1
|
Joshi H, Khan A. Competition-driven phenotypic plasticity in Iron acquisition and aromatic utilization confers a fitness advantage to Pseudomonas putida in an Iron-limited rhizospheric environment. World J Microbiol Biotechnol 2024; 40:386. [PMID: 39565458 PMCID: PMC11579168 DOI: 10.1007/s11274-024-04192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Iron scarcity poses a critical challenge for rhizospheric bacteria like Pseudomonas putida in the competitive rhizosphere. Despite its dependence on iron for essential functions such as root colonization, motility, and aromatic compound utilization, P. putida exhibits limited capability for heterologous siderophore utilization and primarily relies on the secretion of a single siderophore, pyoverdine. This study investigates the mechanisms by which P. putida acquires iron in an iron-limited, aromatic-rich, rhizosphere-like environment. Our findings demonstrate that P. putida exhibits significant phenotypic plasticity, dynamically modulating pyoverdine secretion in response to competitive pressures and substrate availability. This adaptive strategy optimizes energy expenditure and iron acquisition, providing a competitive advantage. Comparative gene expression analysis supports these observations, revealing the molecular underpinnings of this plasticity. Enhanced pyoverdine production driven by competition compensates for the bacterium's limited siderophore repertoire and facilitates rapid aromatic compound utilization, conferring a distinct fitness advantage in iron-deprived conditions. This study elucidates the complex interplay between competition, iron uptake, and aromatic compound utilization that underpins the rhizospheric success of P. putida.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling & Biofilms Processes Section, Water & Steam Chemistry Division, BARC Facilities, IGCAR campus, Kalpakkam, 603 102, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Atif Khan
- Biofouling & Biofilms Processes Section, Water & Steam Chemistry Division, BARC Facilities, IGCAR campus, Kalpakkam, 603 102, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Orellana D, Machuca D, Ibeas MA, Estevez JM, Poupin MJ. Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants. Front Microbiol 2022; 13:1083270. [PMID: 36583055 PMCID: PMC9792790 DOI: 10.3389/fmicb.2022.1083270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlying molecular mechanisms of the microbial modulation of these nutrients in plants. Thus, three proteobacteria (Paraburkholderia phytofirmans PsJN, Azospirillum brasilense Sp7, and Pseudomonas putida KT2440) were used to inoculate Arabidopsis seeds. Additionally, the seeds were exposed to a nutritional factor with the following levels for each nutrient: sufficient (control) or low concentrations of a highly soluble source or sufficient concentrations of a low solubility source. Then, the effects of the combinatorial factors were assessed in plant growth, nutrition, and genetic regulation. Interestingly, some bacterial effects in plants depended on the nutrient source (e.g., increased aerial zones induced by the strains), and others (e.g., decreased primary roots induced by Sp7 or KT2440) occurred regardless of the nutritional treatment. In the short-term, PsJN had detrimental effects on plant growth in the presence of the low-solubility Fe compound, but this was not observed in later stages of plant development. A thorough regulation of the phosphorus content was detected in plants independent of the nutritional treatment. Nevertheless, inoculation with KT2440 increased P content by 29% Pi-deficiency exposed plants. Conversely, the inoculation tended to decrease the Fe content in plants, suggesting a competition for this nutrient in the rhizosphere. The P-source also affected the effects of the PsJN strain in a double mutant of the phosphate starvation response (PSR). Furthermore, depending on the nutrient source, PsJN and Sp7 strains differentially regulated PSR and IAA- associated genes, indicating a role of these pathways in the observed differential phenotypical responses. In the case of iron, PsJN and SP7 regulated iron uptake-related genes regardless of the iron source, which may explain the lower Fe content in inoculated plants. Overall, the plant responses to these proteobacteria were not only influenced by the nutrient concentrations but also by their availabilities, the elapsed time of the interaction, and the specific identities of the beneficial bacteria. Graphical AbstractThe effects of the different nutritional and inoculation treatments are indicated for plant growth parameters (A), gene regulation (B) and phosphorus and iron content (C). Figures created with BioRender.com with an academic license.
Collapse
Affiliation(s)
- Daniela Orellana
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile,ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Daniel Machuca
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Miguel Angel Ibeas
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - José Manuel Estevez
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile,ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,*Correspondence: María Josefina Poupin,
| |
Collapse
|
3
|
Manglass LM, Wintenberg M, Vogel C, Blenner M, Martinez NE. Accumulation of radio-iron and plutonium, alone and in combination, in Pseudomonas putidagrown in liquid cultures. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1199-1212. [PMID: 34644681 DOI: 10.1088/1361-6498/ac2f86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The impact of low doses of ionising radiation on biological and environmental systems have been historically difficult to study. Modern biological tools have provided new methods for studying these mechanisms but applying these tools to a dose-response relationship may require refinement of dosimetric techniques that incorporate a detailed understand of radionuclide accumulation in biological cells, particularly when assessing the impact of low doses of ionising radiation. In this workPseudomonas putida (KT2440) grown in liquid culture was exposed to low dose rates (10-20 mGy d-1) of239Pu and55Fe, both alone and in combination, for a period of 20 days, and the accumulation of239Pu and55Fe in cell pellets was analysed via liquid scintillation counting. The study also considered of cells grown with239Pu and stable Fe (primarily56Fe). In addition to the analysis of cell pellet and media samples, this work includes analysis of the radiological content of ribonucleic acid extraction samples to examine uptake of radionuclides. Results indicate that239Pu inhibited the uptake of55Fe, and that the presence of stable and radioactive isotopes of Fe in cultures may promote pathways for Fe accumulation that are used by239Pu. The work herein provides foundational insight into future dosimetric models for our work with environmental bacteria.
Collapse
Affiliation(s)
- Lisa M Manglass
- Department of Environmental Engineering and Earth Science, Clemson University, Clemson, SC, United States of America
- Department of Physics and Engineering, Francis Marion University, Florence, SC, United States of America
| | - Molly Wintenberg
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States of America
| | - Charlotte Vogel
- Department of Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States of America
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States of America
| | - Nicole E Martinez
- Department of Environmental Engineering and Earth Science, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
4
|
Lee JA, Baugh AC, Shevalier NJ, Strand B, Stolyar S, Marx CJ. Cross-Feeding of a Toxic Metabolite in a Synthetic Lignocellulose-Degrading Microbial Community. Microorganisms 2021; 9:321. [PMID: 33557371 PMCID: PMC7914493 DOI: 10.3390/microorganisms9020321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
The recalcitrance of complex organic polymers such as lignocellulose is one of the major obstacles to sustainable energy production from plant biomass, and the generation of toxic intermediates can negatively impact the efficiency of microbial lignocellulose degradation. Here, we describe the development of a model microbial consortium for studying lignocellulose degradation, with the specific goal of mitigating the production of the toxin formaldehyde during the breakdown of methoxylated aromatic compounds. Included are Pseudomonas putida, a lignin degrader; Cellulomonas fimi, a cellulose degrader; and sometimes Yarrowia lipolytica, an oleaginous yeast. Unique to our system is the inclusion of Methylorubrum extorquens, a methylotroph capable of using formaldehyde for growth. We developed a defined minimal "Model Lignocellulose" growth medium for reproducible coculture experiments. We demonstrated that the formaldehyde produced by P. putida growing on vanillic acid can exceed the minimum inhibitory concentration for C. fimi, and, furthermore, that the presence of M. extorquens lowers those concentrations. We also uncovered unexpected ecological dynamics, including resource competition, and interspecies differences in growth requirements and toxin sensitivities. Finally, we introduced the possibility for a mutualistic interaction between C. fimi and M. extorquens through metabolite exchange. This study lays the foundation to enable future work incorporating metabolomic analysis and modeling, genetic engineering, and laboratory evolution, on a model system that is appropriate both for fundamental eco-evolutionary studies and for the optimization of efficiency and yield in microbially-mediated biomass transformation.
Collapse
Affiliation(s)
- Jessica A. Lee
- NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| | - Alyssa C. Baugh
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Nicholas J. Shevalier
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Brandi Strand
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Sergey Stolyar
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
5
|
Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc Natl Acad Sci U S A 2020; 117:32358-32369. [PMID: 33273114 PMCID: PMC7768705 DOI: 10.1073/pnas.2016380117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Siderophore secretion confers competitive advantage to pathogenic and beneficial bacteria in various nutritional environments, including human infections and rhizosphere microbiome. The siderophore biosynthesis must be sustained during a compromised carbon metabolism in Fe-deficient cells. Here we demonstrate that Fe-deficient Pseudomonas species overcome this paradox by coupling selectivity in carbon utilization with a hierarchy in metabolic pathways to favor carbon and energy fluxes for siderophore biosynthesis. A reprogrammed metabolism is predicted from genomics-based data obtained with several marine and soil bacterial systems in response to Fe deficiency, but metabolomics evidence is lacking. The present study offers an important roadmap for investigating the underlying metabolic connections between Fe or other metal nutrient availability and carbon utilization. High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood. Here, through multiple 13C-metabolomics experiments with Fe-replete and Fe-limited cells, we uncover how soil Pseudomonas species reprogram their metabolic pathways to prioritize siderophore biosynthesis. Across the three species investigated (Pseudomonas putida KT2440, Pseudomonas protegens Pf-5, and Pseudomonas putida S12), siderophore secretion is higher during growth on gluconeogenic substrates than during growth on glycolytic substrates. In response to Fe limitation, we capture decreased flux toward the tricarboxylic acid (TCA) cycle during the metabolism of glycolytic substrates but, due to carbon recycling to the TCA cycle via enhanced anaplerosis, the metabolism of gluconeogenic substrates results in an increase in both siderophore secretion (up to threefold) and Fe extraction (up to sixfold) from soil minerals. During simultaneous feeding on the different substrate types, Fe deficiency triggers a hierarchy in substrate utilization, which is facilitated by changes in protein abundances for substrate uptake and initial catabolism. Rerouted metabolism further promotes favorable fluxes in the TCA cycle and the gluconeogenesis–anaplerosis nodes, despite decrease in several proteins in these pathways, to meet carbon and energy demands for siderophore precursors in accordance with increased proteins for siderophore biosynthesis. Hierarchical carbon metabolism thus serves as a critical survival strategy during the metal nutrient deficiency.
Collapse
|
6
|
Timmusk S, Nevo E, Ayele F, Noe S, Niinemets Ü. Fighting Fusarium Pathogens in the Era of Climate Change: A Conceptual Approach. Pathogens 2020; 9:E419. [PMID: 32481503 PMCID: PMC7350334 DOI: 10.3390/pathogens9060419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fusarium head blight (FHB) caused by Fusarium pathogens is one of the most devastating fungal diseases of small grain cereals worldwide, substantially reducing yield quality and food safety. Its severity is increasing due to the climate change caused by weather fluctuations. Intensive research on FHB control methods has been initiated more than a decade ago. Since then, the environment has been rapidly changing at regional to global scales due to increasing anthropogenic emissions enhanced fertilizer application and substantial changes in land use. It is known that environmental factors affect both the pathogen virulence as well as plant resistance mechanisms. Changes in CO2 concentration, temperature, and water availability can have positive, neutral, or negative effects on pathogen spread depending on the environmental optima of the pathosystem. Hence, there is a need for studies of plant-pathogen interactions in current and future environmental context. Long-term monitoring data are needed in order to understand the complex nature of plants and its microbiome interactions. We suggest an holobiotic approach, integrating plant phyllosphere microbiome research on the ecological background. This will enable the development of efficient strategies based on ecological know-how to fight Fusarium pathogens and maintain sustainable agricultural systems.
Collapse
Affiliation(s)
- Salme Timmusk
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden;
- Bashan Institute of Science, 1730 Post Oak Ct, Auburn, AL 36830, USA
| | - Eviatar Nevo
- International Graduate Centre of Evolution, University of Haifa, Haifa 3498838, Israel;
- National Academy of Sciences, Washington, DC 20418, USA
| | - Fantaye Ayele
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden;
- Ethiopian Biotechnology Institute, Addis Ababa 60002, Ethiopia
| | - Steffen Noe
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, 51006 Tartu, Estonia; (S.N.); (Ü.N.)
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, 51006 Tartu, Estonia; (S.N.); (Ü.N.)
- Estonian Academy of Sciences, 10131 Tallinn, Estonia
| |
Collapse
|
7
|
Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate. WATER 2020. [DOI: 10.3390/w12010140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, a multifaceted approach for selecting the suitable candidates for bioaugmentation of activated sludge (AS) that supports leachate treatment was used. To determine the exploitation of 10 bacterial strains isolated from the various matrices for inoculating the AS contaminated with the Kalina pond leachate (KPL), their degradative potential was analyzed along with their aptitude to synthesize compounds improving remediation of pollutants in wastewater and ability to incorporate into the AS flocs. Based on their capability to degrade aromatic compounds (primarily catechol, phenol, and cresols) at a concentration of 1 mg/mL and survive in 12.5% of the KPL, Pseudomonas putida OR45a and P. putida KB3 can be considered to be the best candidates for bioaugmentation of the AS among all of the bacteria tested. Genomic analyses of these two strains revealed the presence of the genes encoding enzymes related to the metabolism of aromatic compounds. Additionally, both microorganisms exhibited a high hydrophobic propensity (above 50%) and an ability to produce biosurfactants as well as high resistance to ammonium (above 600 µg/mL) and heavy metals (especially chromium). These properties enable the exploitation of both bacterial strains in the bioremediation of the AS contaminated with the KPL.
Collapse
|
8
|
Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress. J Bacteriol 2019; 201:JB.00454-19. [PMID: 31451546 DOI: 10.1128/jb.00454-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
Iron is essential for most life forms. Under iron-limiting conditions, many bacteria produce and release siderophores-molecules with high affinity for iron-which are then transported into the cell in their iron-bound form, allowing incorporation of the metal into a wide range of cellular processes. However, free iron can also be a source of reactive oxygen species that cause DNA, protein, and lipid damage. Not surprisingly, iron capture is finely regulated and linked to oxidative-stress responses. Here, we provide evidence indicating that in the plant-beneficial bacterium Pseudomonas putida KT2440, the amino acid l-arginine is a metabolic connector between iron capture and oxidative stress. Mutants defective in arginine biosynthesis show reduced production and release of the siderophore pyoverdine and altered expression of certain pyoverdine-related genes, resulting in higher sensitivity to iron limitation. Although the amino acid is not part of the siderophore side chain, addition of exogenous l-arginine restores pyoverdine release in the mutants, and increased pyoverdine production is observed in the presence of polyamines (agmatine and spermidine), of which arginine is a precursor. Spermidine also has a protective role against hydrogen peroxide in P. putida, whereas defects in arginine and pyoverdine synthesis result in increased production of reactive oxygen species.IMPORTANCE The results of this study show a previously unidentified connection between arginine metabolism, siderophore turnover, and oxidative stress in Pseudomonas putida Although the precise molecular mechanisms involved have yet to be characterized in full detail, our data are consistent with a model in which arginine biosynthesis and the derived pathway leading to polyamine production function as a homeostasis mechanism that helps maintain the balance between iron uptake and oxidative-stress response systems.
Collapse
|
9
|
Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metab Eng 2018; 47:463-474. [PMID: 29751103 DOI: 10.1016/j.ymben.2018.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 11/22/2022]
Abstract
Pseudomonas putida has gained much interest among metabolic engineers as a workhorse for producing valuable natural products. While a few gene knockout tools for P. putida have been reported, integration of heterologous genes into the chromosome of P. putida, an essential strategy to develop stable industrial strains producing heterologous bioproducts, requires development of a more efficient method. Current methods rely on time-consuming homologous recombination techniques and transposon-mediated random insertions. Here we report a RecET recombineering system for markerless integration of heterologous genes into the P. putida chromosome. The efficiency and capacity of the recombineering system were first demonstrated by knocking out various genetic loci on the P. putida chromosome with knockout lengths widely spanning 0.6-101.7 kb. The RecET recombineering system developed here allowed successful integration of biosynthetic gene clusters for four proof-of-concept bioproducts, including protein, polyketide, isoprenoid, and amino acid derivative, into the target genetic locus of P. putida chromosome. The markerless recombineering system was completed by combining Cre/lox system and developing efficient plasmid curing systems, generating final strains free of antibiotic markers and plasmids. This markerless recombineering system for efficient gene knockout and integration will expedite metabolic engineering of P. putida, a bacterial host strain of increasing academic and industrial interest.
Collapse
|
10
|
Chignell JF, Park S, Lacerda CMR, De Long SK, Reardon KF. Label-Free Proteomics of a Defined, Binary Co-culture Reveals Diversity of Competitive Responses Between Members of a Model Soil Microbial System. MICROBIAL ECOLOGY 2018; 75:701-719. [PMID: 28975425 DOI: 10.1007/s00248-017-1072-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Interactions among members of microbial consortia drive the complex dynamics in soil, gut, and biotechnology microbiomes. Proteomic analysis of defined co-cultures of well-characterized species provides valuable information about microbial interactions. We used a label-free approach to quantify the responses to co-culture of two model bacterial species relevant to soil and rhizosphere ecology, Bacillus atrophaeus and Pseudomonas putida. Experiments determined the ratio of species in co-culture that would result in the greatest number of high-confidence protein identifications for both species. The 281 and 256 proteins with significant shifts in abundance for B. atrophaeus and P. putida, respectively, indicated responses to co-culture in overall metabolism, cell motility, and response to antagonistic compounds. Proteins associated with a virulent phenotype during surface-associated growth were significantly more abundant for P. putida in co-culture. Co-culture on agar plates triggered a filamentous phenotype in P. putida and avoidance of P. putida by B. atrophaeus colonies, corroborating antagonistic interactions between these species. Additional experiments showing increased relative abundance of P. putida under conditions of iron or zinc limitation and increased relative abundance of B. atrophaeus under magnesium limitation were consistent with patterns of changes in abundance of metal-binding proteins during co-culture. These results provide details on the nature of interactions between two species with antagonistic capabilities. Significant challenges remaining for the development of proteomics as a tool in microbial ecology include accurate quantification of low-abundance peptides, especially from rare species present at low relative abundance in a consortium.
Collapse
Affiliation(s)
- J F Chignell
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - S Park
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - C M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - S K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - K F Reardon
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA.
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
Sharma R, Bhardwaj R, Gautam V, Kohli SK, Kaur P, Bali RS, Saini P, Thukral AK, Arora S, Vig AP. Microbial Siderophores in Metal Detoxification and Therapeutics: Recent Prospective and Applications. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Wu Y, Arumugam K, Tay MQX, Seshan H, Mohanty A, Cao B. Comparative genome analysis reveals genetic adaptation to versatile environmental conditions and importance of biofilm lifestyle in Comamonas testosteroni. Appl Microbiol Biotechnol 2015; 99:3519-32. [PMID: 25786738 DOI: 10.1007/s00253-015-6519-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/06/2023]
Abstract
Comamonas testosteroni is an important environmental bacterium capable of degrading a variety of toxic aromatic pollutants and has been demonstrated to be a promising biocatalyst for environmental decontamination. This organism is often found to be among the primary surface colonizers in various natural and engineered ecosystems, suggesting an extraordinary capability of this organism in environmental adaptation and biofilm formation. The goal of this study was to gain genetic insights into the adaption of C. testosteroni to versatile environments and the importance of a biofilm lifestyle. Specifically, a draft genome of C. testosteroni I2 was obtained. The draft genome is 5,778,710 bp in length and comprises 110 contigs. The average G+C content was 61.88 %. A total of 5365 genes with 5263 protein-coding genes were predicted, whereas 4324 (80.60 % of total genes) protein-encoding genes were associated with predicted functions. The catabolic genes responsible for biodegradation of steroid and other aromatic compounds on draft genome were identified. Plasmid pI2 was found to encode a complete pathway for aniline degradation and a partial catabolic pathway for chloroaniline. This organism was found to be equipped with a sophisticated signaling system which helps it find ideal niches and switch between planktonic and biofilm lifestyles. A large number of putative multi-drug-resistant genes coding for abundant outer membrane transporters, chaperones, and heat shock proteins for the protection of cellular function were identified in the genome of strain I2. In addition, the genome of strain I2 was predicted to encode several proteins involved in producing, secreting, and uptaking siderophores under iron-limiting conditions. The genome of strain I2 contains a number of genes responsible for the synthesis and secretion of exopolysaccharides, an extracellular component essential for biofilm formation. Overall, our results reveal the genomic features underlying the adaption of C. testosteroni to versatile environments and highlighting the importance of its biofilm lifestyle.
Collapse
Affiliation(s)
- Yichao Wu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | | | | | | | | | | |
Collapse
|