1
|
Kletzer J, Raval YS, Mohamed A, Mandrekar JN, Greenwood-Quaintance KE, Beyenal H, Patel R. In vitro activity of hypochlorous acid generating electrochemical bandage against monospecies and dual-species bacterial biofilms. J Appl Microbiol 2023; 134:lxad194. [PMID: 37667489 PMCID: PMC10508963 DOI: 10.1093/jambio/lxad194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
AIMS As antimicrobial resistance is on the rise, treating chronic wound infections is becoming more complex. The presence of biofilms in wound beds contributes to this challenge. Here, the activity of a novel hypochlorous acid (HOCl) producing electrochemical bandage (e-bandage) against monospecies and dual-species bacterial biofilms formed by bacteria commonly found in wound infections was assessed. METHODS AND RESULTS The system was controlled by a wearable potentiostat powered by a 3V lithium-ion battery and maintaining a constant voltage of + 1.5V Ag/AgCl, allowing continuous generation of HOCl. A total of 19 monospecies and 10 dual-species bacterial biofilms grown on polycarbonate membranes placed on tryptic soy agar (TSA) plates were used as wound biofilm models, with HOCl producing e-bandages placed over the biofilms. Viable cell counts were quantified after e-bandages were continuously polarized for 2, 4, 6, and 12 hours. Time-dependent reductions in colony forming units (CFUs) were observed for all studied isolates. After 12 hours, average CFU reductions of 7.75 ± 1.37 and 7.74 ± 0.60 log10 CFU/cm2 were observed for monospecies and dual-species biofilms, respectively. CONCLUSIONS HOCl producing e-bandages reduce viable cell counts of in vitro monospecies and dual-species bacterial biofilms in a time-dependent manner in vitro. After 12 hours, >99.999% reduction in cell viability was observed for both monospecies and dual-species biofilms.
Collapse
Affiliation(s)
- Joseph Kletzer
- Paracelsus Medical University, Salzburg 5020, Austria
- Division of Clinical Microbiology, Mayo Clinic Rochester, Rochester, MN 55905, United States
| | - Yash S Raval
- Division of Clinical Microbiology, Mayo Clinic Rochester, Rochester, MN 55905, United States
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, United States
| | - Jayawant N Mandrekar
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, United States
| | | | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, United States
| | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic Rochester, Rochester, MN 55905, United States
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
2
|
Kletzer J, Raval YS, Mohamed A, Mandrekar JN, Greenwood-Quaintance KE, Beyenal H, Patel R. In Vitro Activity of a Hypochlorous Acid-Generating Electrochemical Bandage against Yeast Biofilms. Antimicrob Agents Chemother 2023; 67:e0116622. [PMID: 36472429 PMCID: PMC9872635 DOI: 10.1128/aac.01166-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
The antibiofilm activity of a hypochlorous acid (HOCl)-producing electrochemical bandage (e-bandage) was assessed against 14 yeast isolates in vitro. The evaluated e-bandage was polarized at +1.5 VAg/AgCl to allow continuous production of HOCl. Time-dependent decreases in the biofilm CFU counts were observed for all isolates with e-bandage treatment. The results suggest that the described HOCl-producing e-bandage could serve as a potential alternative to traditional antifungal wound biofilm treatments.
Collapse
Affiliation(s)
- Joseph Kletzer
- Paracelsus Medical University, Salzburg, Austria
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yash S. Raval
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | | | | | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Lagage V, Chen V, Uphoff S. Adaptation delay causes a burst of mutations in bacteria responding to oxidative stress. EMBO Rep 2022; 24:e55640. [PMID: 36397732 PMCID: PMC9827559 DOI: 10.15252/embr.202255640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the interplay between phenotypic and genetic adaptation is a focus of evolutionary biology. In bacteria, the oxidative stress response prevents mutagenesis by reactive oxygen species (ROS). We hypothesise that the stress response dynamics can therefore affect the timing of the mutation supply that fuels genetic adaptation to oxidative stress. We uncover that sudden hydrogen peroxide stress causes a burst of mutations. By developing single-molecule and single-cell microscopy methods, we determine how these mutation dynamics arise from phenotypic adaptation mechanisms. H2 O2 signalling by the transcription factor OxyR rapidly induces ROS-scavenging enzymes. However, an adaptation delay leaves cells vulnerable to the mutagenic and toxic effects of hydroxyl radicals generated by the Fenton reaction. Resulting DNA damage is counteracted by a spike in DNA repair activities during the adaptation delay. Absence of a mutation burst in cells with prior stress exposure or constitutive OxyR activation shows that the timing of phenotypic adaptation directly controls stress-induced mutagenesis. Similar observations for alkylation stress show that mutation bursts are a general phenomenon associated with adaptation delays.
Collapse
Affiliation(s)
| | - Victor Chen
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | |
Collapse
|
4
|
Redox-Mediated Inactivation of the Transcriptional Repressor RcrR is Responsible for Uropathogenic Escherichia coli's Increased Resistance to Reactive Chlorine Species. mBio 2022; 13:e0192622. [PMID: 36073817 PMCID: PMC9600549 DOI: 10.1128/mbio.01926-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ability to overcome stressful environments is critical for pathogen survival in the host. One challenge for bacteria is the exposure to reactive chlorine species (RCS), which are generated by innate immune cells as a critical part of the oxidative burst. Hypochlorous acid (HOCl) is the most potent antimicrobial RCS and is associated with extensive macromolecular damage in the phagocytized pathogen. However, bacteria have evolved defense strategies to alleviate the effects of HOCl-mediated damage. Among these are RCS-sensing transcriptional regulators that control the expression of HOCl-protective genes under non-stress and HOCl stress. Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections (UTIs), is particularly exposed to infiltrating neutrophils during pathogenesis; however, their responses to and defenses from HOCl are still completely unexplored. Here, we present evidence that UPEC strains tolerate higher levels of HOCl and are better protected from neutrophil-mediated killing compared with other E. coli. Transcriptomic analysis of HOCl-stressed UPEC revealed the upregulation of an operon consisting of three genes, one of which encodes the transcriptional regulator RcrR. We identified RcrR as a HOCl-responsive transcriptional repressor, which, under non-stress conditions, is bound to the operator and represses the expression of its target genes. During HOCl exposure, however, the repressor forms reversible intermolecular disulfide bonds and dissociates from the DNA resulting in the derepression of the operon. Deletion of one of the target genes renders UPEC significantly more susceptible to HOCl and phagocytosis indicating that the HOCl-mediated induction of the regulon plays a major role for UPEC’s HOCl resistance.
Collapse
|
5
|
Perkins A, Tudorica DA, Teixeira RD, Schirmer T, Zumwalt L, Ogba OM, Cassidy CK, Stansfeld PJ, Guillemin K. A Bacterial Inflammation Sensor Regulates c-di-GMP Signaling, Adhesion, and Biofilm Formation. mBio 2021; 12:e0017321. [PMID: 34154415 PMCID: PMC8262984 DOI: 10.1128/mbio.00173-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteria that colonize animals must overcome, or coexist, with the reactive oxygen species products of inflammation, a front-line defense of innate immunity. Among these is the neutrophilic oxidant bleach, hypochlorous acid (HOCl), a potent antimicrobial that plays a primary role in killing bacteria through nonspecific oxidation of proteins, lipids, and DNA. Here, we report that in response to increasing HOCl levels, Escherichia coli regulates biofilm production via activation of the diguanylate cyclase DgcZ. We identify the mechanism of DgcZ sensing of HOCl to be direct oxidation of its regulatory chemoreceptor zinc-binding (CZB) domain. Dissection of CZB signal transduction reveals that oxidation of the conserved zinc-binding cysteine controls CZB Zn2+ occupancy, which in turn regulates the catalysis of c-di-GMP by the associated GGDEF domain. We find DgcZ-dependent biofilm formation and HOCl sensing to be regulated in vivo by the conserved zinc-coordinating cysteine. Additionally, point mutants that mimic oxidized CZB states increase total biofilm. A survey of bacterial genomes reveals that many pathogenic bacteria that manipulate host inflammation as part of their colonization strategy possess CZB-regulated diguanylate cyclases and chemoreceptors. Our findings suggest that CZB domains are zinc-sensitive regulators that allow host-associated bacteria to perceive host inflammation through reactivity with HOCl. IMPORTANCE Immune cells are well equipped to eliminate invading bacteria, and one of their primary tools is the synthesis of bleach, hypochlorous acid (HOCl), the same chemical used as a household disinfectant. In this work, we present findings showing that many host-associated bacteria possess a bleach-sensing protein that allows them to adapt to the presence of this chemical in their environment. We find that the bacterium Escherichia coli responds to bleach by hunkering down and producing a sticky matrix known as biofilm, which helps it aggregate and adhere to surfaces. This behavior may play an important role in pathogenicity for E. coli and other bacteria, as it allows the bacteria to detect and adapt to the weapons of the host immune system.
Collapse
Affiliation(s)
- Arden Perkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Dan A. Tudorica
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | - Lindsay Zumwalt
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - O. Maduka Ogba
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - C. Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Phillip J. Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Daer S, Goodwill JE, Ikuma K. Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase. WATER RESEARCH 2021; 189:116580. [PMID: 33166917 DOI: 10.1016/j.watres.2020.116580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Biological mechanisms of disinfection not only vary by disinfectant but also remain not well understood. We investigated the physiological and transcriptomic response of Escherichia coli at late stationary phase to ferrate and monochloramine in amended lake water. Although ferrate and monochloramine treatments similarly reduced culturable cell concentrations by 3-log10, 64% and 11% of treated cells were viable following monochloramine and ferrate treatment, respectively. This observed induction of viable but non-culturable (VBNC) state following monochloramine treatment but not ferrate is attributed to slower monochloramine disinfection kinetics (by 2.8 times) compared to ferrate. Transcriptomic analysis of E. coli at 15 min of exposure revealed that 3 times as many genes related to translation and transcription were downregulated by monochloramine compared to ferrate, suggesting that monochloramine treatment may be inducing VBNC through reduced protein synthesis and metabolism. Downregulation of universal stress response genes (rpoS, uspA) was attributed to growth-related physiological stressors during late stationary phase which may have contributed to the elevated expression levels of general stress responses pre-disinfection and, subsequently, their significant downregulation post-disinfection. Both disinfectants upregulated oxidative stress response genes (trxC, grxA, soxS), although levels of upregulation were time sensitive. This work shows that bacterial inactivation responses to disinfectants is mediated by complex molecular and growth-related responses.
Collapse
Affiliation(s)
- Sahar Daer
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States; Environmental Sciences Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States
| | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States; Environmental Sciences Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.
| |
Collapse
|
7
|
Königstorfer A, Ashby LV, Bollar GE, Billiot CE, Gray MJ, Jakob U, Hampton MB, Winterbourn CC. Induction of the reactive chlorine-responsive transcription factor RclR in Escherichia coli following ingestion by neutrophils. Pathog Dis 2021; 79:ftaa079. [PMID: 33351093 PMCID: PMC7797021 DOI: 10.1093/femspd/ftaa079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023] Open
Abstract
Neutrophils generate hypochlorous acid (HOCl) and related reactive chlorine species as part of their defence against invading microorganisms. In isolation, bacteria respond to reactive chlorine species by upregulating responses that provide defence against oxidative challenge. Key questions are whether these responses are induced when bacteria are phagocytosed by neutrophils, and whether this provides them with a survival advantage. We investigated RclR, a transcriptional activator of the rclABC operon in Escherichia coli that has been shown to be specifically activated by reactive chlorine species. We first measured induction by individual reactive chlorine species, and showed that HOCl itself activates the response, as do chloramines (products of HOCl reacting with amines) provided they are cell permeable. Strong RclR activation was seen in E. coli following phagocytosis by neutrophils, beginning within 5 min and persisting for 40 min. RclR activation was suppressed by inhibitors of NOX2 and myeloperoxidase, providing strong evidence that it was due to HOCl production in the phagosome. RclR activation demonstrates that HOCl, or a derived chloramine, enters phagocytosed bacteria in sufficient amount to induce this response. Although RclR was induced in wild-type bacteria following phagocytosis, we detected no greater sensitivity to neutrophil killing of mutants lacking genes in the rclABC operon.
Collapse
Affiliation(s)
- Andreas Königstorfer
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Louisa V Ashby
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Gretchen E Bollar
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Caitlin E Billiot
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N-University, Ann Arbor MI 48109-1085, United States
| | - Mark B Hampton
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Christine C Winterbourn
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| |
Collapse
|
8
|
Mozaheb N, Mingeot-Leclercq MP. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front Microbiol 2020; 11:600221. [PMID: 33362747 PMCID: PMC7755613 DOI: 10.3389/fmicb.2020.600221] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Membrane vesicles are the nano-sized vesicles originating from membranes. The production of membrane vesicles is a common feature among bacteria. Depending on the bacterial growth phase and environmental conditions, membrane vesicles show diverse characteristics. Various physiological and ecological roles have been attributed to membrane vesicles under both homeostatic and stressful conditions. Pathogens encounter several stressors during colonization in the hostile environment of host tissues. Nutrient deficiency, the presence of antibiotics as well as elements of the host’s immune system are examples of stressors threatening pathogens inside their host. To combat stressors and survive, pathogens have established various defensive mechanisms, one of them is production of membrane vesicles. Pathogens produce membrane vesicles to alleviate the destructive effects of antibiotics or other types of antibacterial treatments. Additionally, membrane vesicles can also provide benefits for the wider bacterial community during infections, through the transfer of resistance or virulence factors. Hence, given that membrane vesicle production may affect the activities of antibacterial agents, their production should be considered when administering antibacterial treatments. Besides, regarding that membrane vesicles play vital roles in bacteria, disrupting their production may suggest an alternative strategy for battling against pathogens. Here, we aim to review the stressors encountered by pathogens and shed light on the roles of membrane vesicles in increasing pathogen adaptabilities in the presence of stress-inducing factors.
Collapse
Affiliation(s)
- Negar Mozaheb
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| |
Collapse
|
9
|
Anand A, Chen K, Catoiu E, Sastry AV, Olson CA, Sandberg TE, Seif Y, Xu S, Szubin R, Yang L, Feist AM, Palsson BO. OxyR Is a Convergent Target for Mutations Acquired during Adaptation to Oxidative Stress-Prone Metabolic States. Mol Biol Evol 2020; 37:660-667. [PMID: 31651953 PMCID: PMC7038661 DOI: 10.1093/molbev/msz251] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress is concomitant with aerobic metabolism. Thus, bacterial genomes encode elaborate mechanisms to achieve redox homeostasis. Here we report that the peroxide-sensing transcription factor, oxyR, is a common mutational target using bacterial species belonging to two genera, Escherichia coli and Vibrio natriegens, in separate growth conditions implemented during laboratory evolution. The mutations clustered in the redox active site, dimer interface, and flexible redox loop of the protein. These mutations favor the oxidized conformation of OxyR that results in constitutive expression of the genes it regulates. Independent component analysis of the transcriptome revealed that the constitutive activity of OxyR reduces DNA damage from reactive oxygen species, as inferred from the activity of the SOS response regulator LexA. This adaptation to peroxide stress came at a cost of lower growth, as revealed by calculations of proteome allocation using genome-scale models of metabolism and macromolecular expression. Further, identification of similar sequence changes in natural isolates of E. coli indicates that adaptation to oxidative stress through genetic changes in oxyR can be a common occurrence.
Collapse
Affiliation(s)
- Amitesh Anand
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Ke Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Edward Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Present address: Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
- Corresponding author: E-mail:
| |
Collapse
|
10
|
Varatnitskaya M, Degrossoli A, Leichert LI. Redox regulation in host-pathogen interactions: thiol switches and beyond. Biol Chem 2020; 402:299-316. [PMID: 33021957 DOI: 10.1515/hsz-2020-0264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Our organism is exposed to pathogens on a daily basis. Owing to this age-old interaction, both pathogen and host evolved strategies to cope with these encounters. Here, we focus on the consequences of the direct encounter of cells of the innate immune system with bacteria. First, we will discuss the bacterial strategies to counteract powerful reactive species. Our emphasis lies on the effects of hypochlorous acid (HOCl), arguably the most powerful oxidant produced inside the phagolysosome of professional phagocytes. We will highlight individual examples of proteins in gram-negative bacteria activated by HOCl via thiol-disulfide switches, methionine sulfoxidation, and N-chlorination of basic amino acid side chains. Second, we will discuss the effects of HOCl on proteins of the host. Recent studies have shown that both host and bacteria address failing protein homeostasis by activation of chaperone-like holdases through N-chlorination. After discussing the role of individual proteins in the HOCl-defense, we will turn our attention to the examination of effects on host and pathogen on a systemic level. Recent studies using genetically encoded redox probes and redox proteomics highlight differences in redox homeostasis in host and pathogen and give first hints at potential cellular HOCl signaling beyond thiol-disulfide switch mechanisms.
Collapse
Affiliation(s)
- Marharyta Varatnitskaya
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Adriana Degrossoli
- Faculty of Health Science - Health Science Department, Federal University of Lavras, Lavras, Brazil
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Wang J, Li G, Yin H, An T. Bacterial response mechanism during biofilm growth on different metal material substrates: EPS characteristics, oxidative stress and molecular regulatory network analysis. ENVIRONMENTAL RESEARCH 2020; 185:109451. [PMID: 32251912 DOI: 10.1016/j.envres.2020.109451] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/07/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Overwhelming growth of bacterial biofilms on different metal-based pipeline materials are intractable and pose a serious threat to public health when tap water flows though these pipelines. Indeed, the underlying mechanism of biofilm growth on the surface of different pipeline materials deserves detailed exploration to provide subsequent implementation strategies for biofilm control. Thus, in this study, how bacteria response to their encounters was explored, when they inhabit different metal-based pipeline substrates. Results revealed that bacteria proliferated when they grew on stainless steel (SS) and titanium sheet (Ti), quickly developing into bacterial biofilms. In contrast, the abundance of bacteria on copper (Cu) and nickel foam (Ni) substates decreased sharply by 4-5 logs within 24 h. The morphological shrinkage and shortening of bacterial cells, as well as a sudden 64-fold increase of carbohydrate content in extracellular polymeric substances (EPS), were observed on Cu substrate. Furthermore, generation of reactive oxygen species and fluctuation of enzymatic activity demonstrated the destruction of redox equilibrium in bacteria. Bacteria cultured on Cu substrate showed the strongest response, followed by Ni, SS and Ti. The oxidative stress increased quickly during the growth of bacterial biofilm, and almost all tested metal transporter-related genes were upregulated by 2-11 folds on Cu, which were higher than on other substrates (1-2 folds for SS and Ti, 2-9 folds for Ni). Finally, these behaviors were compared under the biofilm regulatory molecular network. This work may facilitate better understanding different response mechanisms during bacterial biofilm colonization on metal-based pipelines and provide implications for subsequent biofilm control.
Collapse
Affiliation(s)
- Jiaping Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongliang Yin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Sheng H, Huang J, Han Z, Liu M, Lü Z, Zhang Q, Zhang J, Yang J, Cui S, Yang B. Genes and Proteomes Associated With Increased Mutation Frequency and Multidrug Resistance of Naturally Occurring Mismatch Repair-Deficient Salmonella Hypermutators. Front Microbiol 2020; 11:770. [PMID: 32457709 PMCID: PMC7225559 DOI: 10.3389/fmicb.2020.00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The emergence of antibiotic-resistant Salmonella through mutations led to mismatch repair (MMR) deficiency that represents a potential hazard to public health. Here, four representative MMR-deficient Salmonella hypermutator strains and Salmonella Typhimurium LT2 were used to comprehensively reveal the influence of MMR deficiency on antibiotic resistance among Salmonella. Our results indicated that the mutation frequency ranged from 3.39 × 10–4 to 5.46 × 10–2 in the hypermutator. Mutation sites in MutS, MutL, MutT, and UvrD of the four hypermutators were all located in the essential and core functional regions. Mutation frequency of the hypermutator was most highly correlated with the extent of mutation in MutS. Mutations in MMR genes (mutS, mutT, mutL, and uvrD) were correlated with increased mutation in antibiotic resistance genes, and the extent of antibiotic resistance was significantly correlated with the number of mutation sites in MutL and in ParC. The number of mutation sites in MMR genes and antibiotic resistance genes exhibited a significant positive correlation with the number of antibiotics resisted and with expression levels of mutS, mutT, and mutL. Compared to Salmonella Typhimurium LT2, a total of 137 differentially expressed and 110 specifically expressed proteins were identified in the four hypermutators. Functional enrichment analysis indicated that the proteins significantly overexpressed in the hypermutators primarily associated with translation and stress response. Interaction network analysis revealed that the ribosome pathway might be a critical factor for high mutation frequency and multidrug resistance in MMR-deficient Salmonella hypermutators. These results help elucidate the mutational dynamics that lead to hypermutation, antibiotic resistance, and activation of stress response pathways in Salmonella.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinling Huang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhaoyu Han
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Mi Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinlei Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jun Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
13
|
Antipov SS, Tutukina MN, Preobrazhenskaya EV, Kondrashov FA, Patrushev MV, Toshchakov SV, Dominova I, Shvyreva US, Vrublevskaya VV, Morenkov OS, Sukharicheva NA, Panyukov VV, Ozoline ON. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner. PLoS One 2017; 12:e0182800. [PMID: 28800583 PMCID: PMC5553809 DOI: 10.1371/journal.pone.0182800] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Dps is a multifunctional homododecameric protein that oxidizes Fe2+ ions accumulating them in the form of Fe2O3 within its protein cavity, interacts with DNA tightly condensing bacterial nucleoid upon starvation and performs some other functions. During the last two decades from discovery of this protein, its ferroxidase activity became rather well studied, but the mechanism of Dps interaction with DNA still remains enigmatic. The crucial role of lysine residues in the unstructured N-terminal tails led to the conventional point of view that Dps binds DNA without sequence or structural specificity. However, deletion of dps changed the profile of proteins in starved cells, SELEX screen revealed genomic regions preferentially bound in vitro and certain affinity of Dps for artificial branched molecules was detected by atomic force microscopy. Here we report a non-random distribution of Dps binding sites across the bacterial chromosome in exponentially growing cells and show their enrichment with inverted repeats prone to form secondary structures. We found that the Dps-bound regions overlap with sites occupied by other nucleoid proteins, and contain overrepresented motifs typical for their consensus sequences. Of the two types of genomic domains with extensive protein occupancy, which can be highly expressed or transcriptionally silent only those that are enriched with RNA polymerase molecules were preferentially occupied by Dps. In the dps-null mutant we, therefore, observed a differentially altered expression of several targeted genes and found suppressed transcription from the dps promoter. In most cases this can be explained by the relieved interference with Dps for nucleoid proteins exploiting sequence-specific modes of DNA binding. Thus, protecting bacterial cells from different stresses during exponential growth, Dps can modulate transcriptional integrity of the bacterial chromosome hampering RNA biosynthesis from some genes via competition with RNA polymerase or, vice versa, competing with inhibitors to activate transcription.
Collapse
Affiliation(s)
- S. S. Antipov
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Biophysics and Biotechnology, Voronezh State University, Voronezh, Russian Federation
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - M. N. Tutukina
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain
- Department of Evolutionary Genomics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - E. V. Preobrazhenskaya
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - F. A. Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain
- Department of Evolutionary Genomics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, Barcelona, Spain
| | - M. V. Patrushev
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - S. V. Toshchakov
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - I. Dominova
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - U. S. Shvyreva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - V. V. Vrublevskaya
- Department of Cell Culture and Cell Engeneering, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - O. S. Morenkov
- Department of Cell Culture and Cell Engeneering, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - N. A. Sukharicheva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - V. V. Panyukov
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Bioinformatics, Institute of Mathematical Problems of Biology—the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - O. N. Ozoline
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- * E-mail:
| |
Collapse
|
14
|
Kellner S, DeMott MS, Cheng CP, Russell BS, Cao B, You D, Dedon PC. Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nat Chem Biol 2017; 13:888-894. [PMID: 28604692 PMCID: PMC5577368 DOI: 10.1038/nchembio.2407] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022]
Abstract
Genomic modification with sulfur as phosphorothioate (PT) is widespread among prokaryotes, including human pathogens. Apart from its physiological functions, the redox and nucleophilic properties of PT sulfur suggest effects on bacterial fitness in stressful environments. Here we show that PTs are dynamic and labile DNA modifications that cause genomic instability during oxidative stress. Using coupled isotopic labeling-mass spectrometry, we observed sulfur replacement in PTs at a rate of ~2%/h in unstressed Escherichia coli and Salmonella enterica. While PT levels were unaffected by exposure to hydrogen peroxide (H2O2) or hypochlorous acid (HOCl), PT turnover increased to 3.8–10%/h for HOCl and was unchanged for H2O2, consistent with repair of HOCl-induced sulfur damage. PT-dependent HOCl sensitivity extended to cytotoxicity and DNA strand-breaks, which occurred at orders-of-magnitude lower doses of HOCl than H2O2. The genotoxicity of HOCl in PT-containing bacteria suggests reduced fitness in competition with HOCl-producing organisms and during human infections.
Collapse
Affiliation(s)
- Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ching Pin Cheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brandon S Russell
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Delin You
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
15
|
Charoenlap N, Sornchuer P, Piwkam A, Srijaruskul K, Mongkolsuk S, Vattanaviboon P. The roles of peroxide protective regulons in protecting Xanthomonas campestris pv. campestris from sodium hypochlorite stress. Can J Microbiol 2015; 61:343-50. [DOI: 10.1139/cjm-2014-0792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The exposure of Xanthomonas campestris pv. campestris to sublethal concentrations of a sodium hypochlorite (NaOCl) solution induced the expression of genes that encode peroxide scavenging enzymes within the OxyR and OhrR regulons. Sensitivity testing in various X. campestris mutants indicated that oxyR, katA, katG, ahpC, and ohr contributed to protection against NaOCl killing. The pretreatment of X. campestris cultures with oxidants, such as hydrogen peroxide (H2O2), t-butyl hydroperoxide, and the superoxide generator menadione, protected the bacteria from lethal concentrations of NaOCl in an OxyR-dependent manner. Treating the bacteria with a low concentration of NaOCl resulted in the adaptive protection from NaOCl killing and also provided cross-protection from H2O2 killing. Taken together, the results suggest that the toxicity of NaOCl is partially mediated by the generation of peroxides and other reactive oxygen species that are removed by primary peroxide scavenging enzymes, such as catalases and AhpC, as a part of an overall strategy that protects the bacteria from the lethal effects of NaOCl.
Collapse
Affiliation(s)
- Nisanart Charoenlap
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Phornphan Sornchuer
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Anong Piwkam
- Program in Applied Biological Science: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Kriangsuk Srijaruskul
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
- Department of Biotechnology and Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
- Program in Applied Biological Science: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok, Thailand
| |
Collapse
|