1
|
Figueiredo G, Osório H, Mendes MV, Mendo S. A review on the expanding biotechnological frontier of Pedobacter. Biotechnol Adv 2025; 82:108588. [PMID: 40294724 DOI: 10.1016/j.biotechadv.2025.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
The genus Pedobacter consists of Gram-negative bacteria with a broad geographic distribution, isolated from diverse habitats, including water, soil, plants, wood, rocks and animals. However, characterization efforts have been limited to a small number of species. Likewise, in the context of natural products (NP), only a small fraction of Pedobacter -derived NPs have been characterized so far. In contrast, in silico analysis of the increasing number of available genomes in the databases, suggests a wealth of yet to be discovered compounds. Notable biotechnological applications described so far include the production of heparinases and chondroitinases for therapeutic purposes, phytases and galactosidases as aquaculture feed supplements, alginate lyases for biofuel production, and secondary metabolites such as pedopeptins and isopedopeptins with antimicrobial properties. Further research integrating synthetic biology approaches, holds great promise for unlocking the hidden potential of members of this genus, thus expanding its industrial applications.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the, University of Porto, 4200-135 Porto, Portugal
| | - Marta V Mendes
- CIIMAR/CIMAR LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, 4450-208 Porto, Portugal
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Sanyal A, Antony R, Samui G, Thamban M. Autotrophy to Heterotrophy: Shift in Bacterial Functions During the Melt Season in Antarctic Cryoconite Holes. J Microbiol 2024; 62:591-609. [PMID: 38814540 DOI: 10.1007/s12275-024-00140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Microbes residing in cryoconite holes (debris, water, and nutrient-rich ecosystems) on the glacier surface actively participate in carbon and nutrient cycling. Not much is known about how these communities and their functions change during the summer melt-season when intense ablation and runoff alter the influx and outflux of nutrients and microbes. Here, we use high-throughput-amplicon sequencing, predictive metabolic tools and Phenotype MicroArray techniques to track changes in bacterial communities and functions in cryoconite holes in a coastal Antarctic site and the surrounding fjord, during the summer season. The bacterial diversity in cryoconite hole meltwater was predominantly composed of heterotrophs (Proteobacteria) throughout the season. The associated functional potentials were related to heterotrophic-assimilatory and -dissimilatory pathways. Autotrophic Cyanobacterial lineages dominated the debris community at the beginning and end of summer, while heterotrophic Bacteroidota- and Proteobacteria-related phyla increased during the peak melt period. Predictive functional analyses based on taxonomy show a shift from predominantly phototrophy-related functions to heterotrophic assimilatory pathways as the melt-season progressed. This shift from autotrophic to heterotrophic communities within cryoconite holes can affect carbon drawdown and nutrient liberation from the glacier surface during the summer. In addition, the flushing out and export of cryoconite hole communities to the fjord could influence the biogeochemical dynamics of the fjord ecosystem.
Collapse
Affiliation(s)
- Aritri Sanyal
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India.
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, 403206, India.
| | - Runa Antony
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India
- GFZ German Research Centre for Geosciences, 14473, Potsdam, Germany
| | - Gautami Samui
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Meloth Thamban
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, 403804, India
| |
Collapse
|
3
|
Adamczyk M, Rüthi J, Frey B. Root exudates increase soil respiration and alter microbial community structure in alpine permafrost and active layer soils. Environ Microbiol 2021; 23:2152-2168. [PMID: 33393203 DOI: 10.1111/1462-2920.15383] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Due to climate warming, alpine ecosystems are changing rapidly. Ongoing upward migrations of plants and thus an increase of easily decomposable substrates will strongly affect the soil microbiome. To understand how belowground communities will respond to such changes, we set up an incubation experiment with permafrost and active soil layers from northern (NW) and southern (SE) slopes of a mountain ridge on Muot da Barba Peider in the Swiss Alps and incubated them with or without artificial root exudates (AREs) at two temperatures, 4°C or 15°C. The addition of AREs resulted in elevated respiration across all soil types. Bacterial and fungal alpha diversity decreased significantly, coinciding with strong shifts in microbial community structure in ARE-treated soils. These shifts in bacterial community structure were driven by an increased abundance of fast-growing copiotrophic taxa. Fungal communities were predominantly affected by AREs in SE active layer soils and shifted towards fast-growing opportunistic yeast. In contrast, in the colder NW facing active layer and permafrost soils fungal communities were more influenced by temperature changes. These findings demonstrate the sensitivity of soil microbial communities in high alpine ecosystems to climate change and how shifts in these communities may lead to functional changes impacting biogeochemical processes.
Collapse
Affiliation(s)
- Magdalene Adamczyk
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
4
|
Lazar CS, Lehmann R, Stoll W, Rosenberger J, Totsche KU, Küsel K. The endolithic bacterial diversity of shallow bedrock ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:35-44. [PMID: 31078773 DOI: 10.1016/j.scitotenv.2019.04.281] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Terrestrial subsurface microbial communities are not restricted to the fluid-filled void system commonly targeted during groundwater sampling but are able to inhabit and dwell in rocks. However, compared to the exploration of the deep biosphere, endolithic niches in shallow sedimentary bedrock have received little interest so far. Despite the potential contribution of rock matrix dwellers to matter cycling and groundwater resource quality, their identity and diversity patterns are largely unknown. Here, we investigated the bacterial diversity in twenty-two rock cores in common limestone-mudstone alternations that differed in rock permeabilities and other geostructural and petrological factors. 16S rRNA gene analysis showed the existence of a unique rock matrix microbiome compared to surrounding groundwater. Typically, shallow weathered limestones contained bacterial groups most likely originating from soil habitats. In low-permeable mudstones, we found similar communities of oligotrophic heterotrophs, and thiosulfate-oxidizing autotrophs, without relation to depth, rock type and bulk rock permeability. In fractured limestone, the bacterial communities of fracture surfaces were distinct from their matrix counterparts and ranged from organic matter decomposers in outcrop areas to autotrophs in downdip positions that receive limited surface input. Contrastingly, rock matrices from lithologically corresponding, but highly isolated environments, were dominated by spore-forming bacteria, oligotrophic heterotrophs and hydrogen-oxidizing autotrophs. Neither depth, matrix permeability nor major mineralogy dominantly controlled the endolithic bacterial diversity. Instead, a combination of subsurface factors drives the supply of niches by fluids, matter and energy as well as the (re)dispersal conditions that likely shape bacterial diversity.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Robert Lehmann
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Wenke Stoll
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Julia Rosenberger
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Kai Uwe Totsche
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany.
| |
Collapse
|
5
|
Smith HJ, Zelaya AJ, De León KB, Chakraborty R, Elias DA, Hazen TC, Arkin AP, Cunningham AB, Fields MW. Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiol Ecol 2018; 94:5107865. [PMID: 30265315 PMCID: PMC6192502 DOI: 10.1093/femsec/fiy191] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Subsurface environments contain a large proportion of planetary microbial biomass and harbor diverse communities responsible for mediating biogeochemical cycles important to groundwater used by human society for consumption, irrigation, agriculture and industry. Within the saturated zone, capillary fringe and vadose zones, microorganisms can reside in two distinct phases (planktonic or biofilm), and significant differences in community composition, structure and activity between free-living and attached communities are commonly accepted. However, largely due to sampling constraints and the challenges of working with solid substrata, the contribution of each phase to subsurface processes is largely unresolved. Here, we synthesize current information on the diversity and activity of shallow freshwater subsurface habitats, discuss the challenges associated with sampling planktonic and biofilm communities across spatial, temporal and geological gradients, and discuss how biofilms may be constrained within shallow terrestrial subsurface aquifers. We suggest that merging traditional activity measurements and sequencing/-omics technologies with hydrological parameters important to sediment biofilm assembly and stability will help delineate key system parameters. Ultimately, integration will enhance our understanding of shallow subsurface ecophysiology in terms of bulk-flow through porous media and distinguish the respective activities of sessile microbial communities from more transient planktonic communities to ecosystem service and maintenance.
Collapse
Affiliation(s)
- H J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A J Zelaya
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - K B De León
- Department of Biochemistry, University of Missouri, Columbia, MO
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - R Chakraborty
- Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - D A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - T C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A P Arkin
- Department of Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Civil Engineering, Montana State University, Montana State University, Bozeman, MT
| | - M W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| |
Collapse
|
6
|
Mantha S, Anderson A, Acharya SP, Harwood VJ, Weidhaas J. Transport and attenuation of Salmonella enterica, fecal indicator bacteria and a poultry litter marker gene are correlated in soil columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:204-212. [PMID: 28441599 DOI: 10.1016/j.scitotenv.2017.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Millions of tons of fecal-contaminated poultry litter are applied to U.S. agricultural fields annually. Precipitation and irrigation facilitate transport of fecal-derived pathogens and fecal indicator bacteria (FIB) to groundwater. The goal of this study was to compare transport of pathogens, FIB, and a microbial source tracking marker gene for poultry litter (LA35) in a simulated soil-to-groundwater system. Nine laboratory soil columns containing four different soil types were used to evaluate microbial transport to groundwater via infiltration. Quantitative polymerase chain reaction was used to monitor Salmonella enterica Typhimurium, Escherichia coli, Enterococcus spp., Brevibacterium sp. LA35 and Bacteroidales leached from soil columns inoculated with poultry litter. S. enterica was correlated with LA35 poultry litter marker gene and FIB concentrations in column soils containing organic matter, but not in acid washed sands. In contrast, S. enterica was found to correlate with LA35 and FIB in the leachate from columns containing sand, but not with leachate from organic soil columns. The majority of recovered DNA was found in leachate of predominately sandy soil columns, and in the soil of loamy columns. At least 90% of the DNA retained in soils for each microbial target was found in the top 3cm of the column. These studies suggest that poultry litter associated pathogens and FIB are rapidly released from litter, but are influenced by complex attenuation mechanisms during infiltration, including soil type. This study advances our understanding of the potential for subsurface transport of poultry litter associated pathogens and FIB, and support the use of the LA35 marker gene for evaluating poultry litter impacts on groundwater.
Collapse
Affiliation(s)
- Sirisha Mantha
- Civil and Environmental Engineering, West Virginia University, United States
| | - Angela Anderson
- Civil and Environmental Engineering, West Virginia University, United States
| | | | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, United States
| | - Jennifer Weidhaas
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive, Salt Lake City, UT 84112, United States.
| |
Collapse
|
7
|
Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter. mBio 2017; 8:e00413-17. [PMID: 28420738 PMCID: PMC5395668 DOI: 10.1128/mbio.00413-17] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist.IMPORTANCE Carbon in the ocean is massively sequestered in a complex mixture of biologically refractory molecules that accumulate as the chemical end member of biological oxidation and diagenetic change. However, few details are known about the biochemical machinery of carbon sequestration in the deep ocean. Reconstruction of the metabolism of a deep-ocean microbial clade, SAR202, led to postulation of new biochemical pathways that may be the penultimate stages of DOM oxidation to refractory forms that persist. These pathways are tied to a proliferation of oxidative enzymes. This research illuminates dark-ocean biochemistry that is broadly consequential for reconstructing the global carbon cycle.
Collapse
Affiliation(s)
- Zachary Landry
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Brandon K Swan
- Bigelow Laboratory for Ocean Sciences, Single-Cell Genomics Center, East Boothbay, Maine, USA
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, USA
| | - Gerhard J Herndl
- Department of Marine Biology, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Texel, The Netherlands
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, Single-Cell Genomics Center, East Boothbay, Maine, USA
| | | |
Collapse
|
8
|
Fullerton H, Moyer CL. Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere. Appl Environ Microbiol 2016; 82:3000-3008. [PMID: 26969693 PMCID: PMC4959059 DOI: 10.1128/aem.00624-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. IMPORTANCE Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into the metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene (rdhA) has been directly linked to marine subsurface Chloroflexi, suggesting that reductive dehalogenation is not limited to the class Dehalococcoidia This discovery expands the nutrient-cycling and metabolic potential present within the deep subsurface and provides functional gene information relating to this enigmatic group.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Craig L Moyer
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
9
|
Munson-McGee JH, Field EK, Bateson M, Rooney C, Stepanauskas R, Young MJ. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs. Appl Environ Microbiol 2015; 81:7860-8. [PMID: 26341207 PMCID: PMC4616950 DOI: 10.1128/aem.01539-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota.
Collapse
Affiliation(s)
- Jacob H Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Erin K Field
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Mary Bateson
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Colleen Rooney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Mark J Young
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
10
|
Converse BJ, McKinley JP, Resch CT, Roden EE. Microbial mineral colonization across a subsurface redox transition zone. Front Microbiol 2015; 6:858. [PMID: 26379637 PMCID: PMC4551860 DOI: 10.3389/fmicb.2015.00858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
This study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ for 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4 (+), H2, Fe(II), and HS(-) oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ.
Collapse
Affiliation(s)
| | | | | | - Eric E. Roden
- Department of Geoscience, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
11
|
Field EK, Sczyrba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R, Emerson D. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. THE ISME JOURNAL 2015; 9:857-70. [PMID: 25303714 PMCID: PMC4817698 DOI: 10.1038/ismej.2014.183] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023]
Abstract
The Zetaproteobacteria are a candidate class of marine iron-oxidizing bacteria that are typically found in high iron environments such as hydrothermal vent sites. As much remains unknown about these organisms due to difficulties in cultivation, single-cell genomics was used to learn more about this elusive group at Loihi Seamount. Comparative genomics of 23 phylogenetically diverse single amplified genomes (SAGs) and two isolates indicate niche specialization among the Zetaproteobacteria may be largely due to oxygen tolerance and nitrogen transformation capabilities. Only Form II ribulose 1,5-bisphosphate carboxylase (RubisCO) genes were found in the SAGs, suggesting that some of the uncultivated Zetaproteobacteria may be adapted to low oxygen and/or high carbon dioxide concentrations. There is also genomic evidence of oxygen-tolerant cytochrome c oxidases and oxidative stress-related genes, indicating that others may be exposed to higher oxygen conditions. The Zetaproteobacteria also have the genomic potential for acquiring nitrogen from numerous sources including ammonium, nitrate, organic compounds, and nitrogen gas. Two types of molybdopterin oxidoreductase genes were found in the SAGs, indicating that those found in the isolates, thought to be involved in iron oxidation, are not consistent among all the Zetaproteobacteria. However, a novel cluster of redox-related genes was found to be conserved in 10 SAGs as well as in the isolates warranting further investigation. These results were used to isolate a novel iron-oxidizing Zetaproteobacteria. Physiological studies and genomic analysis of this isolate were able to support many of the findings from SAG analyses demonstrating the value of these data for designing future enrichment strategies.
Collapse
Affiliation(s)
- Erin K Field
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Audrey E Lyman
- Department of Biology, Colby College, Waterville, ME, USA
| | | | - Tanja Woyke
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, USA
| | | | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| |
Collapse
|