1
|
Caby M, Bontemps-Gallo S, Gruau P, Delrue B, Madec E, Lacroix JM. The EnvZ-OmpR Two-Component Signaling System Is Inactivated in a Mutant Devoid of Osmoregulated Periplasmic Glucans in Dickeya dadantii. Front Microbiol 2018; 9:2459. [PMID: 30425688 PMCID: PMC6218677 DOI: 10.3389/fmicb.2018.02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of alpha-, beta-, and gamma-Proteobacteria. This polymer of glucose is required for full virulence of many pathogens including Dickeya dadantii (D. dadantii). The phytopathogenic enterobacterium D. dadantii causes soft-rot disease in a wide range of plants. An OPG-defective mutant is impaired in environment sensing. We previously demonstrated that (i) fluctuation of OPG concentration controlled the activation level of the RcsCDB system, and (ii) RcsCDB along with EnvZ/OmpR controlled the mechanism of OPG succinylation. These previous data lead us to explore whether OPGs are required for other two-component systems. In this study, we demonstrate that inactivation of the EnvZ/OmpR system in an OPG-defective mutant restores full synthesis of pectinase but only partial virulence. Unlike for the RcsCDB system, the EnvZ-OmpR system is not controlled by OPG concentration but requires OPGs for proper activation.
Collapse
Affiliation(s)
- Marine Caby
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Peggy Gruau
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | | | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| |
Collapse
|
2
|
Abstract
Among all the systems developed by enterobacteria to face osmotic stress, only osmoregulated periplasmic glucans (OPGs) were found to be modulated during osmotic fluxes. First detected in 1973 by E.P. Kennedy's group in a study of phospholipid turnover in Escherichia coli, OPGs have been shown across alpha, beta, and gamma subdivisions of the proteobacteria. Discovery of OPG-like compounds in the epsilon subdivision strongly suggested that the presence of periplasmic glucans is essential for almost all proteobacteria. This article offers an overview of the different classes of OPGs. Then, the biosynthesis of OPGs and their regulation in E. coli and other species are discussed. Finally, the biological role of OPGs is developed. Beyond structural function, OPGs are involved in pathogenicity, in particular, by playing a role in signal transduction pathways. Recently, OPG synthesis proteins have been suggested to control cell division and growth rate.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Pierre Bohin
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Marie Lacroix
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| |
Collapse
|
3
|
Loto F, Coyle JF, Padgett KA, Pagliai FA, Gardner CL, Lorca GL, Gonzalez CF. Functional characterization of LotP from Liberibacter asiaticus. Microb Biotechnol 2017; 10:642-656. [PMID: 28378385 PMCID: PMC5404198 DOI: 10.1111/1751-7915.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L. asiaticus has hindered progress in understanding the biology of this bacterium directly. Consequently, a deep understanding of the biological pathways involved in the regulation of host–pathogen interactions becomes critical to rationally design future and necessary strategies of control. In this work, we used surrogate strains to evaluate the biochemical characteristics and biological significance of CLIBASIA_03135. This gene, highly induced during early stages of plant infection, encodes a 23 kDa protein and was renamed in this work as LotP. This protein belongs to an uncharacterized family of proteins with an overall structure resembling the LON protease N‐terminus. Co‐immunoprecipitation assays allowed us to identify the Liberibacter chaperonin GroEL as the main LotP‐interacting protein. The specific interaction between LotP and GroEL was reconstructed and confirmed using a two‐hybrid system in Escherichia coli. Furthermore, it was demonstrated that LotP has a native molecular weight of 44 kDa, corresponding to a dimer in solution with ATPase activity in vitro. In Liberibacter crescens, LotP is strongly induced in response to conditions with high osmolarity but repressed at high temperatures. Electrophoretic mobility shift assay (EMSA) results suggest that LotP is a member of the LdtR regulon and could play an important role in tolerance to osmotic stress.
Collapse
Affiliation(s)
- Flavia Loto
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,PROIMI Planta Piloto de Procesos Industriales Microbiológicos, CONICET, Tucumán, Argentina
| | - Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Kaylie A Padgett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,Department of Microbiology and Cell Science, Undergraduate Research Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
4
|
Holtappels M, Vrancken K, Noben J, Remans T, Schoofs H, Deckers T, Valcke R. The in planta proteome of wild type strains of the fire blight pathogen, Erwinia amylovora. J Proteomics 2016; 139:1-12. [DOI: 10.1016/j.jprot.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
|
5
|
The opgC gene is required for OPGs succinylation and is osmoregulated through RcsCDB and EnvZ/OmpR in the phytopathogen Dickeya dadantii. Sci Rep 2016; 6:19619. [PMID: 26790533 PMCID: PMC4726272 DOI: 10.1038/srep19619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022] Open
Abstract
Osmoregulated periplasmic glucans (OPGs) are a family of periplasmic oligosaccharides found in the envelope of most Proteobacteria. They are required for virulence of zoo- and phyto-pathogens. The glucose backbone of OPGs is substituted by various kinds of molecules depending on the species, O-succinyl residues being the most widely distributed. In our model, Dickeya dadantii, a phytopathogenic bacteria causing soft rot disease in a wide range of plant species, the backbone of OPGs is substituted by O-succinyl residues in media of high osmolarity and by O-acetyl residues whatever the osmolarity. The opgC gene encoding a transmembrane protein required for the succinylation of the OPGs in D. dadantii was found after an in silico search of a gene encoding a protein with the main characteristics recovered in the two previously characterized OpgC of E. coli and R. sphaeroides, i.e. 10 transmembrane segments and one acyl-transferase domain. Characterization of the opgC gene revealed that high osmolarity expression of the succinyl transferase is controlled by both the EnvZ-OmpR and RcsCDB phosphorelay systems. The loss of O-succinyl residue did not affect the virulence of D. dadantii, suggesting that only the glucose backbone of OPGs is required for virulence.
Collapse
|
6
|
Bontemps-Gallo S, Lacroix JM. New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:690-7. [PMID: 26265506 PMCID: PMC4618058 DOI: 10.1111/1758-2229.12325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 05/06/2023]
Abstract
This review emphasizes the biological roles of the osmoregulated periplasmic glucans (OPGs). Osmoregulated periplasmic glucans occur in almost all α-, β- and γ-Proteobacteria. This polymer of glucose is required for full virulence. The roles of the OPGs are complex and vary depending on the species. Here, we outline the four major roles of the OPGs through four different pathogenic and one symbiotic bacterial models (Dickeya dadantii, Salmonella enterica, Pseudomonas aeruginosa, Brucella abortus and Sinorhizobium meliloti). When periplasmic, the OPGs are a part of the signal transduction pathway and indirectly regulate genes involved in virulence. The OPGs can also be secreted. When outside of the cell, they interact directly with antibiotics to protect the bacterial cell or interact with the host cell to facilitate the invasion process. When OPGs are not found, as in the ε-Proteobacteria, OPG-like oligosaccharides are present. Their presence strengthens the evidence that OPGs play an important role in virulence.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA. Phone: +1 (406) 363-9259.
| | - Jean-Marie Lacroix
- Structural and Functional Glycobiology Unit, UMR CNRS-Lille1 8576, University of Lille, 59655 Villeneuve d’Ascq cedex, France. Phone: +33 3 20 43 65 92.
| |
Collapse
|
7
|
Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis. Infect Immun 2015; 83:3638-47. [PMID: 26150539 DOI: 10.1128/iai.00482-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/26/2015] [Indexed: 02/02/2023] Open
Abstract
The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥ 37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary.
Collapse
|
8
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Tay ST, Vadivelu J. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells. PLoS One 2015; 10:e0127398. [PMID: 25996927 PMCID: PMC4440636 DOI: 10.1371/journal.pone.0127398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Madec E, Bontemps-Gallo S, Lacroix JM. Increased phosphorylation of the RcsB regulator of the RcsCDB phosphorelay in strains of Dickeya dadantii devoid of osmoregulated periplasmic glucans revealed by Phos-tag gel analysis. MICROBIOLOGY-SGM 2014; 160:2763-2770. [PMID: 25320363 DOI: 10.1099/mic.0.081273-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of many proteobacteria. OPGs are important factors required for full virulence in many pathogens including Dickeya dadantii. D. dadantii causes the soft-rot disease in a wide range of plant species. The pleiotropic phenotype of opg-negative strains includes total loss of virulence and motility, and is linked to the constitutive activation of the RcsCDB phosphorelay, deduced from expression analysis of genes of the RcsCDB regulon. The constitutive activation of the RcsCDB phosphorelay in an opg-negative strain was demonstrated by direct analysis of the phosphorylation level of the RcsB regulator protein in vivo by using a Phos-tag retardation gel approach, and was correlated with the phenotype and the expression of motility genes. Data revealed a low level of RcsB phosphorylated form in the wild-type strain and a slight increase of phosphorylation in opgG mutant strains sufficient to induce the pleiotropic phenotype observed.
Collapse
Affiliation(s)
- Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 Lille 1-CNRS, Université des Sciences et Technologies de Lille, Université Lille - Nord de France, 59655 Villeneuve d'Ascq, France
| | - Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 Lille 1-CNRS, Université des Sciences et Technologies de Lille, Université Lille - Nord de France, 59655 Villeneuve d'Ascq, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 Lille 1-CNRS, Université des Sciences et Technologies de Lille, Université Lille - Nord de France, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
10
|
Wu X, Zeng Q, Koestler BJ, Waters CM, Sundin GW, Hutchins W, Yang CH. Deciphering the components that coordinately regulate virulence factors of the soft rot pathogen Dickeya dadantii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1119-1131. [PMID: 25180688 DOI: 10.1094/mpmi-01-14-0026-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The bacterial soft rot pathogen Dickeya dadantii utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to disintegrate the plant cell wall. A transposon mutagenesis fluorescence-activated cell sorting screen was used to identify mutants with altered promoter activities of the T3SS pilus gene hrpA. Several insertion mutations, resulting in changes in hrpA expression, were mapped to a new locus, opgGH, which encodes the gene cluster responsible for osmoregulated periplasmic glucan (OPG) synthesis proteins. Our data showed that OPG was involved in T3SS and Pel regulation by altering the expression of the regulatory small RNA RsmB. Through genome searching, the mechanism of two novel regulatory components, the RcsCD-RcsB phosphorelay and CsrD on OPG and the rsmB gene, was further investigated. The Rcs phosphorelay and OPG inversely regulated rsmB at transcriptional and post-transcriptional levels, respectively. CsrD exhibited dual functionality in T3SS and Pel regulation by manipulating levels of RsmB RNA and cyclic diguanylate monophosphate (c-di-GMP). CsrD positively regulated the promoter activity of the rsmB gene but negatively controlled RsmB RNA at the post-transcriptional level via OpgGH. In addition, CsrD contains both GGDEF and EAL domains but acted as a c-di-GMP phosphodiesterase. When the expression of the csrD gene was induced, CsrD regulated T3SS expression and Pel production through controlling intracellular c-di-GMP levels.
Collapse
|
11
|
Pandey J, Khan F, Mahajan V, Pant M, Jain RK, Pandey G. Evidence for vital role of endo-β-N-acetylglucosaminidase in the resistance of Arthrobacter protophormiae RKJ100 towards elevated concentrations of o-nitrobenzoate. Extremophiles 2014; 18:491-500. [PMID: 24562786 DOI: 10.1007/s00792-014-0632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
Arthrobacter protophormiae RKJ100 was previously characterized for its ability to tolerate extremely high concentrations of o-nitrobenzoate (ONB), a toxic xenobiotic environmental pollutant. The physiological responses of strain RKJ100 to ≥30 mM ONB indicated towards a resistance mechanism manifested via alteration of cell morphology and cell wall structure. In this study, we aim to characterize gene(s) involved in the resistance of strain RKJ100 towards extreme concentrations (i.e. 150 mM) of ONB. Transposon mutagenesis was carried out to generate a mutant library of strain RKJ100, which was then screened for ONB-sensitive mutants. A sensitive mutant was defined and selected as one that could not tolerate ≥30 mM ONB. Molecular and biochemical characterization of this mutant showed that the disruption of endo-β-N-acetylglucosaminidase (ENGase) gene caused the sensitivity. ENGase is an important enzyme for oligosaccharide processing and cell wall recycling in bacteria, fungi, plants and animals. Previous reports have already indicated several possible roles of this enzyme in cellular homeostasis. Results presented here provide the first evidence for its involvement in bacterial resistance towards extreme concentrations of a toxic xenobiotic compound and also suggest that strain RKJ100 employs ENGase as an important component in osmotic shock response for resisting extreme concentrations of ONB.
Collapse
Affiliation(s)
- Janmejay Pandey
- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India,
| | | | | | | | | | | |
Collapse
|
12
|
Bontemps-Gallo S, Madec E, Lacroix JM. Inactivation of pecS restores the virulence of mutants devoid of osmoregulated periplasmic glucans in the phytopathogenic bacterium Dickeya dadantii. MICROBIOLOGY-SGM 2014; 160:766-777. [PMID: 24550070 DOI: 10.1099/mic.0.074484-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dickeya dadantii is a phytopathogenic enterobacterium that causes soft rot disease in a wide range of plant species. Maceration, an apparent symptom of the disease, is the result of the synthesis and secretion of a set of plant cell wall-degrading enzymes (PCWDEs), but many additional factors are required for full virulence. Among these, osmoregulated periplasmic glucans (OPGs) and the PecS transcriptional regulator are essential virulence factors. Several cellular functions are controlled by both OPGs and PecS. Strains devoid of OPGs display a pleiotropic phenotype including total loss of virulence, loss of motility and severe reduction in the synthesis of PCWDEs. PecS is one of the major regulators of virulence in D. dadantii, acting mainly as a repressor of various cellular functions including virulence, motility and synthesis of PCWDEs. The present study shows that inactivation of the pecS gene restored virulence in a D. dadantii strain devoid of OPGs, indicating that PecS cannot be de-repressed in strains devoid of OPGs.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université Lille Nord de France, F-59655 Villeneuve d'Ascq, France
| | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université Lille Nord de France, F-59655 Villeneuve d'Ascq, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université Lille Nord de France, F-59655 Villeneuve d'Ascq, France
| |
Collapse
|
13
|
Genome Sequence of Dickeya solani, a New soft Rot Pathogen of Potato, Suggests its Emergence May Be Related to a Novel Combination of Non-Ribosomal Peptide/Polyketide Synthetase Clusters. DIVERSITY-BASEL 2013. [DOI: 10.3390/d5040824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Afroz A, Zahur M, Zeeshan N, Komatsu S. Plant-bacterium interactions analyzed by proteomics. FRONTIERS IN PLANT SCIENCE 2013; 4:21. [PMID: 23424014 PMCID: PMC3573209 DOI: 10.3389/fpls.2013.00021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/29/2013] [Indexed: 05/04/2023]
Abstract
The evolution of the plant immune response has resulted in a highly effective defense system that is able to resist potential attack by microbial pathogens. The primary immune response is referred to as pathogen associated molecular pattern (PAMP) triggered immunity and has evolved to recognize common features of microbial pathogens. In response to the delivery of pathogen effector proteins, plants acquired R proteins to fight against pathogen attack. R-dependent defense response is important in understanding the biochemical and cellular mechanisms and underlying these interactions will enable molecular and transgenic approaches for crops with increased biotic resistance. Proteomic analyses are particularly useful for understanding the mechanisms of host plant against the pathogen attack. Recent advances in the field of proteome analyses have initiated a new research area, i.e., the analysis of more complex microbial communities and their interaction with plant. Such areas hold great potential to elucidate, not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa, symbiotic, pathogenic bacteria, and commensal bacteria. During biotic stress, plant hormonal signaling pathways prioritizes defense over other cellular functions. Some plant pathogens take advantage of hormone dependent regulatory system by mimicking hormones that interfere with host immune responses to promote virulence (vir). In this review, it is discussed the cross talk that plays important role in response to pathogens attack with different infection strategies using proteomic approaches.
Collapse
Affiliation(s)
- Amber Afroz
- Department of Biochemistry and Molecular Biology, Nawaz Sharif Medical College, University of Gujrat, Hafiz Hayat Campus GujratGujrat, Pakistan
- *Correspondence: Amber Afroz, Department of Biochemistry and Molecular Biology, Nawaz Sharif Medical College, University of Gujrat, Hafiz Hayat Campus Gujrat, Gujrat, Pakistan. e-mail:
| | - Muzna Zahur
- Department of Biochemistry and Molecular Biology, Nawaz Sharif Medical College, University of Gujrat, Hafiz Hayat Campus GujratGujrat, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Molecular Biology, Nawaz Sharif Medical College, University of Gujrat, Hafiz Hayat Campus GujratGujrat, Pakistan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
- Setsuko Komatsu, National Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba 305-8518, Japan. e-mail:
| |
Collapse
|
15
|
Lodha TD, Hembram P, Basak NTJ. Proteomics: A Successful Approach to Understand the Molecular Mechanism of Plant-Pathogen Interaction. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.46149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Bontemps-Gallo S, Madec E, Dondeyne J, Delrue B, Robbe-Masselot C, Vidal O, Prouvost AF, Boussemart G, Bohin JP, Lacroix JM. Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii. Environ Microbiol 2012; 15:881-94. [PMID: 23253096 DOI: 10.1111/1462-2920.12054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/14/2012] [Indexed: 11/26/2022]
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of many Proteobacteria. Synthesis of these oligosaccharides is repressed by increased osmolarity of the medium. OPGs are important factors required for full virulence in many zoo- or phytopathogens including Dickeya dadantii. The phytopathogen enterobacterium D. dadantii causes soft-rot disease on a wide range of plant species. The total loss of virulence of opg-negative strains of D. dadantii is linked to the constitutive activation of the RcsCD RcsB phosphorelay highlighting relationship between this phosphorelay and OPGs. Here we show that OPGs control the RcsCD RcsB activation in a concentration-dependent manner, are required for proper activation of this phosphorelay by medium osmolarity, and a high concentration of OPGs in planta is maintained to achieve the low level of activation of the RcsCD RcsB phosphorelay required for full virulence in D. dadantii.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, IFR 147, Université des Sciences et Technologies de Lille, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bouchart F, Boussemart G, Prouvost AF, Cogez V, Madec E, Vidal O, Delrue B, Bohin JP, Lacroix JM. The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay. J Bacteriol 2010; 192:3484-90. [PMID: 20418397 PMCID: PMC2897653 DOI: 10.1128/jb.00143-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/14/2010] [Indexed: 11/20/2022] Open
Abstract
Dickeya dadantii is a pectinolytic phytopathogen enterobacterium that causes soft rot disease on a wide range of plant species. The virulence of D. dadantii involves several factors, including the osmoregulated periplasmic glucans (OPGs) that are general constituents of the envelope of proteobacteria. In addition to the loss of virulence, opg-negative mutants display a pleiotropic phenotype, including decreased motility and increased exopolysaccharide synthesis. A nitrosoguanidine-induced mutagenesis was performed on the opgG strain, and restoration of motility was used as a screen. The phenotype of the opg mutant echoes that of the Rcs system: high level activation of the RcsCD-RcsB phosphorelay is needed to activate exopolysaccharide synthesis and to repress motility, while low level activation is required for virulence in enterobacteria. Here, we show that mutations in the RcsCDB phosphorelay system restored virulence and motility in a D. dadantii opg-negative strain, indicating a relationship between the Rcs phosphorelay and OPGs.
Collapse
Affiliation(s)
- Franck Bouchart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Gilles Boussemart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Anne-France Prouvost
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Virginie Cogez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Olivier Vidal
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Brigitte Delrue
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Pierre Bohin
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
18
|
Zhu L, Liu X, Zheng X, Bu X, Zhao G, Xie C, Zhang J, Li N, Feng E, Wang J, Jiang Y, Huang P, Wang H. Global analysis of a plasmid-cured Shigella flexneri strain: new insights into the interaction between the chromosome and a virulence plasmid. J Proteome Res 2010; 9:843-54. [PMID: 20000779 DOI: 10.1021/pr9007514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Shigella flexneri is an important human pathogen that causes dysentery, and remains a significant threat to public health, particularly in developing countries. The virulence of this pathogen is dependent on an acquired virulence plasmid. To investigate the crosstalk between the bacterial chromosome and the exogenous virulence plasmid, a virulence plasmid-cured strain was constructed using plasmid incompatibility. The global patterns of gene expression of this strain compared with the wild-type strain were analyzed using 2-DE combined with MALDI-TOF MS. Most known virulence factors of S. flexneri were identified in the 2-DE gels. Interestingly, the expression of the glycerol 3-phosphate (glp) regulon-encoded proteins was increased when the virulence plasmid was absent. Microarray analysis confirmed that regulation occurred at the transcriptional level. Purification and identification of DNA binding proteins with affinity for the regulatory region of the glp genes revealed that regulation mediated by the virulence plasmid to control the expression of the glp regulon might in turn be mediated by protein GlpR. To our knowledge, this is the first study analyzing the interaction between a pathogen chromosome and a virulence plasmid at the proteomic level.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071 Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Osmoregulated Periplasmic Glucan Polymerization Requires Constant Protein Synthesis in Escherichia coli. Curr Microbiol 2010; 61:396-400. [DOI: 10.1007/s00284-010-9625-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|
20
|
Study of free oligosaccharides derived from the bacterial N-glycosylation pathway. Proc Natl Acad Sci U S A 2009; 106:15019-24. [PMID: 19706478 DOI: 10.1073/pnas.0903078106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The food-borne pathogen Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide and the most frequent antecedent in neuropathies such as the Guillain-Barré and Miller Fisher syndromes. C. jejuni was demonstrated to possess an N-linked protein glycosylation pathway that adds a conserved heptasaccharide to >40 periplasmic and membrane proteins. Recently, we showed that C. jejuni also produces free heptasaccharides derived from the N-glycan pathway reminiscent of the free oligosaccharides (fOS) produced by eukaryotes. Herein, we demonstrate that C. jejuni fOS are produced in response to changes in the osmolarity of the environment and bacterial growth phase. We provide evidence showing the conserved WWDYG motif of the oligosaccharyltransferase, PglB, is necessary for fOS release into the periplasm. This report demonstrates that fOS from an N-glycosylation pathway in bacteria are potentially equivalent to osmoregulated periplasmic glucans in other Gram-negative organisms.
Collapse
|
21
|
Cell envelope perturbation induces oxidative stress and changes in iron homeostasis in Vibrio cholerae. J Bacteriol 2009; 191:5398-408. [PMID: 19542276 DOI: 10.1128/jb.00092-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Vibrio cholerae type II secretion (T2S) machinery is a multiprotein complex that spans the cell envelope. When the T2S system is inactivated, cholera toxin and other exoproteins accumulate in the periplasmic compartment. Additionally, loss of secretion via the T2S system leads to a reduced growth rate, compromised outer membrane integrity, and induction of the extracytoplasmic stress factor RpoE (A. E. Sikora, S. R. Lybarger, and M. Sandkvist, J. Bacteriol. 189:8484-8495, 2007). In this study, gene expression profiling reveals that inactivation of the T2S system alters the expression of genes encoding cell envelope components and proteins involved in central metabolism, chemotaxis, motility, oxidative stress, and iron storage and acquisition. Consistent with the gene expression data, molecular and biochemical analyses indicate that the T2S mutants suffer from internal oxidative stress and increased levels of intracellular ferrous iron. By using a tolA mutant of V. cholerae that shares a similar compromised membrane phenotype but maintains a functional T2S machinery, we show that the formation of radical oxygen species, induction of oxidative stress, and changes in iron physiology are likely general responses to cell envelope damage and are not unique to T2S mutants. Finally, we demonstrate that disruption of the V. cholerae cell envelope by chemical treatment with polymyxin B similarly results in induction of the RpoE-mediated stress response, increased sensitivity to oxidants, and a change in iron metabolism. We propose that many types of extracytoplasmic stresses, caused either by genetic alterations of outer membrane constituents or by chemical or physical damage to the cell envelope, induce common signaling pathways that ultimately lead to internal oxidative stress and misregulation of iron homeostasis.
Collapse
|
22
|
Cheng Z, Duan J, Hao Y, McConkey BJ, Glick BR. Identification of bacterial proteins mediating the interactions between Pseudomonas putida UW4 and Brassica napus (Canola). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:686-94. [PMID: 19445593 DOI: 10.1094/mpmi-22-6-0686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of canola root exudates on the proteome of Pseudomonas putida UW4 and the mutant strain P. putida UW4/AcdS(-), which lacks a functional 1-aminocyclopropane-1-carboxylate deaminase gene, was examined using two-dimensional difference in-gel electrophoresis. Seventy-two proteins with significantly altered expression levels in the presence of canola root exudates were identified by mass spectrometry. Many of these proteins are involved in nutrient transport and utilization, cell envelope synthesis, and transcriptional or translational regulation and, hence, may play important roles in plant-bacterial interactions. Four proteins showing large changes in expression in response to canola root exudates in both the wild-type and mutant strains of P. putida UW4 (i.e., outer membrane protein F, peptide deformylase, transcription regulator Fis family protein, and a previously uncharacterized protein) were both overexpressed and disrupted in P. putida UW4 in an effort to better understand their functions. Functional studies of these modified strains revealed significantly enhanced or inhibited plant-growth-promoting abilities compared with the wild-type P. putida UW4, in agreement with the suggested involvement of three of these four proteins in plant-bacterial interactions. The work reported here suggests strategies to both identify potential antibacterial agents and develop bacterial strains that might be useful adjuncts to agriculture. This approach may be an effective means of identifying key proteins mediating the interactions of bacteria with their rhizosphere environment.
Collapse
Affiliation(s)
- Zhenyu Cheng
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | |
Collapse
|
23
|
Mehta A, Brasileiro ACM, Souza DSL, Romano E, Campos MA, Grossi-de-Sá MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL. Plant-pathogen interactions: what is proteomics telling us? FEBS J 2008; 275:3731-46. [PMID: 18616468 DOI: 10.1111/j.1742-4658.2008.06528.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the years, several studies have been performed to analyse plant-pathogen interactions. Recently, functional genomic strategies, including proteomics and transcriptomics, have contributed to the effort of defining gene and protein function and expression profiles. Using these 'omic' approaches, pathogenicity- and defence-related genes and proteins expressed during phytopathogen infections have been identified and enormous datasets have been accumulated. However, the understanding of molecular plant-pathogen interactions is still an intriguing area of investigation. Proteomics has dramatically evolved in the pursuit of large-scale functional assignment of candidate proteins and, by using this approach, several proteins expressed during phytopathogenic interactions have been identified. In this review, we highlight the proteins expressed during plant-virus, plant-bacterium, plant-fungus and plant-nematode interactions reported in proteomic studies, and discuss these findings considering the advantages and limitations of current proteomic tools.
Collapse
Affiliation(s)
- Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Delangle A, Prouvost AF, Cogez V, Bohin JP, Lacroix JM, Cotte-Pattat NH. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism. J Bacteriol 2007; 189:7053-61. [PMID: 17644603 PMCID: PMC2045229 DOI: 10.1128/jb.00845-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022] Open
Abstract
beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny.
Collapse
Affiliation(s)
- Aurélie Delangle
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Sikora AE, Lybarger SR, Sandkvist M. Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants. J Bacteriol 2007; 189:8484-95. [PMID: 17890307 PMCID: PMC2168955 DOI: 10.1128/jb.00583-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type II secretion (T2S) system of Vibrio cholerae is a multiprotein complex that spans the cell envelope and secretes proteins important for pathogenesis as well as survival in different environments. Here we report that, in addition to the loss of extracellular secretion, removal or inhibition of expression of the T2S genes, epsC-N, results in growth defects and a broad range of alterations in the outer membrane that interfere with its barrier function. Specifically, the sensitivity to membrane-perturbing agents such as bile salts and the antimicrobial peptide polymyxin B is increased, and periplasmic constituents leak out into the culture medium. As a consequence, the sigma(E) stress response is induced. Furthermore, due to the defects caused by inactivation of the T2S system, the Deltaeps deletion mutant of V. cholerae strain N16961 is incapable of surviving the passage through the infant mouse gastrointestinal tract. The growth defect and leaky outer membrane phenotypes are suppressed when the culture medium is supplemented with 5% glucose or sucrose, although the eps mutants remain sensitive to membrane-damaging agents. This suggests that the sugars do not restore the integrity of the outer membrane in the eps mutant strains per se but may provide osmoprotective functions.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- University of Michigan Medical School, Department of Microbiology and Immunology, 1150 West Medical Center Drive, 6741 Medical Science Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
26
|
Fineran PC, Williamson NR, Lilley KS, Salmond GPC. Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. J Bacteriol 2007; 189:7653-62. [PMID: 17766413 PMCID: PMC2168757 DOI: 10.1128/jb.00671-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gram-negative bacteria of the genus Serratia are opportunistic human, plant, and insect pathogens. Serratia sp. strain ATCC 39006 secretes pectinases and cellulases and produces the secondary metabolites carbapenem and prodigiosin. Mutation of a gene (pigX) resulted in an extremely pleiotropic phenotype: prodigiosin antibiotic biosynthesis, plant virulence, and pectinase production were all elevated. PigX controlled secondary metabolism by repressing the transcription of the target prodigiosin biosynthetic operon (pigA-pigO). The transcriptional start site of pigX was determined, and pigX expression occurred in parallel with Pig production. Detailed quantitative intracellular proteome analyses enabled the identification of numerous downstream targets of PigX, including OpgG, mutation of which reduced the production of the plant cell wall-degrading enzymes and virulence. The highly pleiotropic PigX regulator contains GGDEF and EAL domains with noncanonical motifs and is predicted to be membrane associated. Genetic evidence suggests that PigX might function as a cyclic dimeric GMP phosphodiesterase. This is the first characterization of a GGDEF and EAL domain protein in Serratia and the first example of the regulation of antibiotic production by a GGDEF/EAL domain protein.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | | | |
Collapse
|