1
|
Tamayo E, López-Lorca VM, Shim C, López-Castillo O, Castillo AG, Requena N, Benz JP, Ferrol N. The Rhizophagus irregularis permease RiFTR1 functions without a ferroxidase partner for reductive iron transport. Sci Rep 2025; 15:5840. [PMID: 39966403 PMCID: PMC11836134 DOI: 10.1038/s41598-025-88416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
The contribution of arbuscular mycorrhizal fungi (AM fungi) to plant iron (Fe) acquisition has been demonstrated in several studies. A previous investigation revealed that the AM fungus Rhizophagus irregularis utilizes a high-affinity reductive pathway for Fe uptake, mediated by the Fe transporter RiFTR1. In this study, we used a genome-wide approach in R. irregularis to find genes encoding ferroxidases of the multicopper oxidase (MCO) gene family in an attempt to identify the ferroxidase partner of RiFTR1. Nine genes putatively encoding MCOs (RiMCO1-9) were identified. Yeast complementation assays demonstrated that RiMCO1 and RiMCO3 can function as ferroxidases, suggesting their involvement in the reductive Fe uptake pathway. Surprisingly, RiFTR1 was capable of transporting Fe in yeast without a ferroxidase partner, resembling the Fe transport mechanism of plant IRT1-like systems. RiFTR1 exhibited increase expression in arbuscules. Overexpression of RiFTR1 in Medicago truncatula roots led to enhanced mycorrhizal colonization and arbuscule abundance, highlighting the significance of Fe for AM symbiosis.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain.
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany.
| | - Víctor Manuel López-Lorca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Chaeeun Shim
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, UK
| | - Olga López-Castillo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM, UMA-CSIC), Málaga, Spain
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
2
|
Ding JL, Feng MG, Ying SH. Two ferrous iron transporter-like proteins independently participate in asexual development under iron limitation and virulence in Beauveria bassiana. Fungal Genet Biol 2024; 173:103908. [PMID: 38857848 DOI: 10.1016/j.fgb.2024.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Reductive assimilation pathway involves ferric reductase and ferrous iron transporter, which is integral for fungal iron acquisition. A family of ferric reductase-like proteins has been functionally characterized in the filamentous entomopathogenic fungus Beauveria bassiana. In this investigation, two ferrous iron transporter-like proteins (Ftr) were functionally annotated in B. bassiana. BbFtr1 and BbFtr2 displayed high similarity in structure and were associated with the plasma and nuclear membrane. Their losses had no negatively influence on fungal growth on various nutrients and development under the iron-replete condition. Single mutants of BbFTR1 and BbFTR2 displayed the iron-availability dependent developmental defects, and double mutant exhibited the significantly impaired developmental potential under the iron-limited conditions. In insect bioassay, the double mutant also showed the weaker virulence than either of two single disruption mutants. These results suggested that two ferrous iron transporter-like proteins function independently in fungal physiologies under the iron-deficient condition. Intriguingly, a bZIP transcription factor BbHapX was required for expression of BbFTR1 and BbFTR2 under iron-depleted conditions. This study enhances our understanding of the iron uptake system in the filamentous entomopathogenic fungi.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Banerjee S, Chanakira MN, Hall J, Kerkan A, Dasgupta S, Martin DW. A review on bacterial redox dependent iron transporters and their evolutionary relationship. J Inorg Biochem 2022; 229:111721. [PMID: 35033753 DOI: 10.1016/j.jinorgbio.2022.111721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Iron is an essential yet toxic micronutrient and its transport across biological membranes is tightly regulated in all living organisms. One such iron transporter, the Ftr-type permeases, is found in both eukaryotic and prokaryotic cells. These Ftr-type transporters are required for iron transport, predicted to form α-helical transmembrane structures, and conserve two ArgGluxxGlu (x = any amino acid) motifs. In the yeast Ftr transporter (Ftr1p), a ferroxidase (Fet3p) is required for iron transport in an oxidation coupled transport step. None of the bacterial Ftr-type transporters (EfeU and FetM from E. coli; cFtr from Campylobacter jejuni; FtrC from Brucella, Bordetella, and Burkholderia spp.) contain a ferroxidase protein. Bioinformatics report predicted periplasmic EfeO and FtrB (from the EfeUOB and FtrABCD systems) as novel cupredoxins. The Cu2+ binding and the ferrous oxidation properties of these proteins are uncharacterized and the other two bacterial Ftr-systems are expressed without any ferroxidase/cupredoxin, leading to controversy about the mode of function of these transporters. Here, we review published data on Ftr-type transporters to gain insight into their functional diversity. Based on original bioinformatics data presented here evolutionary relations between these systems are presented.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA.
| | - Mina N Chanakira
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Jonathan Hall
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Alexa Kerkan
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Saumya Dasgupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata, WB 700135, India
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
4
|
Sahu N, Merényi Z, Bálint B, Kiss B, Sipos G, Owens RA, Nagy LG. Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species. Microorganisms 2021; 9:149. [PMID: 33440901 PMCID: PMC7827401 DOI: 10.3390/microorganisms9010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Brigitta Kiss
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - György Sipos
- Research Center for Forestry and Wood Industry, Functional Genomics and Bioinformatics Group, University of Sopron, 9400 Sopron, Hungary;
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Rebecca A. Owens
- Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - László G. Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
5
|
Agrawal K, Shankar J, Kumar R, Verma P. Insight into multicopper oxidase laccase from Myrothecium verrucaria ITCC-8447: a case study using in silico and experimental analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:1048-1060. [PMID: 32877269 DOI: 10.1080/03601234.2020.1812334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxidation activity of multicopper-oxidases overlaps with different substrates of laccases and bilirubin oxidases, thus in the present study an integrated approach of bioinformatics using homology modeling, docking, and experimental validation was used to confirm the type of multicopper-oxidase in Myrothecium verrucaria ITCC-8447. The result of peptide sequence of M. verrucaria ITCC-8447 enabled to predict the 3 D-structure of multicopper-oxidase. It was overlapped with the structure of laccase and root mean square deviation (RMSD) was 1.53 Å for 533 and, 171 residues. The low binding energy with azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (-5.64) as compared to bilirubin (-4.39) suggested that M. verrucaria ITCC-8447 have laccase-like activity. The experimental analysis confirmed high activity with laccase specific substrates, phenol (18.3 U/L), ampyrone (172.4 U/L) and, ampyrone phenol coupling (50 U/L) as compared to bilirubin oxidase substrate bilirubin (16.6 U/L). In addition, lowest binding energy with ABTS (-5.64), syringaldazine SYZ (-4.83), guaiacol GCL (-4.42), and 2,6-dimethoxyphenol DMP (-4.41) confirmed the presence of laccase. Further, complete remediation of two hazardous model pollutants i.e., phenol and resorcinol (1.5 mM) after 12 h of incubation and low binding energy of -4.32 and, -4.85 respectively confirmed its removal by laccase. The results confirmed the presence of laccase in M. verrucaria ITCC-8447 and its effective bioremediation potential.
Collapse
Affiliation(s)
- Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Jata Shankar
- Genomics Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Raj Kumar
- Genomics Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
6
|
Tamayo E, Knight SAB, Valderas A, Dancis A, Ferrol N. The arbuscular mycorrhizal fungus Rhizophagus irregularis
uses a reductive iron assimilation pathway for high-affinity iron uptake. Environ Microbiol 2018; 20:1857-1872. [DOI: 10.1111/1462-2920.14121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Elisabeth Tamayo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| | - Simon A. B. Knight
- Department of Medicine, Division of Hematology-Oncology; Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - Ascensión Valderas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology; Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| |
Collapse
|
7
|
Castanera R, Omarini A, Santoyo F, Pérez G, Pisabarro AG, Ramírez L. Non-additive transcriptional profiles underlie dikaryotic superiority in Pleurotus ostreatus laccase activity. PLoS One 2013; 8:e73282. [PMID: 24039902 PMCID: PMC3764117 DOI: 10.1371/journal.pone.0073282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/18/2013] [Indexed: 12/04/2022] Open
Abstract
Background The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. Methodology/Principal Findings We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. Conclusions/Significance Our results suggested that the dikaryotic superiority observed in laccase activity was due to non-additive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage.
Collapse
Affiliation(s)
- Raúl Castanera
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Alejandra Omarini
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Francisco Santoyo
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Gúmer Pérez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Antonio G. Pisabarro
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
- * E-mail:
| |
Collapse
|
8
|
Elhassanny AEM, Anderson ES, Menscher EA, Roop RM. The ferrous iron transporter FtrABCD is required for the virulence of Brucella abortus 2308 in mice. Mol Microbiol 2013; 88:1070-82. [PMID: 23647104 DOI: 10.1111/mmi.12242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Abstract
Iron transport has been linked to the virulence of Brucella strains in both natural and experimental hosts. The genes designated BAB2_0837-0840 in the Brucella abortus 2308 genome sequence are predicted to encode a CupII-type ferrous iron transporter homologous to the FtrABCD transporter recently described in Bordetella. To study the role of the Brucella FtrABCD in iron transport, an isogenic ftrA mutant was constructed from B. abortus 2308. Compared with the parental strain, the B. abortus ftrA mutant displays a decreased capacity to use non-haem iron sources in vitro, a growth defect in a low iron medium that is enhanced at pH 6, and studies employing radiolabelled FeCl3 confirmed that FtrABCD transports ferrous iron. Transcription of the ftrA gene is induced in B. abortus 2308 in response to iron deprivation and exposure to acid pH, and similar to other Brucella iron acquisition genes that have been examined the iron-responsiveness of ftrA is dependent upon the iron response regulator Irr. The B. abortus ftrA mutant exhibits significant attenuation in both cultured murine macrophages and experimentally infected mice, supporting the proposition that ferrous iron is a critical iron source for these bacteria in the mammalian host.
Collapse
Affiliation(s)
- Ahmed E M Elhassanny
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27834, USA
| | | | | | | |
Collapse
|
9
|
Yakovlev IA, Hietala AM, Courty PE, Lundell T, Solheim H, Fossdal CG. Genes associated with lignin degradation in the polyphagous white-rot pathogen Heterobasidion irregulare show substrate-specific regulation. Fungal Genet Biol 2013; 56:17-24. [PMID: 23665189 DOI: 10.1016/j.fgb.2013.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/15/2022]
Abstract
The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare.
Collapse
Affiliation(s)
- Igor A Yakovlev
- Norwegian Forest and Landscape Institute, PO Box 115, N-1431 Ås, Norway
| | | | | | | | | | | |
Collapse
|
10
|
Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 2012; 97:939-55. [DOI: 10.1007/s00253-012-4615-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
11
|
Canessa P, Muñoz-Guzmán F, Vicuña R, Larrondo LF. Characterization of PIR1, a GATA family transcription factor involved in iron responses in the white-rot fungus Phanerochaete chrysosporium. Fungal Genet Biol 2012; 49:626-34. [DOI: 10.1016/j.fgb.2012.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 01/19/2023]
|
12
|
Ziegler L, Terzulli A, Gaur R, McCarthy R, Kosman DJ. Functional characterization of the ferroxidase, permease high-affinity iron transport complex from Candida albicans. Mol Microbiol 2011; 81:473-85. [PMID: 21645130 DOI: 10.1111/j.1365-2958.2011.07704.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Saccharomyces cerevisiae expresses two proteins that together support high-affinity Fe-uptake. These are a multicopper oxidase, Fet3p, with specificity towards Fe²⁺ and a ferric iron permease, Ftr1p, which supports Fe-accumulation. Homologues of the genes encoding these two proteins are found in all fungal genomes including those for the pathogens, Candida albicans and Cryptococcus neoformans. At least one of these loci represents a virulence factor for each pathogen suggesting that this complex would be an appropriate pharmacologic target. However, the mechanism by which this protein pair supports Fe-uptake in any fungal pathogen has not been elucidated. Taking advantage of the robust molecular genetics available in S. cerevisiae, we identify the two of five candidate ferroxidases likely involved in high-affinity Fe-uptake in C. albicans, Fet31 and Fet34. Both localize to the yeast plasma membrane and both support Fe-uptake along with an Ftr1 protein, either from C. albicans or from S. cerevisiae. We express and characterize Fet34, demonstrating that it is functionally homologous to ScFet3p. Using S. cerevisiae as host for the functional expression of the C. albicans Fe-uptake proteins, we demonstrate that they support a mechanism of Fe-trafficking that involves channelling of the CaFet34-generated Fe³⁺ directly to CaFtr1 for transport into the cytoplasm.
Collapse
Affiliation(s)
- Lynn Ziegler
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
13
|
Kües U, Rühl M. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Curr Genomics 2011; 12:72-94. [PMID: 21966246 PMCID: PMC3129051 DOI: 10.2174/138920211795564377] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Genome analyses revealed in various basidiomycetes the existence of multiple genes for blue multi-copper oxidases (MCOs). Whole genomes are now available from saprotrophs, white rot and brown rot species, plant and animal pathogens and ectomycorrhizal species. Total numbers (from 1 to 17) and types of mco genes differ between analyzed species with no easy to recognize connection of gene distribution to fungal life styles. Types of mco genes might be present in one and absent in another fungus. Distinct types of genes have been multiplied at speciation in different organisms. Phylogenetic analysis defined different subfamilies of laccases sensu stricto (specific to Agaricomycetes), classical Fe2+-oxidizing Fet3-like ferroxidases, potential ferroxidases/laccases exhibiting either one or both of these enzymatic functions, enzymes clustering with pigment MCOs and putative ascorbate oxidases. Biochemically best described are laccases sensu stricto due to their proposed roles in degradation of wood, straw and plant litter and due to the large interest in these enzymes in biotechnology. However, biological functions of laccases and other MCOs are generally little addressed. Functions in substrate degradation, symbiontic and pathogenic intercations, development, pigmentation and copper homeostasis have been put forward. Evidences for biological functions are in most instances rather circumstantial by correlations of expression. Multiple factors impede research on biological functions such as difficulties of defining suitable biological systems for molecular research, the broad and overlapping substrate spectrum multi-copper oxidases usually possess, the low existent knowledge on their natural substrates, difficulties imposed by low expression or expression of multiple enzymes, and difficulties in expressing enzymes heterologously.
Collapse
Affiliation(s)
- Ursula Kües
- University of Goettingen, Büsgen-Institute, Division of Molecular Wood Biotechnology and Technical Mycology, Büsgenweg 2, 37077 Goettingen, Germany
| | | |
Collapse
|
14
|
Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure. Arch Microbiol 2010; 192:883-92. [DOI: 10.1007/s00203-010-0616-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/31/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
15
|
Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol 2009; 75:3944-53. [PMID: 19376892 DOI: 10.1128/aem.02137-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A simple strategy for the induction of extracellular hydroxyl radical (OH) production by white-rot fungi is presented. It involves the incubation of mycelium with quinones and Fe(3+)-EDTA. Succinctly, it is based on the establishment of a quinone redox cycle catalyzed by cell-bound dehydrogenase activities and the ligninolytic enzymes (laccase and peroxidases). The semiquinone intermediate produced by the ligninolytic enzymes drives OH production by a Fenton reaction (H(2)O(2) + Fe(2+) --> OH + OH(-) + Fe(3+)). H(2)O(2) production, Fe(3+) reduction, and OH generation were initially demonstrated with two Pleurotus eryngii mycelia (one producing laccase and versatile peroxidase and the other producing just laccase) and four quinones, 1,4-benzoquinone (BQ), 2-methoxy-1,4-benzoquinone (MBQ), 2,6-dimethoxy-1,4-benzoquinone (DBQ), and 2-methyl-1,4-naphthoquinone (menadione [MD]). In all cases, OH radicals were linearly produced, with the highest rate obtained with MD, followed by DBQ, MBQ, and BQ. These rates correlated with both H(2)O(2) levels and Fe(3+) reduction rates observed with the four quinones. Between the two P. eryngii mycelia used, the best results were obtained with the one producing only laccase, showing higher OH production rates with added purified enzyme. The strategy was then validated in Bjerkandera adusta, Phanerochaete chrysosporium, Phlebia radiata, Pycnoporus cinnabarinus, and Trametes versicolor, also showing good correlation between OH production rates and the kinds and levels of the ligninolytic enzymes expressed by these fungi. We propose this strategy as a useful tool to study the effects of OH radicals on lignin and organopollutant degradation, as well as to improve the bioremediation potential of white-rot fungi.
Collapse
|
16
|
Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U. Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. THE NEW PHYTOLOGIST 2009; 182:736-750. [PMID: 19243515 DOI: 10.1111/j.1469-8137.2009.02774.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In forest soils, ectomycorrhizal and saprotrophic Agaricales differ in their strategies for carbon acquisition, but share common gene families encoding multi-copper oxidases (MCOs). These enzymes are involved in the oxidation of a variety of soil organic compounds. The MCO gene family of the ectomycorrhizal fungus Laccaria bicolor is composed of 11 genes divided into two distinct subfamilies corresponding to laccases (lcc) sensu stricto (lcc1 to lcc9), sharing a high sequence homology with the coprophilic Coprinopsis cinerea laccase genes, and to ferroxidases (lcc10 and lcc11) that are not present in C. cinerea. The fet3-like ferroxidase genes lcc10 and lcc11 in L. bicolor are each arranged in a mirrored tandem orientation with an ftr gene coding for an iron permease. Unlike C. cinerea, L. bicolor has no sid1/sidA gene for siderophore biosynthesis. Transcript profiling using whole-genome expression arrays and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed that some transcripts were very abundant in ectomycorrhizas (lcc3 and lcc8), in fruiting bodies (lcc7) or in the free-living mycelium grown on agar medium (lcc9 and lcc10), suggesting a specific function of these MCOs. The amino acid composition of the MCO substrate binding sites suggests that L. bicolor MCOs interact with substrates different from those of saprotrophic fungi.
Collapse
Affiliation(s)
- P E Courty
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
- Botanical Institute, University of Basel, CH-4056 Basel, Switzerland
| | - P J Hoegger
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University, D-37077 Göttingen, Germany
| | - S Kilaru
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University, D-37077 Göttingen, Germany
| | - A Kohler
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
| | - M Buée
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
| | - J Garbaye
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
| | - F Martin
- UMR 1136 INRA-Nancy Université, Interactions Arbres/Microorganisms, INRA-Nancy, 54280 Champenoux, France
| | - U Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University, D-37077 Göttingen, Germany
| |
Collapse
|
17
|
Nodop A, Pietsch D, Höcker R, Becker A, Pistorius EK, Forchhammer K, Michel KP. Transcript profiling reveals new insights into the acclimation of the mesophilic fresh-water cyanobacterium Synechococcus elongatus PCC 7942 to iron starvation. PLANT PHYSIOLOGY 2008; 147:747-63. [PMID: 18424627 PMCID: PMC2409038 DOI: 10.1104/pp.107.114058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/17/2008] [Indexed: 05/05/2023]
Abstract
The regulatory network for acclimation of the obligate photoautotrophic fresh water cyanobacterium Synechococcus elongatus PCC 7942 to iron (Fe) limitation was studied by transcript profiling with an oligonucleotide whole genome DNA microarray. Six regions on the chromosome with several Fe-regulated genes each were identified. The irpAB and fut region encode putative Fe uptake systems, the suf region participates in [Fe-sulfur] cluster assembly under oxidative stress and Fe limitation, the isiAB region encodes CP43' and flavodoxin, the idiCB region encodes the NuoE-like electron transport associated protein IdiC and the transcriptional activator IdiB, and the ackA/pgam region encodes an acetate kinase and a phosphoglycerate mutase. We also investigated the response of two S. elongatus PCC 7942 mutants to Fe starvation. These were mutant K10, lacking IdiB but containing IdiC, and mutant MuD, representing a idiC-merodiploid mutant with a strongly reduced amount of IdiC as well as IdiB. The absence of IdiB in mutant K10 or the strongly reduced amount of IdiB in mutant MuD allowed for the identification of additional members of the Fe-responsive IdiB regulon. Besides idiA and the irpAB operon somB(1), somA(2), ftr1, ackA, pgam, and nat also seem to be regulated by IdiB. In addition to the reduced amount of IdiB in MuD, the low concentration of IdiC may be responsible for a number of additional changes in the abundance of mainly photosynthesis-related transcripts as compared to the wild type and mutant K10. This fact may explain why it has been impossible to obtain a fully segregated IdiC-free mutant, whereas it was possible to obtain a fully segregated IdiB-free mutant.
Collapse
Affiliation(s)
- Anke Nodop
- Lehrstuhl für Molekulare Zellphysiologie , Universität Bielefeld, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
The copper-dependent ACE1 transcription factor activates the transcription of the mco1 gene from the basidiomycete Phanerochaete chrysosporium. Microbiology (Reading) 2008; 154:491-499. [DOI: 10.1099/mic.0.2007/013128-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|