1
|
Ansari MS, Zohib M, Kumari M, Yadav V, Pal RK, Tripathi S, Jain A, Biswal BK, Arora A. Structural and biophysical characterization of PadR family protein Rv0047c of Mycobacterium tuberculosis H37Rv. J Struct Biol 2025; 217:108211. [PMID: 40403899 DOI: 10.1016/j.jsb.2025.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/22/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
The members of the PadR family of transcriptional regulators are important for cell survival in toxic environments and play an important role in detoxification, pathogenicity, and multi-drug resistance. Rv0047c of Mycobacterium tuberculosis H37Rv is annotated as a PadR family protein. We have characterized the stability and structure of Rv0047c. Rv0047c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 55.3 °C. The crystal structure of Rv0047c was determined at a resolution of 3.15 Å. The structure indicates the biological unit to be a dimer with each monomer having a characteristic N-terminal winged-helix-turn-helix DNA binding domain and a C-terminal dimerization domain. The N-terminal domain is composed of four helices, α1, α2, α3, and α4 and two beta strands β1 and β2. The C-terminal dimerization domain (CTD) consists two long helices α6 and α7. The two domains are connected by helix α5. A short helical turn (helix αa, residue 89-92), leads to compaction of the α4-α5 loop. Rv0047c exhibits specificity in binding to an upstream region having an inverted repeat sequence. This binding is dependent upon Y18 and Y40 residue of Rv0047c, which are highly conserved among the PadR family. Overall, our results suggest a transcription regulatory role for Rv0047c, similar to other PadR family proteins.
Collapse
Affiliation(s)
- Md Samsuddin Ansari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Zohib
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera Kumari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vikash Yadav
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi Kant Pal
- X-ray Crystallography Facility, National Institute of Immunology, New Delhi 110067, India
| | - Sarita Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anupam Jain
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bichitra Kumar Biswal
- X-ray Crystallography Facility, National Institute of Immunology, New Delhi 110067, India
| | - Ashish Arora
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Yan J, Zhang Z, Shi H, Xue X, Li A, Liu F, Ding P, Guo X, Cao B. The effects of PstR, a PadR family transcriptional regulatory factor, in Plesiomonas shigelloides are revealed by transcriptomics. BMC Microbiol 2024; 24:479. [PMID: 39548383 PMCID: PMC11566425 DOI: 10.1186/s12866-024-03639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Plesiomonas shigelloides is a gram-negative opportunistic pathogen associated with gastrointestinal and extraintestinal diseases in humans. There have been reports of specific functional genes in the study of P. shigelloides, but there are also many unknown genes that may play a role in P. shigelloides pathogenesis as global regulatory proteins or virulence factors. RESULTS In this study, we found a transcriptional regulator of the PadR family in P. shigelloides and named it PstR (GenBank accession number: EON87311.1), which is present in various pathogenic bacteria but whose function has rarely been reported. RNA sequencing (RNA-Seq) was used to analyze the effects of PstR on P. shigelloides, and the results indicated that PstR regulates approximately 9.83% of the transcriptome, which includes impacts on motility, virulence, and physiological metabolism. RNA-seq results showed that PstR positively regulated the expression of the flagella gene cluster, which was also confirmed by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Luminescence screening assay. Meanwhile, the ΔpstR mutant strains lacked flagella and were non-motile, as confirmed by motility assays and transmission electron microscopy (TEM). Additionally, PstR also positively regulates T3SS expression, which aids in P. shigelloides' capacity to infect Caco-2 cells. Meanwhile, we also revealed that PstR negatively regulates fatty acid degradation and metabolism, as well as the regulatory relationship between PsrA, a regulator of fatty acid degradation and metabolism, and its downstream genes in P. shigelloides. CONCLUSIONS Overall, we revealed the effects of PstR on motility, virulence, and physiological metabolism in P. shigelloides, which will serve as a foundation for future research into the intricate regulatory network of PstR in bacteria.
Collapse
Affiliation(s)
- Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Zixu Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Hongdan Shi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xinke Xue
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Fenxia Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Peng Ding
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China.
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China.
| |
Collapse
|
3
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Yadav V, Zohib M, Singh S, Pal RK, Tripathi S, Jain A, Biswal BK, Dasgupta A, Arora A. Structural and biophysical characterization of PadR family protein Rv1176c of Mycobacterium tuberculosis H37Rv. Int J Biol Macromol 2024; 263:130455. [PMID: 38417748 DOI: 10.1016/j.ijbiomac.2024.130455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Rv1176c of Mycobacterium tuberculosis H37Rv belongs to the PadR-s1 subfamily of the PadR family of protein. Rv1176c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 39.4 °C. The crystal structure of Rv1176c was determined at a resolution of 2.94 Å, with two monomers in the asymmetric unit. Each monomer has a characteristic N-terminal winged-helix-turn-helix DNA-binding domain. Rv1176c C-terminal is a coiled-coil dimerization domain formed of α-helices α5 to α7. In the Rv1176c dimer, there is domain-swapping of the C-terminal domain in comparison to other PadR homologs. In the dimer, there is a long inter-subunit tunnel in which different ligands can bind. Rv1176c was found to bind to the promoter region of its own gene with high specificity. M. smegmatis MC2 155 genome lacks homolog of Rv1176c. Therefore, it was used as a surrogate to characterize the functional role of Rv1176c. Expression of Rv1176c in M. smegmatis MC2 155 cells imparted enhanced tolerance towards oxidative stress. Rv1176c expressing M. smegmatis MC2 155 cells exhibited enhanced intracellular survival in J774A.1 murine macrophage cells. Overall, our studies demonstrate Rv1176c to be a PadR-s1 subfamily transcription factor that can moderate the effect of oxidative stress.
Collapse
Affiliation(s)
- Vikash Yadav
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Zohib
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Kant Pal
- X-ray Crystallography Facility, National Institute of Immunology, New Delhi 110067, India
| | - Sarita Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anupam Jain
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bichitra Kumar Biswal
- X-ray Crystallography Facility, National Institute of Immunology, New Delhi 110067, India
| | - Arunava Dasgupta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Arora
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Zhang J, Wu YF, Tang ST, Chen J, Rosen BP, Zhao FJ. A PadR family transcriptional repressor controls transcription of a trivalent metalloid resistance operon of Azospirillum halopraeferens strain Au 4. Environ Microbiol 2022; 24:5139-5150. [PMID: 35880613 DOI: 10.1111/1462-2920.16147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Methylarsenite [MAs(III)] is a highly toxic arsenical produced by some microbes as an antibiotic. In this study, we demonstrate that a PadR family transcriptional regulator, PadRars , from Azospirillum halopraeferens strain Au 4 directly binds to the promoter region of the arsenic resistance (ars) operon (consisting of padRars , arsV, and arsW) and represses transcription of arsV and arsW genes involved in MAs(III) resistance. Quantitative reverse transcriptase PCR and transcriptional reporter assays showed that transcription of the ars operon is induced strongly by MAs(III) and less strongly by arsenite and antimonite. Electrophoretic mobility shift assays with recombinant PadRars showed that it represses transcription of the ars operon by binding to two inverted-repeat sequences within the ars promoter. PadRars has two conserved cysteine pairs, Cys56/57 and Cys133/134; mutation of the first pair to serine abolished the transcriptional response of the ars operon to trivalent metalloids, suggesting that Cys56/57 form a binding site for trivalent metalloids. Either C133S or C134S derivative responses to MAs(III) but not As(III) or Sb(III), suggesting that it is a third ligand to trivalent metalloids. PadRars represents a new type of repressor proteins regulating transcription of an ars operon involved in the resistance to trivalent metalloids, especially MAs(III). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi-Fei Wu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shi-Tong Tang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Characterization of the DNA Binding Domain of StbA, A Key Protein of A New Type of DNA Segregation System. J Mol Biol 2022; 434:167752. [PMID: 35868361 DOI: 10.1016/j.jmb.2022.167752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Low-copy-number plasmids require sophisticated genetic devices to achieve efficient segregation of plasmid copies during cell division. Plasmid R388 uses a unique segregation mechanism, based on StbA, a small multifunctional protein. StbA is the key protein in a segregation system not involving a plasmid-encoded NTPase partner, it regulates the expression of several plasmid operons, and it is the main regulator of plasmid conjugation. The mechanisms by which StbA, together with the centromere-like sequence stbS, achieves segregation, is largely uncharacterized. To better understand the molecular basis of R388 segregation, we determined the crystal structure of the conserved N-terminal domain of StbA to 1.9 Å resolution. It folds into an HTH DNA-binding domain, structurally related to that of the PadR subfamily II of transcriptional regulators. StbA is organized in two domains. Its N-terminal domain carries the specific stbS DNA binding activity. A truncated version of StbA, deleted of its C-terminal domain, displays only partial activities in vivo, indicating that the non-conserved C-terminal domain is required for efficient segregation and subcellular plasmid positioning. The structure of StbA DNA-binding domain also provides some insight into how StbA monomers cooperate to repress transcription by binding to the stbDR and to form the segregation complex with stbS.
Collapse
|
7
|
McMillan IA, Norris MH, Zarzycki-Siek J, Heacock-Kang Y, Sun Z, Borlee BR, Hoang TT. Identification of a PadR-type regulator essential for intracellular pathogenesis of Burkholderia pseudomallei. Sci Rep 2021; 11:10405. [PMID: 34001967 PMCID: PMC8128862 DOI: 10.1038/s41598-021-89852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease endemic to the tropics. Melioidosis manifests in various ways ranging from acute skin lesions to pneumonia and, in rare cases, infection of the central nervous system. Bp is a facultative intracellular pathogen and it can infect various cell types. The Bp intracellular lifecycle has been partially elucidated and is highly complex. Herein, we have identified a transcriptional regulator, BP1026B_II1198, that is differentially expressed as Bp transits through host cells. A deletion mutant of BP1026B_II1198 was attenuated in RAW264.7 cell and BALB/c mouse infection. To further characterize the function of this transcriptional regulator, we endeavored to determine the regulon of BP1026B_II1198. RNA-seq analysis showed the global picture of genes regulated while ChIP-seq analysis identified two specific BP1026B_II1198 binding regions on chromosome II. We investigated the transposon mutants of these genes controlled by BP1026B_II1198 and confirmed that these genes contribute to pathogenesis in RAW264.7 murine macrophage cells. Taken together, the data presented here shed light on the regulon of BP1026B_II1198 and its role during intracellular infection and highlights an integral portion of the highly complex regulation network of Bp during host infection.
Collapse
Affiliation(s)
- Ian A McMillan
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Michael H Norris
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Yun Heacock-Kang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Zhenxin Sun
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Bradley R Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tung T Hoang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
| |
Collapse
|
8
|
Jiang T, Li C, Yan Y. Optimization of a p-Coumaric Acid Biosensor System for Versatile Dynamic Performance. ACS Synth Biol 2021; 10:132-144. [PMID: 33378169 DOI: 10.1021/acssynbio.0c00500] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metabolic engineering is a promising approach for the synthesis of valuable compounds. Transcriptional factor-based biosensors are efficient tools to regulate the metabolic pathway dynamically. Here, we engineered the p-coumaric acid responsive regulator PadR from Bacillus subtilis. We found that yveF and yveG, two previously uncharacterized components in the sensor system, showed positive impacts on the regulation of PadR-PpadC sensor system, mostly on assisting the release of the repression by PadR. By site directed PadR engineering, we obtained two mutants, K64A and H38A, which exhibited increased dynamic range and superior sensitivity. To increase the promoter strength of the sensor system and investigate whether the PadR binding boxes can function in a "plug-and-play" manner, a series of hybrid promoters were constructed. Four of them, P1, P2, P7, and P9, showed increased strength compared to PpadC and can be regulated by PadR and p-coumaric acid. The PadR variants and hybrid promoters obtained in this paper would expand the applicability of this sensor system in future metabolic engineering research.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Park SC, Song WS, Yoon SI. Apo structure of the transcriptional regulator PadR from Bacillus subtilis: Structural dynamics and conserved Y70 residue. Biochem Biophys Res Commun 2020; 530:215-221. [PMID: 32828288 DOI: 10.1016/j.bbrc.2020.06.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/24/2022]
Abstract
PadR is a bacterial transcriptional regulator that controls the expression of phenolic acid decarboxylase (PadC) in response to phenolic acids to prevent their toxic effects. During transcriptional repression, PadR associates with the operator sequence at the promoter site of the padC gene. However, when phenolic acids are present, PadR directly binds the phenolic acids and undergoes an interdomain rearrangement to dissociate from the operator DNA. To further examine the structural dynamics of PadR, we determined the apo structure of Bacillus subtilis PadR. Apo-PadR exhibits significant interdomain flexibility and adopts structures that are similar to the phenolic acid-bound PadR structures but distinct from the DNA-bound structure, suggesting that apo-PadR can bind phenolic acids without substantial structural rearrangement. Furthermore, we identified the Y70 residue of PadR as the most conserved residue in the PadR family. PadR Y70 displays similar conformations irrespective of the associated partners, and its conformation is conserved in diverse PadR family members. The Y70 residue is surrounded by the key DNA-binding entities of PadR and is required to optimally arrange them for operator DNA recognition by PadR. PadR Y70 also plays a critical role in protein stability based on the results of a denaturation assay. These observations suggest that PadR Y70 is a canonical residue of the PadR family that contributes to protein stability and DNA binding.
Collapse
Affiliation(s)
- Sun Cheol Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Kormanec J, Novakova R, Csolleiova D, Feckova L, Rezuchova B, Sevcikova B, Homerova D. The antitumor antibiotic mithramycin: new advanced approaches in modification and production. Appl Microbiol Biotechnol 2020; 104:7701-7721. [DOI: 10.1007/s00253-020-10782-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
|
11
|
Zabala D, Song L, Dashti Y, Challis GL, Salas JA, Méndez C. Heterologous reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, the aglycon of antitumor polyketide mithramycin. Microb Cell Fact 2020; 19:111. [PMID: 32448325 PMCID: PMC7247220 DOI: 10.1186/s12934-020-01368-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mithramycin is an anti-tumor compound of the aureolic acid family produced by Streptomyces argillaceus. Its biosynthesis gene cluster has been cloned and characterized, and several new analogs with improved pharmacological properties have been generated through combinatorial biosynthesis. To further study these compounds as potential new anticancer drugs requires their production yields to be improved significantly. The biosynthesis of mithramycin proceeds through the formation of the key intermediate 4-demethyl-premithramycinone. Extensive studies have characterized the biosynthesis pathway from this intermediate to mithramycin. However, the biosynthesis pathway for 4-demethyl-premithramycinone remains unclear. RESULTS Expression of cosmid cosAR7, containing a set of mithramycin biosynthesis genes, in Streptomyces albus resulted in the production of 4-demethyl-premithramycinone, delimiting genes required for its biosynthesis. Inactivation of mtmL, encoding an ATP-dependent acyl-CoA ligase, led to the accumulation of the tricyclic intermediate 2-hydroxy-nogalonic acid, proving its essential role in the formation of the fourth ring of 4-demethyl-premithramycinone. Expression of different sets of mithramycin biosynthesis genes as cassettes in S. albus and analysis of the resulting metabolites, allowed the reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, assigning gene functions and establishing the order of biosynthetic steps. CONCLUSIONS We established the biosynthesis pathway for 4-demethyl-premithramycinone, and identified the minimal set of genes required for its assembly. We propose that the biosynthesis starts with the formation of a linear decaketide by the minimal polyketide synthase MtmPKS. Then, the cyclase/aromatase MtmQ catalyzes the cyclization of the first ring (C7-C12), followed by formation of the second and third rings (C5-C14; C3-C16) catalyzed by the cyclase MtmY. Formation of the fourth ring (C1-C18) requires MtmL and MtmX. Finally, further oxygenation and reduction is catalyzed by MtmOII and MtmTI/MtmTII respectively, to generate the final stable tetracyclic intermediate 4-demethyl-premithramycinone. Understanding the biosynthesis of this compound affords enhanced possibilities to generate new mithramycin analogs and improve their production titers for bioactivity investigation.
Collapse
Affiliation(s)
- Daniel Zabala
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Yousef Dashti
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
12
|
Zhang Y, Zhang W, Han L, Li J, Shi X, Hikichi Y, Ohnishi K. Involvement of a PadR regulator PrhP on virulence of Ralstonia solanacearum by controlling detoxification of phenolic acids and type III secretion system. MOLECULAR PLANT PATHOLOGY 2019; 20:1477-1490. [PMID: 31392803 PMCID: PMC6804342 DOI: 10.1111/mpp.12854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ralstonia solanacearum can metabolize ferulic acid (FA) and salicylic acid (SA), two representative phenolic acids, to protect it from toxicity of phenolic acids. Here, we genetically demonstrated a novel phenolic acid decarboxylase regulator (PadR)-like regulator PrhP as a positive regulator on detoxification of SA and FA in R. solanacearum. Although the ability to degrade SA and FA enhances the infection process of R. solanacearum toward host plants, PrhP greatly contributes to the infection process besides degradation of SA and FA. Our results from the growth assay, promoter activity assay, RNA-seq and qRT-PCR revealed that PrhP plays multiple roles in the virulence of R. solanacearum: (1) positively regulates expression of genes for degradation of SA and FA; (2) positively regulates expression of genes encoding type III secretion system (T3SS) and type III effectors both in vitro and in planta; (3) positively regulates expression of many virulence-related genes, such as the flagella, type IV pili and cell wall degradation enzymes; and (4) is important for the extensive proliferation in planta. The T3SS is one of the essential pathogenicity determinants in many pathogenic bacteria, and PrhP positively regulates its expression mediated with the key regulator HrpB but through some novel pathway to HrpB in R. solanacearum. This is the first report on PadR regulators to regulate the T3SS and it could improve our understanding of the various biological functions of PadR regulators and the complex regulatory pathway on T3SS in R. solanacearum.
Collapse
Affiliation(s)
- Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Key Laboratory of Efficient Utilization of Soil and Fertilizer ResourcesChongqing
| | - Weiqi Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Liangliang Han
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Research Institute of Molecular Genetics, Kochi UniversityKochiJapan
| | - Jing Li
- The Ninth Peoples Hospital of ChongqingChongqingChina
| | - Xiaojun Shi
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Key Laboratory of Efficient Utilization of Soil and Fertilizer ResourcesChongqing
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityKochiJapan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi UniversityKochiJapan
| |
Collapse
|
13
|
Structural and DNA-binding studies of the PadR-like transcriptional regulator BC1756 from Bacillus cereus. Biochem Biophys Res Commun 2019; 515:607-613. [PMID: 31178139 DOI: 10.1016/j.bbrc.2019.05.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023]
Abstract
Transcription factors that belong to the PadR family play an essential role in the transcriptional regulation of diverse biological processes by recognizing their cognate palindromic DNA sequences. Bacillus cereus harbors a gene that encodes a PadR-like protein (bcPLP; BC1756). bcPLP has not been structurally characterized, and it remains unelucidated how bcPLP interacts with a specific DNA sequence to function as a transcription factor. To provide structural insights into DNA recognition by bcPLP, we performed a structural study and a DNA-binding analysis of bcPLP. The crystal structure of bcPLP was determined at 1.92 Å resolution. bcPLP consists of two domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), and forms a homodimer mainly using the CTD. In the structure, bcPLP contains a highly positively charged elongated patch in the NTD that serves as a putative DNA-binding site. Indeed, an electrophoresis mobility shift assay and a fluorescence polarization assay showed that bcPLP specifically recognizes a palindromic DNA sequence upstream of the bcPLP-encoding region. Moreover, based on our mutagenesis and modeling studies, we demonstrate that bcPLP interacts with dsDNA primarily using the Y19, Y41, P64, and K66 residues in the NTD.
Collapse
|
14
|
Structural and functional characterization of the transcriptional regulator Rv3488 of Mycobacterium tuberculosis H37Rv. Biochem J 2018; 475:3393-3416. [DOI: 10.1042/bcj20180356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Rv3488 of Mycobacterium tuberculosis H37Rv has been assigned to the phenolic acid decarboxylase repressor (PadR) family of transcriptional regulators that play key roles in multidrug resistance and virulence of prokaryotes. The binding of cadmium, zinc, and several other metals to Rv3488 was discovered and characterized by isothermal titration calorimetery to be an exothermic process. Crystal structures of apo-Rv3488 and Rv3488 in complex with cadmium or zinc ions were determined by X-ray crystallography. The structure of Rv3488 revealed a dimeric protein with N-terminal winged-helix-turn-helix DNA-binding domains composed of helices α1, α2, α3, and strands β1 and β2, with the dimerization interface being formed of helices α4 and α1. The overall fold of Rv3488 was similar to PadR-s2 and metal sensor transcriptional regulators. In the crystal structure of Rv3488–Cd complex, two octahedrally coordinated Cd2+ ions were present, one for each subunit. The same sites were occupied by zinc ions in the structure of Rv3488–Zn, with two additional zinc ions complexed in one monomer. EMSA studies showed specific binding of Rv3488 with its own 30-bp promoter DNA. The functional role of Rv3488 was characterized by expressing the rv3488 gene under the control of hsp60 promoter in Mycobacterium smegmatis. Expression of Rv3488 increased the intracellular survival of recombinant M. smegmatis in murine macrophage cell line J774A.1 and also augmented its tolerance to Cd2+ ions. Overall, the studies show that Rv3488 may have transcription regulation and metal-detoxifying functions and its expression in M. smegmatis increases intracellular survival, perhaps by counteracting toxic metal stress.
Collapse
|
15
|
Kwak YM, Park SC, Na H, Kang SG, Lee G, Ko H, Kim P, Oh B, Yoon S. Crystal structure of the VanR transcription factor and the role of its unique α‐helix in effector recognition. FEBS J 2018; 285:3786-3800. [DOI: 10.1111/febs.14629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yun Mi Kwak
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Sun Cheol Park
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Hye‐won Na
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Geun‐Shik Lee
- College of Veterinary Medicine Kangwon National University Chuncheon Korea
| | - Hyun‐Jeong Ko
- Laboratory of Microbiology and Immunology College of Pharmacy Kangwon National University Chuncheon Korea
| | - Pyeung‐Hyeun Kim
- Department of Molecular Bioscience School of Biomedical Science Kangwon National University Chuncheon Korea
| | - Byung‐Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute College of Medicine Gachon University Incheon Korea
| | - Sung‐il Yoon
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
- Institute of Bioscience and Biotechnology Kangwon National University Chuncheon Korea
| |
Collapse
|
16
|
Vatlin AA, Bekker OB, Lysenkova LN, Shchekotikhin AE, Danilenko VN. A functional study of the global transcriptional regulator PadR from a strain Streptomyces fradiae-nitR+bld, resistant to nitrone-oligomycin. J Basic Microbiol 2018; 58:739-746. [PMID: 29963725 DOI: 10.1002/jobm.201800095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/20/2018] [Accepted: 06/09/2018] [Indexed: 01/30/2023]
Abstract
We describe Streptomyces fradiae mechanisms of sensitivity to nitrone-oligomycin A, a derivative of oligomycin A. We obtained S. fradiae-nitR+ bld, a nitrone-oligomycin A resistant mutant with a «bald» phenotype. Comparative genomic analysis of the wild-type S. fradiae ATCC19609 and S. fradiae-nitR+ bld revealed a mutation in padR - a gene encoding a multifunction transcription regulator, which resulted in the amino acid replacement in a highly conserved DNA-binding domain. Bioinformatics genome analysis of S. fradiae ATCC19609 discovered a PadR binding site 13 bp upstream the start codon of the marR transcription factor gene. Induction of S. fradiaenitR+ bld and w.t. strains with nitrone-oligomycin A lead to a significant increase in expression level of the marR gene in the w.t. strain, but no change observed in mutant strain. We identified differences between DNA-protein interactions of the mutant and native PadR proteins with its putative binding site in S. fradiae ATCC19609. This allowed us to suggest that the padR gene, that harbored a single nucleotide mutation in the S. fradiaenitR+ bld strain, might be involved in the mechanism of resistance to nitrone-oligomycin A. We assume the participation of the transcriptional factorpadR in the formation of the bald phenotype.
Collapse
Affiliation(s)
- Aleksey A Vatlin
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Olga B Bekker
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | | | | | - Valery N Danilenko
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
18
|
Ye S, Braña AF, González-Sabín J, Morís F, Olano C, Salas JA, Méndez C. New Insights into the Biosynthesis Pathway of Polyketide Alkaloid Argimycins P in Streptomyces argillaceus. Front Microbiol 2018; 9:252. [PMID: 29503641 PMCID: PMC5820336 DOI: 10.3389/fmicb.2018.00252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Argimycins P are a recently identified family of polyketide alkaloids encoded by the cryptic gene cluster arp of Streptomyces argillaceus. These compounds contain either a piperideine ring, or a piperidine ring which may be fused to a five membered ring, and a polyene side chain, which is bound in some cases to an N-acetylcysteine moiety. The arp cluster consists of 11 genes coding for structural proteins, two for regulatory proteins and one for a hypothetical protein. Herein, we have characterized the post-piperideine ring biosynthesis steps of argimycins P through the generation of mutants in arp genes, the identification and characterization of compounds accumulated by those mutants, and cross-feeding experiments between mutants. Based in these results, a biosynthesis pathway is proposed assigning roles to every arp gene product. The regulation of the arp cluster is also addressed by inactivating/overexpressing the positive SARP-like arpRI and the negative TetR-like arpRII transcriptional regulators and determining the effect on argimycins P production, and through gene expression analyses (reverse transcription PCR and quantitative real-time PCR) of arp genes in regulatory mutants in comparison to the wild type strain. These findings will contribute to deepen the knowledge on the biosynthesis of piperidine-containing polyketides and provide tools that can be used to generate new analogs by genetic engineering and/or biocatalysis.
Collapse
Affiliation(s)
- Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | | | | | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
19
|
Park SC, Kwak YM, Song WS, Hong M, Yoon SI. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Nucleic Acids Res 2018; 45:13080-13093. [PMID: 29136175 PMCID: PMC5728393 DOI: 10.1093/nar/gkx1055] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
The PadR family is a large group of transcriptional regulators that function as environmental sensors. PadR negatively controls the expression of phenolic acid decarboxylase, which detoxifies harmful phenolic acids. To identify the mechanism by which PadR regulates phenolic acid-mediated gene expression, we performed structural and mutational studies of effector and operator recognition by Bacillus subtilis PadR. PadR contains an N-terminal winged helix-turn-helix (wHTH) domain (NTD) and a C-terminal homodimerization domain (CTD) and dimerizes into a dolmen shape. The PadR dimer interacts with the palindromic sequence of the operator DNA using the NTD. Two tyrosine residues and a positively charged residue in the NTD provide major DNA-binding energy and are highly conserved in the PadR family, suggesting that these three residues represent the canonical DNA-binding motif of the PadR family. PadR directly binds a phenolic acid effector molecule using a unique interdomain pocket created between the NTD and the CTD. Although the effector-binding site of PadR is positionally segregated from the DNA-binding site, effector binding to the interdomain pocket causes PadR to be rearranged into a DNA binding-incompatible conformer through an allosteric interdomain-reorganization mechanism.
Collapse
Affiliation(s)
- Sun Cheol Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yun Mi Kwak
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
20
|
Transcriptional Repressor PtvR Regulates Phenotypic Tolerance to Vancomycin in Streptococcus pneumoniae. J Bacteriol 2017; 199:JB.00054-17. [PMID: 28484041 DOI: 10.1128/jb.00054-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/26/2017] [Indexed: 02/05/2023] Open
Abstract
Reversible or phenotypic tolerance to antibiotics within microbial populations has been implicated in treatment failure of chronic infections and development of persister cells. However, the molecular mechanisms regulating phenotypic drug tolerance are largely unknown. In this study, we identified a four-gene operon in Streptococcus pneumoniae that contributes to phenotypic tolerance to vancomycin (ptv). RNA sequencing, quantiative reverse transcriptase PCR, and transcriptional luciferase reporter experiments revealed that transcription of the ptv operon (consisting of ptvR, ptvA, ptvB, and ptvC) is induced by exposure to vancomycin. Further investigation showed that transcription of the ptv operon is repressed by PtvR, a PadR family repressor. Transcriptional induction of the ptv operon by vancomycin was achieved by transcriptional derepression of this locus, which was mediated by PtvR. Importantly, fully derepressing ptvABC by deleting ptvR or overexpressing the ptv operon with an exogenous promoter significantly enhanced vancomycin tolerance. Gene deletion analysis revealed that PtvA, PtvB, and PtvC are all required for the PtvR-regulated phenotypic tolerance to vancomycin. Finally, the results of an electrophoretic mobility shift assay with recombinant PtvR showed that PtvR represses the transcription of the ptv operon by binding to two palindromic sequences within the ptv promoter. Together, the ptv locus represents an inducible system in S. pneumoniae in response to stressful conditions, including those caused by antibiotics.IMPORTANCE Reversible or phenotypic tolerance to antibiotics within microbial populations is associated with treatment failure of bacterial diseases, but the underlying mechanisms regulating phenotypic drug tolerance remain obscure. This study reports our finding of a multigene locus that contributes to inducible tolerance to vancomycin in Streptococcus pneumoniae, an important opportunistic human pathogen. The vancomycin tolerance phenotype depends on the PtvR transcriptional repressor and three predicted membrane-associated proteins encoded by the ptv locus. This represents the first example of a gene locus in S. pneumoniae that is responsible for antibiotic tolerance and has important implications for further understanding bacterial responses and phenotypic tolerance to antibiotic treatment in this and other pathogens.
Collapse
|
21
|
Draft Genome Sequence of Streptomyces fradiae olg1-1, a Strain Resistant to Nitrone-Oligomycin. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01252-15. [PMID: 26494685 PMCID: PMC4616192 DOI: 10.1128/genomea.01252-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report a draft genome sequence of Streptomyces fradiae olg1-1, a mutant strain derived from the model object S. fradiae ATCC 19609, which is resistant to nitrone-oligomycin and has a mutation in the DNA-binding domain of a transcriptional regulator PadR.
Collapse
|
22
|
Payero TD, Vicente CM, Rumbero Á, Barreales EG, Santos-Aberturas J, de Pedro A, Aparicio JF. Functional analysis of filipin tailoring genes from Streptomyces filipinensis reveals alternative routes in filipin III biosynthesis and yields bioactive derivatives. Microb Cell Fact 2015; 14:114. [PMID: 26246267 PMCID: PMC4527110 DOI: 10.1186/s12934-015-0307-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background Streptomyces filipinensis is the industrial producer of filipin, a pentaene macrolide, archetype of non-glycosylated polyenes, and widely used for the detection and the quantitation of cholesterol in biological membranes and as a tool for the diagnosis of Niemann–Pick type C disease. Genetic manipulations of polyene biosynthetic pathways have proven useful for the discovery of products with improved properties. Here, we describe the late biosynthetic steps for filipin III biosynthesis and strategies for the generation of bioactive filipin III derivatives at high yield. Results A region of 13,778 base pairs of DNA from the S. filipinensis genome was isolated, sequenced, and characterized. Nine complete genes and two truncated ORFs were located. Disruption of genes proved that this genomic region is part of the biosynthetic cluster for the 28-membered ring of the polyene macrolide filipin. This set of genes includes two cytochrome P450 monooxygenase encoding genes, filC and filD, which are proposed to catalyse specific hydroxylations of the macrolide ring at C26 and C1′ respectively. Gene deletion and complementation experiments provided evidence for their role during filipin III biosynthesis. Filipin III derivatives were accumulated by the recombinant mutants at high yield. These have been characterized by mass spectrometry and nuclear magnetic resonance following high-performance liquid chromatography purification thus revealing the post-polyketide steps during polyene biosynthesis. Two alternative routes lead to the formation of filipin III from the initial product of polyketide synthase chain assembly and cyclization filipin I, one trough filipin II, and the other one trough 1′-hydroxyfilipin I, all filipin III intermediates being biologically active. Moreover, minimal inhibitory concentration values against Candida utilis and Saccharomyces cerevisiae were obtained for all filipin derivatives, finding that 1′-hydroxyfilipin and especially filipin II show remarkably enhanced antifungal bioactivity. Complete nuclear magnetic resonance assignments have been obtained for the first time for 1′-hydroxyfilipin I. Conclusions This report reveals the existence of two alternative routes for filipin III formation and opens new possibilities for the generation of biologically active filipin derivatives at high yield and with improved properties. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0307-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara D Payero
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain. .,Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real, no 1, 24006, León, Spain.
| | - Cláudia M Vicente
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain. .,Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real, no 1, 24006, León, Spain.
| | - Ángel Rumbero
- Department of Organic Chemistry, Faculty of Sciences, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Eva G Barreales
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain.
| | - Javier Santos-Aberturas
- Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real, no 1, 24006, León, Spain. .,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Antonio de Pedro
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain.
| | - Jesús F Aparicio
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain.
| |
Collapse
|