1
|
Pouget M, Coussens AK, Ruggiero A, Koch A, Thomas J, Besra GS, Wilkinson RJ, Bhatt A, Pollakis G, Paxton WA. Generation of Liposomes to Study the Effect of Mycobacterium Tuberculosis Lipids on HIV-1 cis- and trans-Infections. Int J Mol Sci 2021; 22:ijms22041945. [PMID: 33669411 PMCID: PMC7920488 DOI: 10.3390/ijms22041945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death among HIV-1-infected individuals and Mycobacterium tuberculosis (Mtb) co-infection is an early precipitate to AIDS. We aimed to determine whether Mtb strains differentially modulate cellular susceptibility to HIV-1 infection (cis- and trans-infection), via surface receptor interaction by their cell envelope lipids. Total lipids from pathogenic (lineage 4 Mtb H37Rv, CDC1551 and lineage 2 Mtb HN878, EU127) and non-pathogenic (Mycobacterium bovis BCG and Mycobacterium smegmatis) Mycobacterium strains were integrated into liposomes mimicking the lipid distribution and antigen accessibility of the mycobacterial cell wall. The resulting liposomes were tested for modulating in vitro HIV-1 cis- and trans-infection of TZM-bl cells using single-cycle infectious virus particles. Mtb glycolipids did not affect HIV-1 direct infection however, trans-infection of both R5 and X4 tropic HIV-1 strains were impaired in the presence of glycolipids from M. bovis, Mtb H37Rv and Mtb EU127 strains when using Raji-DC-SIGN cells or immature and mature dendritic cells (DCs) to capture virus. SL1, PDIM and TDM lipids were identified to be involved in DC-SIGN recognition and impairment of HIV-1 trans-infection. These findings indicate that variant strains of Mtb have differential effect on HIV-1 trans-infection with the potential to influence HIV-1 disease course in co-infected individuals.
Collapse
Affiliation(s)
- Marion Pouget
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
- UCD Centre for Experimental Pathogen Host Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna K. Coussens
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa; (A.K.C.); (A.K.); (R.J.W.)
- Walter and Eliza Hall Institute of Medical Research, Parkville 3279, Australia
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
- Academic Department of Pediatrics (DPUO), IRCCS Ospedale Pediatrico Bambino Gesù, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Anastasia Koch
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa; (A.K.C.); (A.K.); (R.J.W.)
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (G.S.B.); (A.B.)
| | - Robert J. Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa; (A.K.C.); (A.K.); (R.J.W.)
- Department of Infectious Diseases, Imperial College, London W2 1PG, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Apoorva Bhatt
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (G.S.B.); (A.B.)
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
- Correspondence: (G.P.); (W.A.P.); Tel.: +44-151-795-9681 (G.P.); +44-151-795-9605 (W.A.P.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
- Correspondence: (G.P.); (W.A.P.); Tel.: +44-151-795-9681 (G.P.); +44-151-795-9605 (W.A.P.)
| |
Collapse
|
2
|
Alhuwaymil ZS, Al-Araj IQM, Al Dulayymi AR, Jones A, Gates PJ, Valero-Guillén PL, Baird MS, Al Dulayymi JR. Mycobacterium alvei (ω-1)-methoxy mycolic acids: Absolute stereochemistry and synthesis. Chem Phys Lipids 2020; 233:104977. [PMID: 32961166 DOI: 10.1016/j.chemphyslip.2020.104977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
Abstract
Cells of Mycobacterium alvei are known to contain a unique set of mycolic acids with a (ω-1)-methoxy group; although the various enzymes in the biosynthesis of other types of mycolic acid have been widely studied, the biosynthetic route to this substituent is unclear. We now define the stereochemistry of the (ω-1)-methoxy fragment as R, and describe the synthesis of a major R-(ω-1)-methoxy-mycolic acid and its sugar esters, and of two natural M. alvei diene mycolic acids.
Collapse
Affiliation(s)
- Zamzam S Alhuwaymil
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Ahmad R Al Dulayymi
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Alison Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Paul J Gates
- School of Chemistry, Bristol University, Bristol, BS8 1TS, UK
| | - Pedro L Valero-Guillén
- Departamento de Genética y Microbiología, Facultad de Medicina, Universidad de Murcia, Spain, Instituto Murciano de Investigación Biosanitaria (IMIB), Spain
| | - Mark S Baird
- School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | |
Collapse
|
3
|
Ali HM, Koza G, Hameed RT, Rowles R, Davies C, Al Dulayymi JR, Gwenin CD, Baird MS. The synthesis of single enantiomers of trans-alkene containing mycolic acids and related sugar esters. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
5
|
Taher SG, Muzael M, Al Dulayymi JR, Baird MS. Synthetic trehalose esters of cis-alkene and diene α′-mycolic acids of Mycobacteria. Chem Phys Lipids 2015; 189:28-38. [DOI: 10.1016/j.chemphyslip.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/18/2015] [Indexed: 11/24/2022]
|
6
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
7
|
Laurens C, Héry-Arnaud G, Chiron R, Oziol E, Jean-Pierre H, Bouzinbi N, Vande Perre P, Bañuls AL, Godreuil S. Sacroiliitis secondary to catheter-related bacteremia due to Mycobacterium abscessus (sensu stricto). Ann Clin Microbiol Antimicrob 2014; 13:9. [PMID: 24479655 PMCID: PMC3943385 DOI: 10.1186/1476-0711-13-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/13/2014] [Indexed: 12/29/2022] Open
Abstract
We describe a case of sacroiliitis secondary to catheter-related bacteremia due to Mycobacterium abscessus (sensu stricto). This case confirms that MultiLocus sequence typing and variable-number tandem-repeat methods are very robust techniques to identify the pathogen species and to validate molecular epidemiological links among complex M. abscessus isolates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sylvain Godreuil
- Centre Hospitalier Régional Universitaire (CHRU) de Montpellier, Département de Bactériologie-Virologie, Montpellier, France.
| |
Collapse
|
8
|
Liu R, To KKW, Teng JLL, Choi GKY, Mok KY, Law KI, Tso EYK, Fung KSC, Wu TC, Wu AKL, Fung SH, Wong SCY, Trendell-Smith NJ, Yuen KY. Mycobacterium abscessus bacteremia after receipt of intravenous infusate of cytokine-induced killer cell therapy for body beautification and health boosting. Clin Infect Dis 2013; 57:981-91. [PMID: 23825355 DOI: 10.1093/cid/cit443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We report the first series of Mycobacterium abscessus bacteremia after cytokine-induced killer cell therapy for body beautification and health boosting. METHODS The clinical manifestations, laboratory and radiological investigations, cytokine/chemokine profiles, and outcomes were described and analyzed. RESULTS Four patients were admitted, and 3 patients had septic shock. Chest radiographs showed pulmonary infiltrates in all patients. Three patients developed peripheral gangrene, and 1 patient required lower limb and finger amputations. Patient 1 also developed disseminated infection including meningitis and urinary tract infection. Postmortem examination of patient 1 showed focal areas of pulmonary hemorrhage and diffuse alveolar damage, splenic infarct, adrenal necrosis, and hemorrhage, and acid-fast bacilli (AFB) were seen in the lung, liver, kidney, and adrenal gland. Patient 2 developed inguinal granulomatous lymphadenitis about 40 days after onset of lower limb gangrene. Wedge-shaped pulmonary infarcts were found in patient 3, and retinitis and subcutaneous lesions developed in patient 4. Patients in septic shock had dysregulated cytokine/chemokine profiles. Patient 4 with relatively milder presentation had increasing levels of interleukin 17 and cytokines in the interferon-γ/interleukin 12 pathway. All survivors required prolonged intravenous antibiotics. Blood cultures grew M. abscessus for all patients, and admission peripheral blood smear revealed AFB for 3 patients. Mycobacterium abscessus was also isolated from respiratory specimens (2 patients), urine (1 patient), and cerebrospinal fluid (1 patient). Time to initial blood culture positivity (patients 1, 2, and 3: ≤52 hours; patient 4: 83 hours) appeared to correlate with disease severity. CONCLUSIONS Empirical coverage for rapidly growing mycobacteria should be considered in patients with sepsis following cosmetic procedures.
Collapse
|