1
|
Manoli MT, Gargantilla-Becerra Á, Del Cerro Sánchez C, Rivero-Buceta V, Prieto MA, Nogales J. A model-driven approach to upcycling recalcitrant feedstocks in Pseudomonas putida by decoupling PHA production from nutrient limitation. Cell Rep 2024; 43:113979. [PMID: 38517887 DOI: 10.1016/j.celrep.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Bacterial polyhydroxyalkanoates (PHAs) have emerged as promising eco-friendly alternatives to petroleum-based plastics since they are synthesized from renewable resources and offer exceptional properties. However, their production is limited to the stationary growth phase under nutrient-limited conditions, requiring customized strategies and costly two-phase bioprocesses. In this study, we tackle these challenges by employing a model-driven approach to reroute carbon flux and remove regulatory constraints using synthetic biology. We construct a collection of Pseudomonas putida-overproducing strains at the expense of plastics and lignin-related compounds using growth-coupling approaches. PHA production was successfully achieved during growth phase, resulting in the production of up to 46% PHA/cell dry weight while maintaining a balanced carbon-to-nitrogen ratio. Our strains are additionally validated under an upcycling scenario using enzymatically hydrolyzed polyethylene terephthalate as a feedstock. These findings have the potential to revolutionize PHA production and address the global plastic crisis by overcoming the complexities of traditional PHA production bioprocesses.
Collapse
Affiliation(s)
- Maria-Tsampika Manoli
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Álvaro Gargantilla-Becerra
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain; 3Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Carlos Del Cerro Sánchez
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Virginia Rivero-Buceta
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| | - Juan Nogales
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain; 3Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain; CNB DNA Biofoundry (CNBio), CSIC, Madrid, Spain.
| |
Collapse
|
2
|
Schiaffi V, Barras F, Bouveret E. Matching the β-oxidation gene repertoire with the wide diversity of fatty acids. Curr Opin Microbiol 2024; 77:102402. [PMID: 37992547 DOI: 10.1016/j.mib.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023]
Abstract
Bacteria can use fatty acids (FAs) from their environment as carbon and energy source. This catabolism is performed by the enzymes of the well-known β-oxidation machinery, producing reducing power and releasing acetyl-CoA that can feed the tricarboxylic acid cycle. FAs are extremely diverse: they can be saturated or (poly)unsaturated and are found in different sizes. The need to degrade such a wide variety of compounds may explain why so many seemingly homologous enzymes are found for each step of the β-oxidation cycle. In addition, the degradation of unsaturated fatty acids requires specific auxiliary enzymes for isomerase and reductase reactions. Furthermore, the β-oxidation cycle can be blocked by dead-end products, which are taken care of by acyl-CoA thioesterases. Yet, the functional characterization of the enzymes required for the degradation of the full diversity of FAs remains to be documented in most bacteria.
Collapse
Affiliation(s)
- Veronica Schiaffi
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France
| | - Frédéric Barras
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France
| | - Emmanuelle Bouveret
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France.
| |
Collapse
|
3
|
Dong H, Cronan JE. Suppressor mutants demonstrate the metabolic plasticity of unsaturated fatty acid synthesis in Pseudomonas aeruginosa PAO1. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001400. [PMID: 37818937 PMCID: PMC10634369 DOI: 10.1099/mic.0.001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Pseudomonas aeruginosa PAO1 has two aerobic pathways for synthesis of unsaturated fatty acids (UFAs), DesA and DesB plus the oxygen independent FabAB pathway. The DesA desaturase acts on saturated acyl chains of membrane phospholipid bilayers whereas the substrates of the DesB desaturase are thought to be long chain saturated acyl-CoA thioesters derived from exogeneous saturated fatty acids that are required to support DesB-dependent growth. Under suitable aerobic conditions either of these membrane-bound desaturates can support growth of P. aeruginosa ∆fabA strains lacking the oxygen independent FabAB pathway. We previously studied function of the desA desaturase of P. putida in a P. aeruginosa ∆fabA ∆desA strain that required supplementation with a UFA for growth and noted bypass suppression of the P. aeruginosa ∆fabA ∆desA strain that restored UFA synthesis. We report three genes encoding lipid metabolism proteins that give rise to suppressor strains that bypass loss of the DesA and oxygen independent FabAB pathways.
Collapse
Affiliation(s)
- Huijuan Dong
- Departments of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E. Cronan
- Departments of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departments of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Li Y, Wang J, Wang F, Wang L, Wang L, Xu Z, Yuan H, Yang X, Li P, Su J, Wang R. Production of 10-Hydroxy-2-decenoic Acid from Decanoic Acid via Whole-Cell Catalysis in Engineered Escherichia coli. CHEMSUSCHEM 2022; 15:e202102152. [PMID: 34796684 DOI: 10.1002/cssc.202102152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Indexed: 06/13/2023]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA) is a terminal hydroxylated medium-chain α,β-unsaturated carboxylic acid that performs various unique physiological activities and has a wide market value. Therefore, development of an environmentally friendly, safe, and high-efficiency route to synthesize 10-HDA is required. Here, the β-oxidation pathway of Escherichia coli was modified and a P450 terminal hydroxylase (CYP153A33-CPRBM3 ) was rationally designed to synthesize 10-HDA using decanoic acid as a substrate via two-step whole-cell catalysis. Different homologues of FadDs, FadEs, and YdiIs were analyzed in the first step of the conversion of decanoic acid to trans- -2- decenoic acid. In the second step, CYP153A33 (M228L)-CPRBM3 efficiently catalyzed the conversion of trans- -2- decenoic acid to 10-HDA. Finally, 217 mg L-1 10-HDA was obtained with 500 mg L-1 decanoic acid. This study provides a strategy for biosynthesis of 10-HDA and other α, β-unsaturated carboxylic acid derivatives from specific fatty acids.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Fen Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Li Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Leilei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ziqi Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| |
Collapse
|
5
|
Espinosa-Camacho LF, Delgado G, Cravioto A, Morales-Espinosa R. Diversity in the composition of the accessory genome of Mexican Pseudomonas aeruginosa strains. Genes Genomics 2021; 44:53-77. [PMID: 34410625 DOI: 10.1007/s13258-021-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an important opportunistic pathogen especially in nosocomial infections due to its easy adaptation to different environments; this characteristic is due to the great genetic diversity that presents its genome. In addition, it is considered a pathogen of critical priority due to the high antimicrobial resistance. OBJECTIVES The aim of this study was to characterize the mobile genetic elements present in the chromosome of six Mexican P. aeruginosa strains isolated from adults with pneumonia and children with bacteremia. METHODS The genomic DNA of six P. aeruginosa strains were isolated and sequenced using PacBio RS-II platform. They were annotated using Prokaryotic Genome Annotation Pipeline and manually curated and analyzed for the presence of mobile genetic elements, antibiotic resistances genes, efflux pumps and virulence factors using several bioinformatics programs and databases. RESULTS The global analysis of the strains chromosomes showed a novel chromosomal rearrangement in two strains, possibly mediated by subsequent recombination and inversion events. They have a high content of mobile genetic elements: 21 genomic islands, four new islets, four different integrative conjugative elements, 28 different prophages, one CRISPR-Cas arrangements, and one class 1 integron. The acquisition of antimicrobials resistance genes into these elements are in concordance with their phenotype of multi-drug resistance. CONCLUSION The accessory genome increased the ability of the strains to adapt or survive to the hospital environment, promote genomic plasticity and chromosomal rearrangements, which may affect the expression or functionality of the gene and might influence the clinical outcome, having an impact on the treatment.
Collapse
Affiliation(s)
- Luis F Espinosa-Camacho
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Alejandro Cravioto
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Ene N, Vladu MG, Lupescu I, Ionescu AD, Vamanu E. The Production and Analysis of Biodegradable Polymers of Type of Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA) by Pseudomonas putida Strain for the Biomedical Engineering. Curr Pharm Biotechnol 2021; 23:1109-1117. [PMID: 34375190 DOI: 10.2174/1389201022666210810114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Polyhydroxyalkanoates (PHAs) are bacteria-synthetized biopolymers under unbalanced growth conditions. These biopolymers are considered potential biomaterials for future applications for their biocompatibility and biodegradable features and potential biomaterials for future applications for their biocompatibility and biodegradable characteristics and their ability to be quickly produced and functionalize with strong mechanical resistance. This article is intended to perform microbial fermentation using Pseudomonas putida strain to show the amount of biopolymers of the type polyhydroxyalkanoates with medium-chain-length (mcl-PHA) obtained depending on the type and quantity of added precursors (glucose and fatty acids). METHODS It is important to understand the microbial interaction and mechanism involved in PHA biosynthetis.For these, several methods were used, such as: obtaining microbial biomass by using a Pseudomonas putida strain able of PHA-producing, analysis of biopolymer production by acetone extraction following the Soxhlet method, purification of biopolymer by methanol-ethanol treatment, followed by the estimation of biomass by spectrophotometric analysis and the measurement of the dry weight of cells and the quantification of the amount of biopolymer produced following the gas chromatographic method (GC). RESULTS The highest PHA yield was obtained using octanoic (17 mL in 2000 mL medium) and hexanoic acids (14 mL in 2000 mL medium) as precursors. Consequently, octanoic acid - octanoic acid, heptanoic acid - nonanoic acid, and octanoic acid - hexanoic acid were the mix of precursors that supported the amount of PHA obtained. CONCLUSION Of the 4 types of structurally related substrate, the strain Pseudomonas putida ICCF 319 prefers the C8 sublayer for an elastomeric PHA's biosynthesis with a composition in which the C8 monomer predominates over C6 and C10.
Collapse
Affiliation(s)
- Nicoleta Ene
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| | - Mariana-Gratiela Vladu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| | - Irina Lupescu
- National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania
| | - Ana-Despina Ionescu
- National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania
| | - Emanuel Vamanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| |
Collapse
|
7
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
8
|
Haraźna K, Cichoń E, Skibiński S, Witko T, Solarz D, Kwiecień I, Marcello E, Zimowska M, Socha R, Szefer E, Zima A, Roy I, Raftopoulos KN, Pielichowski K, Witko M, Guzik M. Physicochemical and Biological Characterisation of Diclofenac Oligomeric Poly(3-hydroxyoctanoate) Hybrids as β-TCP Ceramics Modifiers for Bone Tissue Regeneration. Int J Mol Sci 2020; 21:E9452. [PMID: 33322564 PMCID: PMC7763618 DOI: 10.3390/ijms21249452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Nowadays, regenerative medicine faces a major challenge in providing new, functional materials that will meet the characteristics desired to replenish and grow new tissue. Therefore, this study presents new ceramic-polymer composites in which the matrix consists of tricalcium phosphates covered with blends containing a chemically bounded diclofenac with the biocompatible polymer-poly(3-hydroxyoctanoate), P(3HO). Modification of P(3HO) oligomers was confirmed by NMR, IR and XPS. Moreover, obtained oligomers and their blends were subjected to an in-depth characterisation using GPC, TGA, DSC and AFM. Furthermore, we demonstrate that the hydrophobicity and surface free energy values of blends decreased with the amount of diclofenac modified oligomers. Subsequently, the designed composites were used as a substrate for growth of the pre-osteoblast cell line (MC3T3-E1). An in vitro biocompatibility study showed that the composite with the lowest concentration of the proposed drug is within the range assumed to be non-toxic (viability above 70%). Cell proliferation was visualised using the SEM method, whereas the observation of cell penetration into the scaffold was carried out by confocal microscopy. Thus, it can be an ideal new functional bone tissue substitute, allowing not only the regeneration and restoration of the defect but also inhibiting the development of chronic inflammation.
Collapse
Affiliation(s)
- Katarzyna Haraźna
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Ewelina Cichoń
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland; (E.C.); (S.S.); (A.Z.)
| | - Szymon Skibiński
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland; (E.C.); (S.S.); (A.Z.)
| | - Tomasz Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Daria Solarz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland;
| | - Iwona Kwiecień
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| | - Elena Marcello
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, UK;
| | - Małgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Robert Socha
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Ewa Szefer
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (E.S.); (K.N.R.); (K.P.)
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland; (E.C.); (S.S.); (A.Z.)
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK;
| | - Konstantinos N. Raftopoulos
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (E.S.); (K.N.R.); (K.P.)
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (E.S.); (K.N.R.); (K.P.)
| | - Małgorzata Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| |
Collapse
|
9
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
10
|
Thompson MG, Incha MR, Pearson AN, Schmidt M, Sharpless WA, Eiben CB, Cruz-Morales P, Blake-Hedges JM, Liu Y, Adams CA, Haushalter RW, Krishna RN, Lichtner P, Blank LM, Mukhopadhyay A, Deutschbauer AM, Shih PM, Keasling JD. Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Appl Environ Microbiol 2020; 86:e01665-20. [PMID: 32826213 PMCID: PMC7580535 DOI: 10.1128/aem.01665-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
With its ability to catabolize a wide variety of carbon sources and a growing engineering toolkit, Pseudomonas putida KT2440 is emerging as an important chassis organism for metabolic engineering. Despite advances in our understanding of the organism, many gaps remain in our knowledge of the genetic basis of its metabolic capabilities. The gaps are particularly noticeable in our understanding of both fatty acid and alcohol catabolism, where many paralogs putatively coding for similar enzymes coexist, making biochemical assignment via sequence homology difficult. To rapidly assign function to the enzymes responsible for these metabolisms, we leveraged random barcode transposon sequencing (RB-Tn-Seq). Global fitness analyses of transposon libraries grown on 13 fatty acids and 10 alcohols produced strong phenotypes for hundreds of genes. Fitness data from mutant pools grown on fatty acids of varying chain lengths indicated specific enzyme substrate preferences and enabled us to hypothesize that DUF1302/DUF1329 family proteins potentially function as esterases. From the data, we also postulate catabolic routes for the two biogasoline molecules isoprenol and isopentanol, which are catabolized via leucine metabolism after initial oxidation and activation with coenzyme A (CoA). Because fatty acids and alcohols may serve as both feedstocks and final products of metabolic-engineering efforts, the fitness data presented here will help guide future genomic modifications toward higher titers, rates, and yields.IMPORTANCE To engineer novel metabolic pathways into P. putida, a comprehensive understanding of the genetic basis of its versatile metabolism is essential. Here, we provide functional evidence for the putative roles of hundreds of genes involved in the fatty acid and alcohol metabolism of the bacterium. These data provide a framework facilitating precise genetic changes to prevent product degradation and to channel the flux of specific pathway intermediates as desired.
Collapse
Affiliation(s)
- Mitchell G Thompson
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant Biology, University of California, Davis, California, USA
| | - Matthew R Incha
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Allison N Pearson
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Matthias Schmidt
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - William A Sharpless
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher B Eiben
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Joint Program in Bioengineering, University of California, Berkeley, California, USA
| | - Pablo Cruz-Morales
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Centro de Biotecnología FEMSA, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, México
| | - Jacquelyn M Blake-Hedges
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Catharine A Adams
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Robert W Haushalter
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rohith N Krishna
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Patrick Lichtner
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Patrick M Shih
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant Biology, University of California, Davis, California, USA
- Environmental and Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Joint Program in Bioengineering, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| |
Collapse
|
11
|
Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis. Essays Biochem 2017; 60:303-313. [PMID: 27903818 PMCID: PMC5264504 DOI: 10.1042/ebc20160015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/24/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
The chassis is the cellular host used as a recipient of engineered biological systems in synthetic biology. They are required to propagate the genetic information and to express the genes encoded in it. Despite being an essential element for the appropriate function of genetic circuits, the chassis is rarely considered in their design phase. Consequently, the circuits are transferred to model organisms commonly used in the laboratory, such as Escherichia coli, that may be suboptimal for a required function. In this review, we discuss some of the properties desirable in a versatile chassis and summarize some examples of alternative hosts for synthetic biology amenable for engineering. These properties include a suitable life style, a robust cell wall, good knowledge of its regulatory network as well as of the interplay of the host components with the exogenous circuits, and the possibility of developing whole-cell models and tuneable metabolic fluxes that could allow a better distribution of cellular resources (metabolites, ATP, nucleotides, amino acids, transcriptional and translational machinery). We highlight Pseudomonas putida, widely used in many different biotechnological applications as a prominent organism for synthetic biology due to its metabolic diversity, robustness and ease of manipulation.
Collapse
|
12
|
Fu J, Sharma P, Spicer V, Krokhin OV, Zhang X, Fristensky B, Cicek N, Sparling R, Levin DB. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids. PLoS One 2015; 10:e0142322. [PMID: 26544181 PMCID: PMC4636370 DOI: 10.1371/journal.pone.0142322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. 'Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the 'Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining the monomer composition of mcl-PHA polymers. Understanding the relationships between genome content, gene and gene product expression, and how these factors influence polymer synthesis, will aid in optimization of mcl-PHA production by P. putida LS46 using biodiesel waste streams.
Collapse
Affiliation(s)
- Jilagamazhi Fu
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parveen Sharma
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vic Spicer
- Department of Internal Medicine & Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oleg V. Krokhin
- Department of Internal Medicine & Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiangli Zhang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Fristensky
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nazim Cicek
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David. B. Levin
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|