1
|
Delgado RT, Ferreira Filho RDS, Mendes CRB. The Cyanobacteria Genus Aphanothece: Bioactive Compounds and Applications in Biotechnology. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05221-4. [PMID: 40178699 DOI: 10.1007/s12010-025-05221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Aphanothece is a genus of colonial cyanobacteria with a global distribution that is found in various aquatic and terrestrial environments. It has garnered interest because of its high content of amino acids, carbohydrates, fatty acids, and pigments, which possess bioactive and biotechnological properties. This review analyzes articles highlighting Aphanothece species in biotechnological contexts and describes their biochemical composition. Among its primary metabolites are glutamic acid, alanine, palmitic acid, chlorophyll a, echinenone, and β-carotene. The biotechnological potential of Aphanothece spans the fields of biofuel, health, agro-industry, and bioremediation. The notable bioactivities of species such us A. sacrum, A. pallida, and A. bullosa include photoprotective, immunostimulant, antimicrobial, anticancer, and biostimulant activities due to secondary metabolites such as mycosporine-like amino acids, peptides, betaines, and glycerophospholipids. The high production of hydrogen and lipids by A. halophytica supports its use in biofuels. Species such as A. microscopica are effective at treating agro-industrial and domestic effluents and water polluted by metals and hydrocarbons, alongside simultaneous CO2 capture. This review provides information that can guide the sustainable use of Aphanothece species and identifies gaps in current knowledge, particularly in the development of commercial products. Continuous exploration of this genus can significantly promote environmental sustainability and biotechnological innovation.
Collapse
Affiliation(s)
- Ronald Tarazona Delgado
- Laboratory of Phytoplankton and Marine Microorganisms, Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 08, Rio Grande, RS, 96201-900, Brazil.
- Postgraduate Program in Biological Oceanography, Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil.
| | - Rui Dos Santos Ferreira Filho
- Bioprocess Engineering Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, km 08, Rio Grande, RS, 96203-900, Brazil
| | - Carlos Rafael Borges Mendes
- Laboratory of Phytoplankton and Marine Microorganisms, Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 08, Rio Grande, RS, 96201-900, Brazil
- Postgraduate Program in Biological Oceanography, Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
2
|
Kageyama H, Waditee-Sirisattha R. Halotolerance mechanisms in salt‑tolerant cyanobacteria. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:55-117. [PMID: 37597948 DOI: 10.1016/bs.aambs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cyanobacteria are ubiquitously distributed in nature and are the most abundant photoautotrophs on Earth. Their long evolutionary history reveals that cyanobacteria have a remarkable capacity and strong adaptive tendencies to thrive in a variety of conditions. Thus, they can survive successfully, especially in harsh environmental conditions such as salty environments, high radiation, or extreme temperatures. Among others, salt stress because of excessive salt accumulation in salty environments, is the most common abiotic stress in nature and hampers agricultural growth and productivity worldwide. These detrimental effects point to the importance of understanding the molecular mechanisms underlying the salt stress response. While it is generally accepted that the stress response mechanism is a complex network, fewer efforts have been made to represent it as a network. Substantial evidence revealed that salt-tolerant cyanobacteria have evolved genomic specific mechanisms and high adaptability in response to environmental changes. For example, extended gene families and/or clusters of genes encoding proteins involved in the adaptation to high salinity have been collectively reported. This chapter focuses on recent advances and provides an overview of the molecular basis of halotolerance mechanisms in salt‑tolerant cyanobacteria as well as multiple regulatory pathways. We elaborate on the major protective mechanisms, molecular mechanisms associated with halotolerance, and the global transcriptional landscape to provide a gateway to uncover gene regulation principles. Both knowledge and omics approaches are utilized in this chapter to decipher the mechanistic insights into halotolerance. Collectively, this chapter would have a profound impact on providing a comprehensive understanding of halotolerance in salt‑tolerant cyanobacteria.
Collapse
Affiliation(s)
- Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Japan; Department of Chemistry, Faculty of Science and Technology, Meijo University, Nagoya, Japan.
| | | |
Collapse
|
3
|
Dong Z, Sun T, Zhang W, Chen L. Improved salt tolerance of Synechococcus elongatus PCC 7942 by heterologous synthesis of compatible solute ectoine. Front Microbiol 2023; 14:1123081. [PMID: 36819058 PMCID: PMC9932913 DOI: 10.3389/fmicb.2023.1123081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Salt stress is one of the essential abiotic stresses for the survival of cyanobacteria. However, the realization of large-scale cultivation of cyanobacteria is inseparable from the utilization of abundant seawater resources. Therefore, research on the regulatory mechanism, as well as the improvement of salt tolerance of cyanobacteria is fundamental. Ectoine, a compatible solute which was found in halophilic microorganisms, has potentiality to confer salt tolerance. Here in this article, the salt tolerance of Synechococcus elongatus PCC 7942 (Syn7942) was significantly improved via expressing the ectoine biosynthetic pathway, reaching an increased final OD750 by 20% under 300 mM NaCl and 80% under 400 mM NaCl than that of wild-type (WT), respectively. Encouragingly, the engineered strain could even survive under 500 mM NaCl which was lethal to WT. In addition, by introducing the ectoine synthetic pathway into the sucrose-deficient strain, the salt tolerance of the obtained strain Syn7942/Δsps-ect was restored to the level of WT under 300 mM NaCl stress, demonstrating that ectoine could substitute for sucrose to combat against salt stress in Syn7942. In order to study the difference in the regulation of mechanism on the salt adaptation process after replacing sucrose with ectoine, transcriptomic analysis was performed for Syn7942/Δsps-ect and WT. The differentially expressed gene analysis successfully identified 19 up-regulated genes and 39 down-regulated genes in Syn7942/Δsps-ect compared with WT under salt stress condition. The results also showed that the global regulation of Syn7942/Δsps-ect and WT had certain differences in the process of salt adaptation, in which Syn7942/Δsps-ect reduced the demand for the intensity of sulfur metabolism in this process. This study provides a valuable reference for further salt tolerance engineering in cyanobacteria.
Collapse
Affiliation(s)
- Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China,*Correspondence: Tao Sun,
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China,Lei Chen,
| |
Collapse
|
4
|
Ferreira EA, Pacheco CC, Rodrigues JS, Pinto F, Lamosa P, Fuente D, Urchueguía J, Tamagnini P. Heterologous Production of Glycine Betaine Using Synechocystis sp. PCC 6803-Based Chassis Lacking Native Compatible Solutes. Front Bioeng Biotechnol 2022; 9:821075. [PMID: 35071221 PMCID: PMC8777070 DOI: 10.3389/fbioe.2021.821075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Among compatible solutes, glycine betaine has various applications in the fields of nutrition, pharmaceuticals, and cosmetics. Currently, this compound can be extracted from sugar beet plants or obtained by chemical synthesis, resulting in low yields or high carbon footprint, respectively. Hence, in this work we aimed at exploring the production of glycine betaine using the unicellular cyanobacterium Synechocystis sp. PCC 6803 as a photoautotrophic chassis. Synechocystis mutants lacking the native compatible solutes sucrose or/and glucosylglycerol-∆sps, ∆ggpS, and ∆sps∆ggpS-were generated and characterized. Under salt stress conditions, the growth was impaired and accumulation of glycogen decreased by ∼50% whereas the production of compatible solutes and extracellular polymeric substances (capsular and released ones) increased with salinity. These mutants were used as chassis for the implementation of a synthetic device based on the metabolic pathway described for the halophilic cyanobacterium Aphanothece halophytica for the production of the compatible solute glycine betaine. Transcription of ORFs comprising the device was shown to be stable and insulated from Synechocystis' native regulatory network. Production of glycine betaine was achieved in all chassis tested, and was shown to increase with salinity. The introduction of the glycine betaine synthetic device into the ∆ggpS background improved its growth and enabled survival under 5% NaCl, which was not observed in the absence of the device. The maximum glycine betaine production [64.29 µmol/gDW (1.89 µmol/mg protein)] was reached in the ∆ggpS chassis grown under 3% NaCl. Taking into consideration this production under seawater-like salinity, and the identification of main key players involved in the carbon fluxes, this work paves the way for a feasible production of this, or other compatible solutes, using optimized Synechocystis chassis in a pilot-scale.
Collapse
Affiliation(s)
- Eunice A. Ferreira
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina C. Pacheco
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João S. Rodrigues
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Filipe Pinto
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Oeiras, Portugal
| | - David Fuente
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, València, Spain
| | - Javier Urchueguía
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, València, Spain
| | - Paula Tamagnini
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Swapnil P, Meena M, Rai AK. Molecular interaction of nitrate transporter proteins with recombinant glycinebetaine results in efficient nitrate uptake in the cyanobacterium Anabaena PCC 7120. PLoS One 2021; 16:e0257870. [PMID: 34793479 PMCID: PMC8601584 DOI: 10.1371/journal.pone.0257870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Nitrate transport in cyanobacteria is mediated by ABC-transporter, which consists of a highly conserved ATP binding cassette (ABC) and a less conserved transmembrane domain (TMD). Under salt stress, recombinant glycinebetaine (GB) not only protected the rate of nitrate transport in transgenic Anabaena PCC 7120, rather stimulated the rate by interacting with the ABC-transporter proteins. In silico analyses revealed that nrtA protein consisted of 427 amino acids, the majority of which were hydrophobic and contained a Tat (twin-arginine translocation) signal profile of 34 amino acids (1-34). The nrtC subunit of 657 amino acids contained two hydrophobic distinct domains; the N-terminal (5-228 amino acids), which was 59% identical to nrtD (the ATP-binding subunit) and the C-terminal (268-591), 28.2% identical to nrtA, suggesting C-terminal as a solute binding domain and N-terminal as ATP binding domain. Subunit nrtD consisted of 277 amino acids and its N-terminal (21-254) was an ATP binding motif. Phylogenetic analysis revealed that nitrate-ABC-transporter proteins are highly conserved among the cyanobacterial species, though variation existed in sequences resulting in several subclades. Nostoc PCC 7120 was very close to Anabaena variabilis ATCC 29413, Anabaena sp. 4-3 and Anabaena sp. CA = ATCC 33047. On the other, Nostoc spp. NIES-3756 and PCC 7524 were often found in the same subclade suggesting more work before referring it to Anabaena PCC 7120 or Nostoc PCC 7120. The molecular interaction of nitrate with nrtA was hydrophilic, while hydrophobic with nrtC and nrtD. GB interaction with nrtACD was hydrophobic and showed higher affinity compared to nitrate.
Collapse
Affiliation(s)
- Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, University of Delhi, New Delhi, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ashwani K. Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Swapnil P, Meena M, Rai AK. Molecular interaction of nitrate transporter proteins with recombinant glycinebetaine results in efficient nitrate uptake in the cyanobacterium Anabaena PCC 7120. PLoS One 2021; 16:e0257870. [DOI: https:/doi.org/10.1371/journal.pone.0257870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
Nitrate transport in cyanobacteria is mediated by ABC-transporter, which consists of a highly conserved ATP binding cassette (ABC) and a less conserved transmembrane domain (TMD). Under salt stress, recombinant glycinebetaine (GB) not only protected the rate of nitrate transport in transgenic Anabaena PCC 7120, rather stimulated the rate by interacting with the ABC-transporter proteins. In silico analyses revealed that nrtA protein consisted of 427 amino acids, the majority of which were hydrophobic and contained a Tat (twin-arginine translocation) signal profile of 34 amino acids (1–34). The nrtC subunit of 657 amino acids contained two hydrophobic distinct domains; the N-terminal (5–228 amino acids), which was 59% identical to nrtD (the ATP-binding subunit) and the C-terminal (268–591), 28.2% identical to nrtA, suggesting C-terminal as a solute binding domain and N-terminal as ATP binding domain. Subunit nrtD consisted of 277 amino acids and its N-terminal (21–254) was an ATP binding motif. Phylogenetic analysis revealed that nitrate-ABC-transporter proteins are highly conserved among the cyanobacterial species, though variation existed in sequences resulting in several subclades. Nostoc PCC 7120 was very close to Anabaena variabilis ATCC 29413, Anabaena sp. 4–3 and Anabaena sp. CA = ATCC 33047. On the other, Nostoc spp. NIES-3756 and PCC 7524 were often found in the same subclade suggesting more work before referring it to Anabaena PCC 7120 or Nostoc PCC 7120. The molecular interaction of nitrate with nrtA was hydrophilic, while hydrophobic with nrtC and nrtD. GB interaction with nrtACD was hydrophobic and showed higher affinity compared to nitrate.
Collapse
|
7
|
Cui J, Sun T, Chen L, Zhang W. Salt-Tolerant Synechococcus elongatus UTEX 2973 Obtained via Engineering of Heterologous Synthesis of Compatible Solute Glucosylglycerol. Front Microbiol 2021; 12:650217. [PMID: 34084156 PMCID: PMC8168540 DOI: 10.3389/fmicb.2021.650217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
The recently isolated cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) is characterized by a faster growth rate and greater tolerance to high temperature and high light, making it a good candidate chassis for autotrophic photosynthetic microbial cell factories. However, Syn2973 is sensitive to salt stress, making it urgently important to improve the salt tolerance of Syn2973 for future biotechnological applications. Glucosylglycerol, a compatible solute, plays an important role in resisting salt stress in moderate and marine halotolerant cyanobacteria. In this study, the salt tolerance of Syn2973 was successfully improved by introducing the glucosylglycerol (GG) biosynthetic pathway (OD750 improved by 24% at 60 h). In addition, the salt tolerance of Syn2973 was further enhanced by overexpressing the rate-limiting step of glycerol-3-phosphate dehydrogenase and downregulating the gene rfbA, which encodes UDP glucose pyrophosphorylase. Taken together, these results indicate that the growth of the end-point strain M-2522-GgpPS-drfbA was improved by 62% compared with the control strain M-pSI-pSII at 60 h under treatment with 0.5 M NaCl. Finally, a comparative metabolomic analysis between strains M-pSI-pSII and M-2522-GgpPS-drfbA was performed to characterize the carbon flux in the engineered M-2522-GgpPS-drfbA strain, and the results showed that more carbon flux was redirected from ADP-GLC to GG synthesis. This study provides important engineering strategies to improve salt tolerance and GG production in Syn2973 in the future.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Uzair B, Liaqat A, Iqbal H, Menaa B, Razzaq A, Thiripuranathar G, Fatima Rana N, Menaa F. Green and Cost-Effective Synthesis of Metallic Nanoparticles by Algae: Safe Methods for Translational Medicine. Bioengineering (Basel) 2020; 7:E129. [PMID: 33081248 PMCID: PMC7712047 DOI: 10.3390/bioengineering7040129] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Metal nanoparticles (NPs) have received much attention for potential applications in medicine (mainly in oncology, radiology and infectiology), due to their intriguing chemical, electronical, catalytical, and optical properties such as surface plasmon resonance (SPR) effect. They also offer ease in controlled synthesis and surface modification (e.g., tailored properties conferred by capping/protecting agents including N-, P-, COOH-, SH-containing molecules and polymers such as thiol, disulfide, ammonium, amine, and multidentate carboxylate), which allows (i) tuning their size and shape (e.g., star-shaped and/or branched) (ii) improving their stability, monodispersity, chemical miscibility, and activity, (iii) avoiding their aggregation and oxidation over time, (iv) increasing their yield and purity. The bottom-up approach, where the metal ions are reduced in the NPs grown in the presence of capping ligands, has been widely used compared to the top-down approach. Besides the physical and chemical synthesis methods, the biological method is gaining much consideration. Indeed, several drawbacks have been reported for the synthesis of NPs via physical (e.g., irradiation, ultrasonication) and chemical (e.g., electrochemisty, reduction by chemicals such as trisodium citrate or ascorbic acid) methods (e.g., cost, and/ortoxicity due to use of hazardous solvents, low production rate, use of huge amount of energy). However, (organic or inorganic) eco-friendly NPs synthesis exhibits a sustainable, safe, and economical solution. Thereby, a relatively new trend for fast and valuable NPs synthesis from (live or dead) algae (i.e., microalgae, macroalgae and cyanobacteria) has been observed, especially because of its massive presence on the Earth's crust and their unique properties (e.g., capacity to accumulate and reduce metallic ions, fast propagation). This article discusses the algal-mediated synthesis methods (either intracellularly or extracellularly) of inorganic NPs with special emphasis on the noblest metals, i.e., silver (Ag)- and gold (Au)-derived NPs. The key factors (e.g., pH, temperature, reaction time) that affect their biosynthesis process, stability, size, and shape are highlighted. Eventually, underlying molecular mechanisms, nanotoxicity and examples of major biomedical applications of these algal-derived NPs are presented.
Collapse
Affiliation(s)
- Bushra Uzair
- Department of Bioinformatics and Biotechnology, Islamic International University, Islamabad 44000, Pakistan; (B.U.); (A.L.)
| | - Ayesha Liaqat
- Department of Bioinformatics and Biotechnology, Islamic International University, Islamabad 44000, Pakistan; (B.U.); (A.L.)
| | - Haroon Iqbal
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (H.I.); (A.R.)
| | - Bouzid Menaa
- Department of Oncology and Nanomedicine, California Innovations Corp., San Diego, La Jolla, CA 92037, USA;
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (H.I.); (A.R.)
| | - Gobika Thiripuranathar
- Institute of Chemistry Ceylon, College of Chemical Sciences, Welikada, Rajagiriya 10107, Sri Lanka;
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering & Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan;
| | - Farid Menaa
- Department of Oncology and Nanomedicine, California Innovations Corp., San Diego, La Jolla, CA 92037, USA;
| |
Collapse
|
9
|
Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 2020; 43:107578. [PMID: 32553809 DOI: 10.1016/j.biotechadv.2020.107578] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Photosynthetic cyanobacteria are capable of utilizing sunlight and CO2 as sole energy and carbon sources, respectively. With genetically modified cyanobacteria being used as a promising chassis to produce various biofuels and chemicals in recent years, future large-scale cultivation of cyanobacteria would have to be performed in seawater, since freshwater supplies of the earth are very limiting. However, high concentration of salt is known to inhibit the growth of cyanobacteria. This review aims at comparing the mechanisms that different cyanobacteria respond to salt stress, and then summarizing various strategies of developing salt-tolerant cyanobacteria for seawater cultivation, including the utilization of halotolerant cyanobacteria and the engineering of salt-tolerant freshwater cyanobacteria. In addition, the challenges and potential strategies related to further improving salt tolerance in cyanobacteria are also discussed.
Collapse
|
10
|
Khan AZ, Bilal M, Mehmood S, Sharma A, Iqbal HMN. State-of-the-Art Genetic Modalities to Engineer Cyanobacteria for Sustainable Biosynthesis of Biofuel and Fine-Chemicals to Meet Bio-Economy Challenges. Life (Basel) 2019; 9:54. [PMID: 31252652 PMCID: PMC6789541 DOI: 10.3390/life9030054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/15/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic engineering of microorganisms has attained much research interest to produce biofuels and industrially pertinent chemicals. Owing to the relatively fast growth rate, genetic malleability, and carbon neutral production process, cyanobacteria has been recognized as a specialized microorganism with a significant biotechnological perspective. Metabolically engineering cyanobacterial strains have shown great potential for the photosynthetic production of an array of valuable native or non-native chemicals and metabolites with profound agricultural and pharmaceutical significance using CO2 as a building block. In recent years, substantial improvements in developing and introducing novel and efficient genetic tools such as genome-scale modeling, high throughput omics analyses, synthetic/system biology tools, metabolic flux analysis and clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (CRISPR/cas) systems have been made for engineering cyanobacterial strains. Use of these tools and technologies has led to a greater understanding of the host metabolism, as well as endogenous and heterologous carbon regulation mechanisms which consequently results in the expansion of maximum productive ability and biochemical diversity. This review summarizes recent advances in engineering cyanobacteria to produce biofuel and industrially relevant fine chemicals of high interest. Moreover, the development and applications of cutting-edge toolboxes such as the CRISPR-cas9 system, synthetic biology, high-throughput "omics", and metabolic flux analysis to engineer cyanobacteria for large-scale cultivation are also discussed.
Collapse
Affiliation(s)
- Aqib Zafar Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Shahid Mehmood
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|
11
|
Swapnil P, Rai AK. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na 2SO 4 mixture)-stressed cyanobacterium Anabaena fertilissima. PROTOPLASMA 2018; 255:963-976. [PMID: 29352355 DOI: 10.1007/s00709-018-1205-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/10/2018] [Indexed: 05/13/2023]
Abstract
Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na2SO4). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na2SO4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na+ concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na+ and Ca2+ and leakage of K+ in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca2+ under different salt treatments, ratio of Ca2+/Na+ remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.
Collapse
Affiliation(s)
- Prashant Swapnil
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Ashwani K Rai
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 2018; 36:430-442. [DOI: 10.1016/j.biotechadv.2018.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
|
13
|
Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals. Appl Microbiol Biotechnol 2018; 102:1617-1628. [DOI: 10.1007/s00253-018-8755-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
14
|
Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium. Enzyme Microb Technol 2017; 103:12-17. [DOI: 10.1016/j.enzmictec.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
|
15
|
Swapnil P, Singh M, Singh S, Sharma NK, Rai AK. Recombinant glycinebetaine improves metabolic activities, ionic balance and salt tolerance in diazotrophic freshwater cyanobacteria. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Lai SJ, Lai MC, Lee RJ, Chen YH, Yen HE. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. PLANT MOLECULAR BIOLOGY 2014; 85:429-41. [PMID: 24803410 DOI: 10.1007/s11103-014-0195-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/17/2014] [Indexed: 05/24/2023]
Abstract
Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.
Collapse
Affiliation(s)
- Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | | | | | | |
Collapse
|