flagellar rod and hook proteins at a discrete, subsequent stage during flagellar assembly. This polar flagellar transcriptional program assists, in some manner, the FlhF/FlhG flagellar biogenesis regulatory system, which forms specific flagellation patterns in polar flagellates in maintaining flagellation and motility when activity of FlhF or FlhG might be altered. Our work provides insight into the multiple regulatory processes required for polar flagellation. Bacterial flagella are rotating nanomachines required for motility. Flagellar gene expression and protein secretion are coordinated for efficient flagellar biogenesis. Polar flagellates, unlike peritrichous bacteria, commonly order flagellar rod and hook gene transcription as a separate step after production of the MS ring, C ring, and flagellar type III secretion system (fT3SS) core proteins that form a competent fT3SS. Conserved regulatory mechanisms in diverse polar flagellates to create this polar flagellar transcriptional program have not been thoroughly assimilated. Using in silico and genetic analyses and our previous findings in Campylobacter jejuni as a foundation, we observed a large subset of Gram-negative bacteria with the FlhF/FlhG regulatory system for polar flagellation to possess flagellum-associated two-component signal transduction systems (TCSs). We present data supporting a general theme in polar flagellates whereby MS ring, rotor, and fT3SS proteins contribute to a regulatory checkpoint during polar flagellar biogenesis. We demonstrate that Vibrio cholerae and Pseudomonas aeruginosa require the formation of this regulatory checkpoint for the TCSs to directly activate subsequent rod and hook gene transcription, which are hallmarks of the polar flagellar transcriptional program. By reprogramming transcription in V. cholerae to more closely follow the peritrichous flagellar transcriptional program, we discovered a link between the polar flagellar transcription program and the activity of FlhF/FlhG flagellar biogenesis regulators in which the transcriptional program allows polar flagellates to continue to produce flagella for motility when FlhF or FlhG activity may be altered. Our findings integrate flagellar transcriptional and biogenesis regulatory processes involved in polar flagellation in many species.
Collapse
|
5
|
Alvarado A, Behrens W, Josenhans C. Protein Activity Sensing in Bacteria in Regulating Metabolism and Motility. Front Microbiol 2020; 10:3055. [PMID: 32010106 PMCID: PMC6978683 DOI: 10.3389/fmicb.2019.03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied. For instance, the sensing of internal or external cues can also be mediated by changes in protein conformation, which can either be implicated in enzymatic reactions, transport channel formation or other important cellular functions. These activities can then feed into pathways of characterized kinases, which translocate the information to the DNA or other response units. This type of bacterial sensory activity has previously been termed protein activity sensing. In this review, we highlight the recent findings about this non-canonical sensory mechanism, as well as its involvement in metabolic functions and bacterial motility. Additionally, we explore some of the specific proteins and protein-protein interactions that mediate protein activity sensing and their downstream effects. The complex sensory activities covered in this review are important for bacterial navigation and gene regulation in their dynamic environment, be it host-associated, in microbial communities or free-living.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine Josenhans
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
6
|
Loss of a Cardiolipin Synthase in Helicobacter pylori G27 Blocks Flagellum Assembly. J Bacteriol 2019; 201:JB.00372-19. [PMID: 31427391 DOI: 10.1128/jb.00372-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori uses a cluster of polar, sheathed flagella for motility, which it requires for colonization of the gastric epithelium in humans. As part of a study to identify factors that contribute to localization of the flagella to the cell pole, we disrupted a gene encoding a cardiolipin synthase (clsC) in H. pylori strains G27 and B128. Flagellum biosynthesis was abolished in the H. pylori G27 clsC mutant but not in the B128 clsC mutant. Transcriptome sequencing analysis showed that flagellar genes encoding proteins needed early in flagellum assembly were expressed at wild-type levels in the G27 clsC mutant. Examination of the G27 clsC mutant by cryo-electron tomography indicated the mutant assembled nascent flagella that contained the MS ring, C ring, flagellar protein export apparatus, and proximal rod. Motile variants of the G27 clsC mutant were isolated after allelic exchange mutagenesis using genomic DNA from the B128 clsC mutant as the donor. Genome resequencing of seven motile G27 clsC recipients revealed that each isolate contained the flgI (encodes the P-ring protein) allele from B128. Replacing the flgI allele in the G27 clsC mutant with the B128 flgI allele rescued flagellum biosynthesis. We postulate that H. pylori G27 FlgI fails to form the P ring when cardiolipin levels in the cell envelope are low, which blocks flagellum assembly at this point. In contrast, H. pylori B128 FlgI can form the P ring when cardiolipin levels are low and allows for the biosynthesis of mature flagella.IMPORTANCE H. pylori colonizes the epithelial layer of the human stomach, where it can cause a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. To colonize the stomach, H. pylori must penetrate the viscous mucous layer lining the stomach, which it accomplishes using its flagella. The significance of our research is identifying factors that affect the biosynthesis and assembly of the H. pylori flagellum, which will contribute to our understanding of motility in H. pylori, as well as other bacterial pathogens that use their flagella for host colonization.
Collapse
|
7
|
Gu H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr Microbiol 2017; 74:863-869. [PMID: 28444418 PMCID: PMC5447363 DOI: 10.1007/s00284-017-1256-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
This review aimed to investigate the role of Helicobacter pylori flagella on the pathogenicity of this bacterium in humans. Helicobacter pylori is a flagellated pathogen that colonizes the human gastroduodenal mucosa and produces inflammation, and is responsible for gastrointestinal disease. Its pathogenesis is attributed to colonization and virulence factors. The primary function of H. pylori flagella is to provide motility. We believe that H. pylori flagella play an important role in the colonization of the gastrointestinal mucosa. Therefore, we reviewed previous studies on flagellar morphology and motility in order to explore the relationship between H. pylori flagella and pathogenicity. Further investigation is required to confirm the association between flagella and pathogenicity in H. pylori.
Collapse
Affiliation(s)
- Haiying Gu
- Medical School, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Basal Body Structures Differentially Affect Transcription of RpoN- and FliA-Dependent Flagellar Genes in Helicobacter pylori. J Bacteriol 2015; 197:1921-30. [PMID: 25825427 DOI: 10.1128/jb.02533-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/20/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Flagellar biogenesis in Helicobacter pylori is regulated by a transcriptional hierarchy governed by three sigma factors, RpoD (σ(80)), RpoN (σ(54)), and FliA (σ(28)), that temporally coordinates gene expression with the assembly of the flagellum. Previous studies showed that loss of flagellar protein export apparatus components inhibits transcription of flagellar genes. The FlgS/FlgR two-component system activates transcription of RpoN-dependent genes though an unknown mechanism. To understand better the extent to which flagellar gene regulation is coupled to flagellar assembly, we disrupted flagellar biogenesis at various points and determined how these mutations affected transcription of RpoN-dependent (flaB and flgE) and FliA-dependent (flaA) genes. The MS ring (encoded by fliF) is one of the earliest flagellar structures assembled. Deletion of fliF resulted in the elimination of RpoN-dependent transcripts and an ∼4-fold decrease in flaA transcript levels. FliH is a cytoplasmic protein that functions with the C ring protein FliN to shuttle substrates to the export apparatus. Deletions of fliH and genes encoding C ring components (fliM and fliY) decreased transcript levels of flaB and flgE but had little or no effect on transcript levels of flaA. Transcript levels of flaB and flgE were elevated in mutants where genes encoding rod proteins (fliE and flgBC) were deleted, while transcript levels of flaA was reduced ∼2-fold in both mutants. We propose that FlgS responds to an assembly checkpoint associated with the export apparatus and that FliH and one or more C ring component assist FlgS in engaging this flagellar structure. IMPORTANCE The mechanisms used by bacteria to couple transcription of flagellar genes with assembly of the flagellum are poorly understood. The results from this study identified components of the H. pylori flagellar basal body that either positively or negatively affect expression of RpoN-dependent flagellar genes. Some of these basal body proteins may interact directly with regulatory proteins that control transcription of the H. pylori RpoN regulon, a hypothesis that can be tested by examining protein-protein interactions in vitro.
Collapse
|
9
|
Helicobacter pylori FlhA Binds the Sensor Kinase and Flagellar Gene Regulatory Protein FlgS with High Affinity. J Bacteriol 2015; 197:1886-92. [PMID: 25802298 DOI: 10.1128/jb.02610-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/13/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Flagellar biogenesis is a complex process that involves multiple checkpoints to coordinate transcription of flagellar genes with the assembly of the flagellum. In Helicobacter pylori, transcription of the genes needed in the middle stage of flagellar biogenesis is governed by RpoN and the two-component system consisting of the histidine kinase FlgS and response regulator FlgR. In response to an unknown signal, FlgS autophosphorylates and transfers the phosphate to FlgR, initiating transcription from RpoN-dependent promoters. In the present study, export apparatus protein FlhA was examined as a potential signal protein. Deletion of its N-terminal cytoplasmic sequence dramatically decreased expression of two RpoN-dependent genes, flaB and flgE. Optical biosensing demonstrated a high-affinity interaction between FlgS and a peptide consisting of residues 1 to 25 of FlhA (FlhANT). The KD (equilibrium dissociation constant) was 21 nM and was characterized by fast-on (kon = 2.9 × 10(4) M(-1)s(-1)) and slow-off (koff = 6.2 × 10(-4) s(-1)) kinetics. FlgS did not bind peptides consisting of smaller fragments of the FlhANT sequence. Analysis of binding to purified fragments of FlgS demonstrated that the C-terminal portion of the protein containing the kinase domain binds FlhANT. FlhANT binding did not stimulate FlgS autophosphorylation in vitro, suggesting that FlhA facilitates interactions between FlgS and other structures required to stimulate autophosphorylation. IMPORTANCE The high-affinity binding of FlgS to FlhA characterized in this study points to an additional role for FlhA in flagellar assembly. Beyond its necessity for type III secretion, the N-terminal cytoplasmic sequence of FlhA is required for RpoN-dependent gene expression via interaction with the C-terminal kinase domain of FlgS.
Collapse
|
10
|
Tharmalingam N, Kim SH, Park M, Woo HJ, Kim HW, Yang JY, Rhee KJ, Kim JB. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells. Infect Agent Cancer 2014; 9:43. [PMID: 25584066 PMCID: PMC4290101 DOI: 10.1186/1750-9378-9-43] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/19/2014] [Indexed: 01/01/2023] Open
Abstract
Background Piperine is a compound comprising 5-9% of black pepper (Piper nigrum), which has a variety of biological roles related to anticancer activities. Helicobacter pylori has been classified as a gastric carcinogen, because it causes gastritis and gastric cancer by injecting the virulent toxin CagA and translocating VacA. The present study investigated the inhibitory action of piperine on H. pylori growth and adhesion. Methods Inhibition of H. pylori growth was determined by the broth macrodilution method, and adhesion to gastric adenocarcinoma cells validated by urease assay. Motility test was performed by motility agar and the expression of adhesion gene and flagellar gene in response to the piperine treatment was assessed by RT-PCR and immunoblotting. Results Administrated piperine suppressed the level of H. pylori adhesion to gastric adenocarcinoma cells in a dose dependent manner and the inhibition was statistically significant as determined by Student’s t-test. In addition, piperine treatment effects on the flagellar hook gene flgE and integral membrane component of the export apparatus gene flhA expression to be suppressed and piperine diminished the H. pylori motility. Conclusions flhA, encodes an integral membrane component of the export apparatus, which is also one of the regulatory protein in the class 2 genes expression and flgE is one of them that encodes hook part of the flagella. Suppression of both genes, leads to less motility results in the organism attracted less towards to the gastric epithelial cells might be the possible reason in the adhesion inhibition. To our knowledge, this is the first report published on the inhibitory effects of piperine against the adhesion of H. pylori to gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Nagendran Tharmalingam
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jaecheon, Republic of Korea
| | - Min Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| | - Hyun Jun Woo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| | - Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| | - Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| | - Jong Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
11
|
Kao CY, Sheu BS, Wu JJ. CsrA regulates Helicobacter pylori J99 motility and adhesion by controlling flagella formation. Helicobacter 2014; 19:443-54. [PMID: 25109343 DOI: 10.1111/hel.12148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Motility mediated by the flagella of Helicobacter pylori has been shown to be required for normal colonization and is thought to be important for the bacteria to move toward the gastric mucus in niches adjacent to the epithelium. Barnard et al. showed that CsrA appears to be necessary for full motility and the ability to infect mice, but its mechanism of regulation is still unclear. METHODS Motility and cell adhesion ability were determined in wild-type, csrA mutant, and revertant J99 strains. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. The expression of two major flagellins, flaA/flaB, and the alternative sigma factor rpoN (σ(54)) were determined by real-time quantitative RT-PCR and Western blot. RESULTS The csrA mutant showed loss of motility and lower adhesion ability compared with the wild-type and revertant J99 strains. The csrA mutant was not flagellated. Transcription of flaA and flaB mRNA decreased to only 40% and 16%, respectively, in the csrA mutant compared with the wild-type J99 (p = .006 and <.0001, respectively), and Western blot analysis showed dramatically reduced FlaA/FlaB proteins in a csrA mutant. The disruption of csrA also decreased expression of rpoN to 48% in the csrA mutant, but the degradation rate of rpoN mRNA was not changed. CONCLUSION These results suggest that CsrA regulates H. pylori J99 flagella formation and thereby affects bacterial motility.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
12
|
Requirement of the flagellar protein export apparatus component FliO for optimal expression of flagellar genes in Helicobacter pylori. J Bacteriol 2014; 196:2709-17. [PMID: 24837287 DOI: 10.1128/jb.01332-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flagellar biogenesis in Helicobacter pylori involves the coordinated expression of flagellar genes with assembly of the flagellum. The H. pylori flagellar genes are organized into three regulons based on the sigma factor needed for their transcription (RpoD [σ(80)], RpoN [σ(54)], or FliA [σ(28)]). Transcription of RpoN-dependent genes is activated by a two-component system consisting of the sensor kinase FlgS and the response regulator FlgR. While the cellular cues sensed by the FlgS/FlgR two-component system remain to be elucidated, previous studies revealed that disrupting certain components of the flagellar export apparatus inhibited transcription of the RpoN regulon. FliO is the least conserved of the membrane-bound components of the export apparatus and has not been annotated for any of the H. pylori genomes sequenced to date. A PSI-BLAST analysis identified a potential H. pylori FliO protein which membrane topology algorithms predict to possess a large N-terminal periplasmic domain that is absent from FliO of Escherichia coli and Salmonella, the paradigms for flagellar structure/function studies. FliO was necessary for flagellar biogenesis as well as wild-type levels of motility and transcription of RpoN-dependent and FliA-dependent flagellar genes in H. pylori strain B128. FliO also appears to be required for wild-type levels of the export apparatus protein FlhA in the membrane. Interestingly, the periplasmic and cytoplasmic domains were somewhat dispensable for flagellar gene regulation and assembly, suggesting that these domains have relatively minor roles in flagellar synthesis.
Collapse
|
13
|
Tsang J, Hoover TR. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species. SCIENTIFICA 2014; 2014:681754. [PMID: 24672734 PMCID: PMC3930126 DOI: 10.1155/2014/681754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ (54) (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.
Collapse
Affiliation(s)
- Jennifer Tsang
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Boehm M, Haenel I, Hoy B, Brøndsted L, Smith TG, Hoover T, Wessler S, Tegtmeyer N. Extracellular secretion of protease HtrA from Campylobacter jejuni is highly efficient and independent of its protease activity and flagellum. Eur J Microbiol Immunol (Bp) 2013; 3:163-73. [PMID: 24265934 DOI: 10.1556/eujmi.3.2013.3.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023] Open
Abstract
The serine protease HtrA of C. jejuni has been identified as a novel secreted virulence factor which opens cell-to-cell junctions by cleaving E-cadherin. Efficient C. jejuni transmigration across polarized human epithelial cells requires the intact flagellum and HtrA; however, the mechanism of HtrA secretion into the supernatant is unknown. Here we show that HtrA secretion is highly efficient and does not require its proteolytic activity because the protease-inactive S197A mutant is secreted like wild-type HtrA. In addition, the flagellar mutants ΔflaA/B, ΔfliI, ΔflgH, ΔflhA, ΔflhB, and ΔflgS were also able to secrete HtrA in high amounts, while they were strongly attenuated in secreting the well-known invasion antigen CiaB. We also tested several culture media and cell lines of different origin such as human, mouse, hamster, dog, and chicken for their ability to influence HtrA secretion. Interestingly, HtrA was effectively secreted in the presence of most but not all cell lines and media, albeit at different levels, but secretion was significantly higher when fetal calf serum (FCS) was added. These results demonstrate that HtrA secretion by Campylobacter proceeds independent of HtrA's protease activity, the flagellum and origin of cell lines, but can be strongly enhanced by molecular compound(s) present in FCS.
Collapse
|