1
|
Long TF, Zhou SY, Huang ZL, Li G, Zhong Q, Zhang XJ, Li YY, Chen CP, Xia LJ, Wei R, Wan L, Gao A, Ren H, Liao XP, Liu YH, Chen L, Sun J. Innovative Delivery System Combining CRISPR-Cas12f for Combatting Antimicrobial Resistance in Gram-Negative Bacteria. ACS Synth Biol 2024; 13:1831-1841. [PMID: 38863339 DOI: 10.1021/acssynbio.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or blaKPC genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Teng-Fei Long
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shi-Ying Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zi-Lei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qin Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiao-Jing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yuan-Yuan Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Cai-Ping Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Li-Juan Xia
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ran Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lei Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ang Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ya-Hong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
2
|
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect Dis 2023; 9:1283-1302. [PMID: 37347230 PMCID: PMC10353011 DOI: 10.1021/acsinfecdis.2c00649] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/23/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains is a source of public health concern across the globe. As the discovery of new conventional antibiotics has stalled significantly over the past decade, there is an urgency to develop novel approaches to address drug resistance in infectious diseases. The use of a CRISPR-Cas-based system for the precise elimination of targeted bacterial populations holds promise as an innovative approach for new antimicrobial agent design. The CRISPR-Cas targeting system is celebrated for its high versatility and specificity, offering an excellent opportunity to fight antibiotic resistance in pathogens by selectively inactivating genes involved in antibiotic resistance, biofilm formation, pathogenicity, virulence, or bacterial viability. The CRISPR-Cas strategy can enact antimicrobial effects by two approaches: inactivation of chromosomal genes or curing of plasmids encoding antibiotic resistance. In this Review, we provide an overview of the main CRISPR-Cas systems utilized for the creation of these antimicrobials, as well as highlighting promising studies in the field. We also offer a detailed discussion about the most commonly used mechanisms for CRISPR-Cas delivery: bacteriophages, nanoparticles, and conjugative plasmids. Lastly, we address possible mechanisms of interference that should be considered during the intelligent design of these novel approaches.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Saskya E. Carrera-Pacheco
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- Escuela
de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170902, Ecuador
| | - Linda P. Guamán
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| |
Collapse
|
3
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Brumwell SL, Van Belois KD, Giguere DJ, Edgell DR, Karas BJ. Conjugation-Based Genome Engineering in Deinococcus radiodurans. ACS Synth Biol 2022; 11:1068-1076. [PMID: 35254818 PMCID: PMC8939323 DOI: 10.1021/acssynbio.1c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deinococcus radiodurans has become an attractive microbial platform for the study of extremophile biology and industrial bioproduction. To improve the genomic manipulation and tractability of this species, the development of tools for whole genome engineering and design is necessary. Here, we report the development of a simple and robust conjugation-based DNA transfer method from E. coli to D. radiodurans, allowing for the introduction of stable, replicating plasmids expressing antibiotic resistance markers. Using this method with nonreplicating plasmids, we developed a protocol for creating sequential gene deletions in D. radiodurans by targeting restriction-modification genes. Importantly, we demonstrated a conjugation-based method for cloning the large (178 kb), high G+C content MP1 megaplasmid from D. radiodurans in E. coli. The conjugation-based tools described here will facilitate the development of D. radiodurans strains with synthetic genomes for biological studies and industrial applications.
Collapse
Affiliation(s)
- Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Katherine D Van Belois
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Daniel J Giguere
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
5
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
6
|
He YZ, Kuang X, Long TF, Li G, Ren H, He B, Yan JR, Liao XP, Liu YH, Chen L, Sun J. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. J Antimicrob Chemother 2021; 77:74-82. [PMID: 34613377 DOI: 10.1093/jac/dkab368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES In this study, we developed an IS26-based CRISPR/Cas9 system as a proof-of-concept study to explore the potential of a re-engineered bacterial translocatable unit (TU) for curing and immunizing against the replication genes and antimicrobial resistance genes. METHODS A series of pIS26-CRISPR/Cas9 suicide plasmids were constructed, and specific guide RNAs were designed to target the replication gene of IncX4, IncI2 and IncHI2 plasmids, and the antibiotic resistance genes mcr-1, blaKPC-2 and blaNDM-5. Through conjugation and induction, the transposition efficiency and plasmid-curing efficiency in each recipient were tested. In addition, we examined the efficiency of the IS26-CRISPR/Cas9 system of cell immunity against the acquisition of the exogenous resistant plasmids by introducing this system into antimicrobial-susceptible hosts. RESULTS This study aimed to eliminate the replication genes and antimicrobial resistance genes using pIS26-CRISPR/Cas9. Three plasmids with different replicon types, including IncX4, IncI2 and IncHI2 in three isolates, two pUC19-derived plasmids, pUC19-mcr-1 and pUC19-IS26mcr-1, in two lab strains, and two plasmids bearing blaKPC-2 and blaNDM-5 in two isolates were all successfully eliminated. Moreover, the IS26-based CRISPR/Cas9 system that remained in the plasmid-cured strains could efficiently serve as an immune system against the acquisition of the exogenous resistant plasmids. CONCLUSIONS The IS26-based CRISPR/Cas9 system can be used to efficiently sensitize clinical Escherichia coli isolates to antibiotics in vitro. The single-guide RNAs targeted resistance genes or replication genes of specific incompatible plasmids that harboured resistance genes, providing a novel means to naturally select bacteria that cannot uptake and disseminate such genes.
Collapse
Affiliation(s)
- Yu-Zhang He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xu Kuang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Teng-Fei Long
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gong Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bing He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin-Ru Yan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Jian Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Lopez-Pier MA, Koppinger MP, Harris PR, Cannon DK, Skaria RS, Hurwitz BL, Watts G, Aras S, Slepian MJ, Konhilas JP. An adaptable and non-invasive method for tracking Bifidobacterium animalis subspecies lactis 420 in the mouse gut. J Microbiol Methods 2021; 189:106302. [PMID: 34391819 PMCID: PMC8473990 DOI: 10.1016/j.mimet.2021.106302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Probiotic strains from the Bifidobacterium or Lactobacillus genera improve health outcomes in models of metabolic and cardiovascular disease. Yet, underlying mechanisms governing these improved health outcomes are rooted in the interaction of gut microbiota, intestinal interface, and probiotic strain. Central to defining the underlying mechanisms governing these improved health outcomes is the development of adaptable and non-invasive tools to study probiotic localization and colonization within the host gut microbiome. The objective of this study was to test labeling and tracking efficacy of Bifidobacterium animalis subspecies lactis 420 (B420) using a common clinical imaging agent, indocyanine green (ICG). ICG was an effective in situ labeling agent visualized in either intact mouse or excised gastrointestinal (GI) tract at different time intervals. Quantitative PCR was used to validate ICG visualization of B420, which also demonstrated that B420 transit time matched normal murine GI motility (~8 hours). Contrary to previous thoughts, B420 did not colonize any region of the GI tract whether following a single bolus or daily administration for up to 10 days. We conclude that ICG may provide a useful tool to visualize and track probiotic species such as B420 without implementing complex molecular and genetic tools. Proof-of-concept studies indicate that B420 did not colonize and establish residency align the murine GI tract.
Collapse
Affiliation(s)
- Marissa A Lopez-Pier
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Matthew P Koppinger
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Preston R Harris
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Danielle K Cannon
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Rinku S Skaria
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | | | - George Watts
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Marvin J Slepian
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Wang CY, Liu LC, Wu YC, Zhang YX. Identification and Validation of Four Novel Promoters for Gene Engineering with Broad Suitability across Species. J Microbiol Biotechnol 2021; 31:1154-1162. [PMID: 34226414 PMCID: PMC9706022 DOI: 10.4014/jmb.2103.03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022]
Abstract
The transcriptional capacities of target genes are strongly influenced by promoters, whereas few studies have focused on the development of robust, high-performance and cross-species promoters for wide application in different bacteria. In this work, four novel promoters (Pk.rtufB, Pk.r1, Pk.r2, and Pk.r3) were predicted from Ketogulonicigenium robustum and their inconsistency in the -10 and -35 region nucleotide sequences indicated they were different promoters. Their activities were evaluated by using green fluorescent protein (gfp) as a reporter in different species of bacteria, including K. vulgare SPU B805, Pseudomonas putida KT2440, Paracoccus denitrificans PD1222, Bacillus licheniformis and Raoultella ornithinolytica, due to their importance in metabolic engineering. Our results showed that the four promoters had different activities, with Pk.r1 showing the strongest activity in almost all of the experimental bacteria. By comparison with the commonly used promoters of E. coli (tufB, lac, lacUV5), K. vulgare (Psdh, Psndh) and P. putida KT2440 (JE111411), the four promoters showed significant differences due to only 12.62% nucleotide similarities, and relatively higher ability in regulating target gene expression. Further validation experiments confirmed their ability in initiating the target minCD cassette because of the shape changes under the promoter regulation. The overexpression of sorbose dehydrogenase and cytochrome c551 by Pk.r1 and Pk.r2 resulted in a 22.75% enhancement of 2-KGA yield, indicating their potential for practical application in metabolic engineering. This study demonstrates an example of applying bioinformatics to find new biological components for gene operation and provides four novel promoters with broad suitability, which enriches the usable range of promoters to realize accurate regulation in different genetic backgrounds.
Collapse
Affiliation(s)
- Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Li-Cheng Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ying-Cai Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China,Corresponding author Phone: +86-024-43520921 E-mail:
| |
Collapse
|
9
|
Samperio S, Guzmán-Herrador DL, May-Cuz R, Martín MC, Álvarez MA, Llosa M. Conjugative DNA Transfer From E. coli to Transformation-Resistant Lactobacilli. Front Microbiol 2021; 12:606629. [PMID: 33643236 PMCID: PMC7905204 DOI: 10.3389/fmicb.2021.606629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) belonging to the genus classically known as Lactobacillus, recently split into 25 different genera, include many relevant species for the food industry. The well-known properties of lactobacilli as probiotics make them an attractive model also for vaccines and therapeutic proteins delivery in humans. However, scarce tools are available to accomplish genetic modification of these organisms, and most are only suitable for laboratory strains. Here, we test bacterial conjugation as a new tool to introduce genetic modifications into many biotechnologically relevant laboratory and wild type lactobacilli. Using mobilizable shuttle plasmids from a donor Escherichia coli carrying either RP4 or R388 conjugative systems, we were able to get transconjugants to all tested Lactocaseibacillus casei strains, including many natural isolates, and to several other genera, including Lentilactobacillus parabuchneri, for which no transformation protocol has been reported. Transconjugants were confirmed by the presence of the oriT and 16S rRNA gene sequencing. Serendipitously, we also found transconjugants into researcher-contaminant Staphylococcus epidermidis. Conjugative DNA transfer from E. coli to S. aureus was previously described, but at very low frequencies. We have purified this recipient strain and used it in standard conjugation assays, confirming that both R388 and RP4 conjugative systems mediate mobilization of plasmids into S. epidermidis. This protocol could be assayed to introduce DNA into other Gram-positive microorganisms which are resistant to transformation.
Collapse
Affiliation(s)
- Sara Samperio
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | - Dolores L Guzmán-Herrador
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | - Rigoberto May-Cuz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | | | | | - Matxalen Llosa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| |
Collapse
|
10
|
Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol Adv 2020; 45:107654. [DOI: 10.1016/j.biotechadv.2020.107654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
|
11
|
Wang C, Cui Y, Qu X. Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (LAB). J Microbiol Methods 2020; 174:105944. [DOI: 10.1016/j.mimet.2020.105944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
12
|
Li J, Wang J, Li S, Yi F, Xu J, Shu M, Shen M, Jiao Y, Tao F, Zhu C, Zhang H, Qian S, Zhong W. Co-occurrence of functional modules derived from nicotine-degrading gene clusters confers additive effects in Pseudomonas sp. JY-Q. Appl Microbiol Biotechnol 2019; 103:4499-4510. [DOI: 10.1007/s00253-019-09800-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
|
13
|
Ruotsalainen P, Penttinen R, Mattila S, Jalasvuori M. Midbiotics: conjugative plasmids for genetic engineering of natural gut flora. Gut Microbes 2019; 10:643-653. [PMID: 30951393 PMCID: PMC6866695 DOI: 10.1080/19490976.2019.1591136] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 02/03/2023] Open
Abstract
The possibility to modify gut bacterial flora has become an important goal, and various approaches are used to achieve desirable communities. However, the genetic engineering of existing microbes in the gut, which are already compatible with the rest of the community and host immune system, has not received much attention. Here, we discuss and experimentally evaluate the possibility to use modified and mobilizable CRISPR-Cas9-endocing plasmid as a tool to induce changes in bacterial communities. This plasmid system (briefly midbiotic) is delivered from bacterial vector into target bacteria via conjugation. Compared to, for example, bacteriophage-based applications, the benefits of conjugative plasmids include their independence of any particular receptor(s) on host bacteria and their relative immunity to bacterial defense mechanisms (such as restriction-modification systems) due to the synthesis of the complementary strand with host-specific epigenetic modifications. We show that conjugative plasmid in association with a mobilizable antibiotic resistance gene targeting CRISPR-plasmid efficiently causes ESBL-positive transconjugants to lose their resistance, and multiple gene types can be targeted simultaneously by introducing several CRISPR RNA encoding segments into the transferred plasmids. In the rare cases where the midbiotic plasmids failed to resensitize bacteria to antibiotics, the CRISPR spacer(s) and their adjacent repeats or larger regions were found to be lost. Results also revealed potential caveats in the design of conjugative engineering systems as well as workarounds to minimize these risks.
Collapse
Affiliation(s)
- Pilvi Ruotsalainen
- University of Jyväskylä, Department of Biological and Environmental Science, Nanoscience Center, Jyväskylä, Finland
| | - Reetta Penttinen
- University of Jyväskylä, Department of Biological and Environmental Science, Nanoscience Center, Jyväskylä, Finland
| | - Sari Mattila
- Department of Biological Sciences, University of Helsinki, Helsinki, Finland
| | - Matti Jalasvuori
- University of Jyväskylä, Department of Biological and Environmental Science, Nanoscience Center, Jyväskylä, Finland
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Plesiomonas shigelloides sipD mutant, generated by an efficient gene transfer system, is less invasive. J Microbiol Methods 2019; 159:75-80. [PMID: 30817946 DOI: 10.1016/j.mimet.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 11/24/2022]
Abstract
Plesiomonas shigelloides is widely associated with human diarrheal disease. Research on this pathogen has been hampered by the absence of an effective genetic manipulation system. In the present study, an efficient and precise conjugation transfer procedure, mediated by suicide vector pRE112 was used to overcome this limitation. The efficiency of generating double recombinants was average 74.3%, and the conjugation protocol may be applied to other P. shigelloides strains. We also identified that the SipD protein of P. shigelloides G5884 (serotype O45) is 65% similar to the SipD in Salmonella pathogenicity island 1 (SPI-1), which is a key element of the type III secretion system related to Salmonella invasion. A P. shigelloides sipD null mutant was generated via the conjugation system, using the suicide vector pRE112. The isogenic mutant strain lacking sipD showed a 50% reduction in its capacity to invade Caco-2 cells.
Collapse
|
15
|
Yokoi T, Itaya M, Mori H, Kataoka M. Optimization of RK2-based gene introduction system for Bacillus subtilis. J GEN APPL MICROBIOL 2019; 65:265-272. [DOI: 10.2323/jgam.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takahiro Yokoi
- Interdisciplinary Graduate School of Science and Technology, Shinshu University
| | | | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Masakazu Kataoka
- Interdisciplinary Graduate School of Science and Technology, Shinshu University
| |
Collapse
|
16
|
Yu L, Liu X, O'Sullivan DJ. Use of Lactococcus lactis as a production system for peptides and enzymes encoded by a Lantibiotic gene cluster from Bifidobacterium longum. MICROBIOLOGY-SGM 2018; 164:1481-1490. [PMID: 30339118 DOI: 10.1099/mic.0.000721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bifidobacterium longum DJO10A was previously demonstrated to be able to produce a broad-spectrum lantibiotic, but production in media was very limited and only periodically on solid media. Given the difficulty of obtaining these lantibiotic peptides using B. longum DJO10A due to its tightly controlled production, genes predicted to be required for its production and immunity were designed and codon optimized according to the preferred codon used by Lactococcus lactis. Since the lanR1 gene within this lantibiotic gene cluster was the only one without a characterized analogue from other lantibiotic gene clusters, its annotation was re-examined as it was previously suggested to be a regulatory protein. Lack of DNA binding motifs did not support this, and one current analysis suggested a high likelihood of it interacting with LanD. Therefore, gene lanR1 together with lanADMIT were codon optimized and synthesized. Those genes were then cloned into an efficient dual-plasmid nisin-controlled expression system in L. lactis. The addition of the lanR1 gene exhibited toxicity in E. coli, specifically causing a shorter cell size as observed by SEM. No toxicity was observed in L. lactis. While this production system did not result in the production of a bioactive lantibiotic by L. lactis, it did successfully produce all the peptides and enzymes encoded by the original lantibiotic gene cluster from B. longum, as confirmed by LC-MS. This will now facilitate efforts into determining the proper conditions required for these enzymes to produce a bioactive lantibiotic.
Collapse
Affiliation(s)
- Lu Yu
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave., St. Paul, MN 55108, USA
| | - Xindi Liu
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave., St. Paul, MN 55108, USA
| | - Daniel J O'Sullivan
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave., St. Paul, MN 55108, USA
| |
Collapse
|
17
|
Wang CY, Li Y, Gao ZW, Liu LC, Zhang MY, Zhang TY, Wu CF, Zhang YX. Establishing an innovative carbohydrate metabolic pathway for efficient production of 2-keto-L-gulonic acid in Ketogulonicigenium robustum initiated by intronic promoters. Microb Cell Fact 2018; 17:81. [PMID: 29778095 PMCID: PMC5960096 DOI: 10.1186/s12934-018-0932-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background 2-Keto-l-gulonic acid (2-KGA), the precursor of vitamin C, is currently produced by two-step fermentation. In the second step, l-sorbose is transformed into 2-KGA by the symbiosis system composed of Ketogulonicigenium vulgare and Bacillus megaterium. Due to the different nutrient requirements and the uncertain ratio of the two strains, the symbiosis system significantly limits strain improvement and fermentation optimization. Results In this study, Ketogulonicigenium robustum SPU_B003 was reported for its capability to grow well independently and to produce more 2-KGA than that of K. vulgare in a mono-culture system. The complete genome of K. robustum SPU_B003 was sequenced, and the metabolic characteristics were analyzed. Compared to the four reported K. vulgare genomes, K. robustum SPU_B003 contained more tRNAs, rRNAs, NAD and NADP biosynthetic genes, as well as regulation- and cell signaling-related genes. Moreover, the amino acid biosynthesis pathways were more complete. Two species-specific internal promoters, P1 (orf_01408 promoter) and P2 (orf_02221 promoter), were predicted and validated by detecting their initiation activity. To efficiently produce 2-KGA with decreased CO2 release, an innovative acetyl-CoA biosynthetic pathway (XFP-PTA pathway) was introduced into K. robustum SPU_B003 by expressing heterologous phosphoketolase (xfp) and phosphotransacetylase (pta) initiated by internal promoters. After gene optimization, the recombinant strain K. robustum/pBBR-P1_xfp2502-P2_pta2145 enhanced acetyl-CoA approximately 2.4-fold and increased 2-KGA production by 22.27% compared to the control strain K. robustum/pBBR1MCS-2. Accordingly, the transcriptional level of the 6-phosphogluconate dehydrogenase (pgd) and pyruvate dehydrogenase genes (pdh) decreased by 24.33 ± 6.67 and 8.67 ± 5.51%, respectively. The key genes responsible for 2-KGA biosynthesis, sorbose dehydrogenase gene (sdh) and sorbosone dehydrogenase gene (sndh), were up-regulated to different degrees in the recombinant strain. Conclusions The genome-based functional analysis of K. robustum SPU_B003 provided a new understanding of the specific metabolic characteristics. The new XFP-PTA pathway was an efficient route to enhance acetyl-CoA levels and to therefore promote 2-KGA production. Electronic supplementary material The online version of this article (10.1186/s12934-018-0932-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Ye Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.,Northeast Pharmaceutical Group Co., Ltd, Shenyang, 110026, People's Republic of China
| | - Zi-Wei Gao
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Li-Cheng Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Chun-Fu Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
18
|
Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A. An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Sci Rep 2018; 8:6979. [PMID: 29725058 PMCID: PMC5934359 DOI: 10.1038/s41598-018-25306-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Endophytic microbes isolated from plants growing in contaminated habitats possess specialized properties that help their host detoxify the contaminant/s. The possibility of using microbe-assisted phytoremediation for the clean-up of Arsenic (As) contaminated soils of the Ganga-Brahmaputra delta of India, was explored using As-tolerant endophytic microbes from an As-tolerant plant Lantana camara collected from the contaminated site and an intermediate As-accumulator plant Solanum nigrum. Endophytes from L. camara established within S. nigrum as a surrogate host. The microbes most effectively improved plant growth besides increasing bioaccumulation and root-to-shoot transport of As when applied as a consortium. Better phosphate nutrition, photosynthetic performance, and elevated glutathione levels were observed in consortium-treated plants particularly under As-stress. The consortium maintained heightened ROS levels in the plant without any deleterious effect and concomitantly boosted distinct antioxidant defense mechanisms in the shoot and root of As-treated plants. Increased consortium-mediated As(V) to As(III) conversion appeared to be a crucial step in As-detoxification/translocation. Four aquaporins were differentially regulated by the endophytes and/or As. The most interesting finding was the strong upregulation of an MRP transporter in the root by the As + endophytes, which suggested a major alteration of As-detoxification/accumulation pattern upon endophyte treatment that improved As-phytoremediation.
Collapse
Affiliation(s)
- Gairik Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chinmay Saha
- Department of Endocrinology & Metabolism, Institute Of Post Graduate Medical Education & Research and SSKM Hospital, Room No. 9A, 4th Floor, Ronald Ross Building, 244, AJC Bose Road, Kolkata, 700020, India
| | - Nabanita Naskar
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
| | - Abhishek Mukherjee
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arghya Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Susanta Lahiri
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Anindita Seal
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
19
|
Mechanistic Study of Utilization of Water-Insoluble Saccharomyces cerevisiae Glucans by Bifidobacterium breve Strain JCM1192. Appl Environ Microbiol 2017; 83:AEM.03442-16. [PMID: 28115383 DOI: 10.1128/aem.03442-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/14/2017] [Indexed: 11/20/2022] Open
Abstract
Bifidobacteria exert beneficial effects on hosts and are extensively used as probiotics. However, due to the genetic inaccessibility of these bacteria, little is known about their mechanisms of carbohydrate utilization and regulation. Bifidobacterium breve strain JCM1192 can grow on water-insoluble yeast (Saccharomyces cerevisiae) cell wall glucans (YCWG), which were recently considered as potential prebiotics. According to the results of 1H nuclear magnetic resonance (NMR) spectrometry, the YCWG were composed of highly branched (1→3,1→6)-β-glucans and (1→4,1→6)-α-glucans. Although the YCWG were composed of 78.3% β-glucans and 21.7% α-glucans, only α-glucans were consumed by the B. breve strain. The ABC transporter (malEFG1) and pullulanase (aapA) genes were transcriptionally upregulated in the metabolism of insoluble yeast glucans, suggesting their potential involvement in the process. A nonsense mutation identified in the gene encoding an ABC transporter ATP-binding protein (MalK) led to growth failure of an ethyl methanesulfonate-generated mutant with yeast glucans. Coculture of the wild-type strain and the mutant showed that this protein was responsible for the import of yeast glucans or their breakdown products, rather than the export of α-glucan-catabolizing enzymes. Further characterization of the carbohydrate utilization of the mutant and three of its revertants indicated that this mutation was pleiotropic: the mutant could not grow with maltose, glycogen, dextrin, raffinose, cellobiose, melibiose, or turanose. We propose that insoluble yeast α-glucans are hydrolyzed by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics.IMPORTANCE In general, Bifidobacterium strains are genetically intractable. Coupling classic forward genetics with next-generation sequencing, here we identified an ABC transporter ATP-binding protein (MalK) responsible for the import of insoluble yeast glucan breakdown products by B. breve JCM1192. We demonstrated the pleiotropic effects of the ABC transporter ATP-binding protein in maltose/maltooligosaccharide, raffinose, cellobiose, melibiose, and turanose transport. With the addition of transcriptional analysis, we propose that insoluble yeast glucans are broken down by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics.
Collapse
|
20
|
O'Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol 2016; 7:925. [PMID: 27379055 PMCID: PMC4908950 DOI: 10.3389/fmicb.2016.00925] [Citation(s) in RCA: 579] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Members of the genus Bifidobacterium are among the first microbes to colonize the human gastrointestinal tract and are believed to exert positive health benefits on their host. Due to their purported health-promoting properties, bifidobacteria have been incorporated into many functional foods as active ingredients. Bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract, such as the human oral cavity, the insect gut and sewage. To be able to survive in these particular ecological niches, bifidobacteria must possess specific adaptations to be competitive. Determination of genome sequences has revealed genetic attributes that may explain bifidobacterial ecological fitness, such as metabolic abilities, evasion of the host adaptive immune system and colonization of the host through specific appendages. However, genetic modification is crucial toward fully elucidating the mechanisms by which bifidobacteria exert their adaptive abilities and beneficial properties. In this review we provide an up to date summary of the general features of bifidobacteria, whilst paying particular attention to the metabolic abilities of this species. We also describe methods that have allowed successful genetic manipulation of bifidobacteria.
Collapse
Affiliation(s)
- Amy O'Callaghan
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| |
Collapse
|
21
|
Wang P, Zhu Y, Zhang Y, Zhang C, Xu J, Deng Y, Peng D, Ruan L, Sun M. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus. Microb Cell Fact 2016; 15:108. [PMID: 27286821 PMCID: PMC4902927 DOI: 10.1186/s12934-016-0492-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 11/29/2022] Open
Abstract
Background Bacillus thuringiensis and Bacillus cereus are two important species in B. cereus group. The intensive study of these strains at the molecular level and construction of genetically modified bacteria requires the development of efficient genetic tools. To insert genes into or delete genes from bacterial chromosomes, marker-less manipulation methods were employed. Results We present a novel genetic manipulation method for B. thuringiensis and B. cereus strains that does not leave selection markers. Our approach takes advantage of the relaxase Mob02281 encoded by plasmid pBMB0228 from Bacillus thuringiensis. In addition to its mobilization function, this Mob protein can mediate recombination between oriT sites. The Mob02281 mobilization module was associated with a spectinomycin-resistance gene to form a Mob-Spc cassette, which was flanked by the core 24-bp oriT sequences from pBMB0228. A strain in which the wild-type chromosome was replaced with the modified copy containing the Mob-Spc cassette at the target locus was obtained via homologous recombination. Thus, the spectinomycin-resistance gene can be used to screen for Mob-Spc cassette integration mutants. Recombination between the two oriT sequences mediated by Mob02281, encoded by the Mob-Spc cassette, resulted in the excision of the Mob-Spc cassette, producing the desired chromosomal alteration without introducing unwanted selection markers. We used this system to generate an in-frame deletion of a target gene in B. thuringiensis as well as a gene located in an operon of B. cereus. Moreover, we demonstrated that this system can be used to introduce a single gene or an expression cassette of interest in B. thuringiensis. Conclusion The Mob/oriT recombination system provides an efficient method for unmarked genetic manipulation and for constructing genetically modified bacteria of B. thuringiensis and B. cereus. Our method extends the available genetic tools for B. thuringiensis and B. cereus strains. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0492-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengxia Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yiguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuyang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chunyi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianyi Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
22
|
Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci Rep 2016; 6:23971. [PMID: 27035119 PMCID: PMC4817515 DOI: 10.1038/srep23971] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022] Open
Abstract
Bifidobacteria are members of the human gut microbiota, being numerically dominant in the colon of infants, while also being prevalent in the large intestine of adults. In this study, we determined and analyzed the pan-genome of Bifidobacterium adolescentis, which is one of many bacteria found in the human adult gut microbiota. In silico analysis of the genome sequences of eighteen B. adolescentis strains isolated from various environments, such as human milk, human feces and bovine rumen, revealed a high level of genetic variability, resulting in an open pan-genome. Compared to other bifidobacterial taxa such as Bifidobacterium bifidum and Bifidobacterium breve, the more extensive B. adolescentis pan-genome supports the hypothesis that the genetic arsenal of this taxon expanded so as to become more adaptable to the variable and changing ecological niche of the gut. These increased genetic capabilities are particularly evident for genes required for dietary glycan-breakdown.
Collapse
|
23
|
O'Callaghan A, Bottacini F, O'Connell Motherway M, van Sinderen D. Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 2015; 16:832. [PMID: 26489930 PMCID: PMC4618763 DOI: 10.1186/s12864-015-1968-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022] Open
Abstract
Background Bifidobacterial genome analysis has provided insights as to how these gut commensals adapt to and persist in the human GIT, while also revealing genetic diversity among members of a given bifidobacterial (sub)species. Bifidobacteria are notoriously recalcitrant to genetic modification, which prevents exploration of their genomic functions, including those that convey (human) health benefits. Methods PacBio SMRT sequencing was used to determine the whole genome seqeunces of two B. longum subsp. longum strains. The B. longum pan-genome was computed using PGAP v1.2 and the core B. longum phylogenetic tree was constructed using a maximum-likelihood based approach in PhyML v3.0. M.blmNCII was cloned in E. coli and an internal fragment if arfBarfB was cloned into pORI19 for insertion mutagenesis. Results In this study we present the complete genome sequences of two Bifidobacterium longum subsp. longum strains. Comparative analysis with thirty one publicly available B. longum genomes allowed the definition of the B. longum core and dispensable genomes. This analysis also highlighted differences in particular metabolic abilities between members of the B. longum subspecies infantis, longum and suis. Furthermore, phylogenetic analysis of the B. longum core genome indicated the existence of a novel subspecies. Methylome data, coupled to the analysis of restriction-modification systems, allowed us to substantially increase the genetic accessibility of B. longum subsp. longum NCIMB 8809 to a level that was shown to permit site-directed mutagenesis. Conclusions Comparative genomic analysis of thirty three B. longum representatives revealed a closed pan-genome for this bifidobacterial species. Phylogenetic analysis of the B. longum core genome also provides evidence for a novel fifth B. longum subspecies. Finally, we improved genetic accessibility for the strain B. longum subsp. longum NCIMB 8809, which allowed the generation of a mutant of this strain. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1968-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A O'Callaghan
- APC Microbiome Institute & School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | - F Bottacini
- APC Microbiome Institute & School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | - M O'Connell Motherway
- APC Microbiome Institute & School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | - D van Sinderen
- APC Microbiome Institute & School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
24
|
Shkoporov AN, Khokhlova EV, Savochkin KA, Kafarskaia LI, Efimov BA. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum. FEMS Microbiol Lett 2015; 362:fnv083. [PMID: 25994292 DOI: 10.1093/femsle/fnv083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 01/01/2023] Open
Abstract
Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease.
Collapse
Affiliation(s)
- A N Shkoporov
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Ostrovitjanova str. 1, Moscow 117997, Russia Pharmbacter LLC, Skladochnaya ul., 1 - 1, Moscow 127018, Russia
| | - E V Khokhlova
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Ostrovitjanova str. 1, Moscow 117997, Russia
| | - K A Savochkin
- Pharmbacter LLC, Skladochnaya ul., 1 - 1, Moscow 127018, Russia
| | - L I Kafarskaia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Ostrovitjanova str. 1, Moscow 117997, Russia
| | - B A Efimov
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Ostrovitjanova str. 1, Moscow 117997, Russia
| |
Collapse
|
25
|
Wang P, Yu Z, Li B, Cai X, Zeng Z, Chen X, Wang X. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb Cell Fact 2015; 14:11. [PMID: 25612661 PMCID: PMC4318363 DOI: 10.1186/s12934-015-0194-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/10/2015] [Indexed: 11/10/2022] Open
Abstract
Pseudoalteromonas is commonly found throughout the world's oceans, and has gained increased attention due to the ecological and biological significance. Although over fifty Pseudoalteromonas genomes have been sequenced with an aim to explore the adaptive strategies in different habitats, in vivo studies are hampered by the lack of effective genetic manipulation systems for most strains in this genus. Here, nine Pseudoalteromonas strains isolated from different habitats were selected and used as representative strains to develop a universal genetic manipulation system. Erythromycin and chloramphenicol resistance were chosen as selection markers based on antibiotics resistance test of the nine strains. A conjugation protocol based on the RP4 conjugative machinery in E. coli WM3064 was developed to overcome current limitations of genetic manipulation in Pseudoalteromonas. Two mobilizable gene expression shuttle vectors (pWD2-oriT and pWD2Ery-oriT) were constructed, and conjugation efficiency of pWD2-oriT from E. coli to the nine Pseudoalteromonas strains ranged from 10(-6) to 10(-3) transconjugants per recipient cells. Two suicide vectors, pK18mobsacB-Cm and pK18mobsacB-Ery (with sacB for counter-selection), were constructed for gene knockout. To verify the feasibility of this system, we selected gene or operon that may lead to phenotypic change once disrupted as targets to facilitate in vivo functional confirmation. Successful deletions of two genes related to prodigiosin biosynthesis (pigMK) in P. rubra DSM 6842, one biofilm related gene (bsmA) in P. sp. SM9913, one gene related to melanin hyperproduction (hmgA) in P. lipolytica SCSIO 04301 and two flagella-related genes (fliF and fliG) in P. sp. SCSIO 11900 were verified, respectively. In addition, complementation of hmgA using shuttle vector pWD2-oriT was rescued the phenotype caused by deletion of chromosomal copy of hmgA in P. lipolytica SCSIO 04301. Taken together, we demonstrate that the vectors and the conjugative protocol developed here have potential to use in various Pseudoalteromonas strains.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Zichao Yu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, 250100, China.
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiulan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, 250100, China.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
26
|
Abstract
ABSTRACT
Whole-genome sequencing is revolutionizing the analysis of bacterial genomes. It leads to a massive increase in the amount of available data to be analyzed. Bacterial genomes are usually composed of one main chromosome and a number of accessory chromosomes, called plasmids. A recently developed methodology called PLACNET (for
pla
smid
c
onstellation
net
works) allows the reconstruction of the plasmids of a given genome. Thus, it opens an avenue for plasmidome analysis on a global scale. This work reviews our knowledge of the genetic determinants for plasmid propagation (conjugation and related functions), their diversity, and their prevalence in the variety of plasmids found by whole-genome sequencing. It focuses on the results obtained from a collection of 255
Escherichia coli
plasmids reconstructed by PLACNET. The plasmids found in
E. coli
represent a nonaleatory subset of the plasmids found in proteobacteria. Potential reasons for the prevalence of some specific plasmid groups will be discussed and, more importantly, additional questions will be posed.
Collapse
|
27
|
Development of a genetic system for a model manganese-oxidizing proteobacterium, Leptothrix discophora SS1. Microbiology (Reading) 2014; 160:2396-2405. [DOI: 10.1099/mic.0.079459-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the molecular underpinnings of manganese oxidation in Leptothrix discophora SS1 has been hampered by the lack of a genetic system. In this report, we describe the development of a genetic system for L. discophora SS1. The antibiotic sensitivity was characterized, and a procedure for transformation with exogenous DNA via conjugation was developed and optimized, resulting in a maximum transfer frequency of 5.2×10−1 and a typical transfer frequency of the order of 1×10−3 transconjugants per donor. Genetic manipulation of L. discophora SS1 was demonstrated by disrupting pyrF via chromosomal integration with a plasmid containing a R6Kγ origin of replication through homologous recombination. This resulted in resistance to 5-fluoroorotidine, which was abolished by complementation with an ectopically expressed copy of pyrF cloned into pBBR1MCS. This system is expected to be amenable to a systematic genetic analysis of L. discophora SS1, including those genes responsible for manganese oxidation.
Collapse
|
28
|
Discovery of a conjugative megaplasmid in Bifidobacterium breve. Appl Environ Microbiol 2014; 81:166-76. [PMID: 25326305 DOI: 10.1128/aem.02871-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium breve is a common and sometimes very abundant inhabitant of the human gut. Genome sequencing of B. breve JCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid. In silico characterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains of B. breve and B. longum subsp. longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in three B. longum subsp. longum strains.
Collapse
|
29
|
Lam KL, Chi-Keung Cheung P. Non-digestible long chain beta-glucans as novel prebiotics. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2013.09.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|